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Abstract: In this study, the authors investigate the performance of optical code-division multiple access (OCDMA) systems with
belief propagation (BP)-based receivers. They propose three receivers for the optical fibre channel that provide a trade-off between
detecting complexity and system performance. The first proposed receiver achieves a performance very close to the so-called
known interference lower bound. The second receiver exhibits a considerably less complexity at the expense of a slight
degradation in performance. They show that the third BP-based receiver, which is a simplified version of the second receiver,
is surprisingly the same as the so-called multistage detector in OCDMA systems. They then study the problem of finding
proper spreading codes for the proposed receivers. BP-based receivers perform well if the graph corresponding to the
spreading matrix has no short cycles. The probability of existence of short cycles directly depends on the sparsity of
the spreading matrix. Therefore they look for sparse spreading matrices that are also uniquely detectable, that is, the
corresponding input data vectors and the output spread vectors are in one-to-one correspondence. The existence of random
uniquely detectable matrices (for which the elements are binary with equal probability) has already been proved by Edrös and
Rényi when the dimensions of matrix tend to infinity. In this study, they prove the existence of sparse uniquely detectable
spreading matrices in the large system limit, when the number of users and the number of chips approach infinity and their
ratio is kept constant. For finite length systems, they propose to use optical codes with one chip interference between codes
and show that they exhibit a better performance than random sparse codes.

1 Introduction

Code-division multiple access (CDMA) is a well-known
multiple access technique which has extensive application
in wireless and optical communication systems. In a CDMA
system, all resources such as time and frequency are
available to all users simultaneously. Each user is assigned
a unique spreading code (signature) to be distinguished
from other users. Consequently, any CDMA system is
represented by a matrix called the spreading matrix. Each
column of the spreading matrix is a spreading code.
[Throughout the paper, these two terms, spreading matrix
and spreading codes, are exchangeably.] The transmitted
CDMA signal can be represented as the multiplication of
the data of different users by the spreading matrix. In
fibre-optic networks, optical CDMA (OCDMA) can be
considered as a high data rate multiple access scheme
because of its ability to establish a robust multiple-access
environment for a number of users [1].
OCDMA can be used in both asynchronous and

synchronous scenarios. Asynchronous OCDMA does not
require any time synchronisation among users. In this
regard, OCDMA systems with optical orthogonal codes
(OOCs) were introduced by Salehi et al. [1–6]. Another set
of codes for asynchronous OCDMA are known as prime
codes (PCs) [7]. For both schemes, simplicity at the

receiver is achieved at the expense of degrading the spectral
efficiency compared with other multiple access techniques
such as time-division multiple access. In other words, the
maximum number of users in asynchronous OCDMA is
considerably smaller than the number of chips. In
synchronous OCDMA systems, the time synchronisation
between users is required. For synchronous OCDMA,
modified PC (MPCs) and transpose MPC (T-MPC) are
proposed in the literature, which are developed based on PC
[8, 9].
The optimal detector in a CDMA system is

computationally complex to implement and therefore many
suboptimal receivers have been proposed for CDMA
systems [10]. For OCDMA systems in particular, they
include the correlator receiver, correlator with hard limiter,
chip level detector, multistage detector, successive and
parallel interference cancellers, and expectation
maximisation-based multiuser detection [11–17].
Recently, a new method for multiuser detection, called

sparsely spread CDMA, has emerged in the literature
[18–24]. This technique utilises belief propagation (BP)
algorithm with near-optimal performance, which is a lot
more computationally efficient compared with the optimal
detection in [10]. The main idea is to use the sparse
spreading code that is inspired by the successful deployment
of the BP decoding in low-density parity-check (LDPC) codes.
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The methods in [18–24] are developed based on the
assumption of a channel with additive white Gaussian
noise. Moreover, the receiver is assumed to know channel
state information. Therefore in optical CDMA systems
where there are other sources of uncertainty such as Poisson
channel and also some non-additive noise sources such as
dark current noise, the receivers proposed in [18–24] cannot
be directly applied.
In this paper, we propose a BP-based scheme that is

devised particularly for OCDMA systems. The proposed
BP-based scheme includes three receivers with different
complexity/performance specifications. We show that the
first proposed receiver can achieve a performance very close
to the known interference lower bound. In this lower
bound, it is assumed that all users know the information
bits of other users [11]. In the second algorithm, we
propose to use an approximated version of the BP
algorithm to considerably reduce the complexity at the
expense of slight degradation in the performance compared
with the first receiver. In the third proposed receiver, we
use some more approximations to the algorithm in the
second receiver to further reduce the complexity. This
causes more performance degradation. Surprisingly, we
observe that the third receiver, which is still a simplified
version of the BP algorithm, is in fact identical to the
multistage detector introduced in [11].
The main contribution of this paper is to provide

algorithms with practical complexity that perform
reasonably well in the overloaded region. For example, in a
system with 64 chips over ideal fibre, the first proposed
algorithm can support as high as 86 users with a bit error
rate (BER) as low as 10−3. The performance of other
implementation-efficient algorithms in the literature is far
from that of our scheme in both over- and underloaded
regions.
We also study the choice of codes for the proposed

receivers to have the best performance. In general, there are
two sources of errors in the BP-based receivers in addition
to the channel noise. The first source of error is the cycles
in the factor graph representation of the system [25] and the
second one is the existence of multiple user data vectors for
a given spread vector. The first source of error can be
removed by choosing random sparse matrices based on
asymptotic cycle free (ACF) property [26] to avoid cycles
with length shorter than a desired value. The second one
can be removed if the spreading matrix is uniquely
detectable [By uniquely detectable matrix, we mean an
injective matrix, that is, the inputs and outputs are in
one-to-one correspondence.] [27–29]. It is notable that the
second source of error is more dominant in the overloaded
systems, where the loading factor, that is, the ratio of the
number of users to the number of chips, is >1. To remove
both sources of error, we have to look for sparse spreading
matrices that are also uniquely detectable. The existence of
random uniquely detectable matrices (for which the
elements are binary with equal probability) is proven by
Edrös and Rényi in [30] when the dimension of matrix
tends to infinity. Moreover, based on the results of [31],
under certain conditions, the so-called ‘optimum asymptotic
multiuser efficiency’ for random i.i.d. codes is 1 in the
large system limit [By the large system limit, we mean the
case where the number of users and the number of chips
approach infinity while their ratio is kept constant.], which
also implies the existence of uniquely detectable spreading
matrices. However, the conditions in [31] are not satisfied
in our case where the random sparse unipolar matrices are

used. In this paper, we rigorously prove that a random
sparse spreading matrix chosen based on the ACF property
can be uniquely detectable almost surely in the large system
limit.
Our results on the existence of uniquely detectable sparse

spreading matrices are valid in the large system limit. In the
finite length systems with random sparse codes, short cycles
in the factor graph are inevitable. Thus, we propose to use a
different class of codes based on OOC [1, 2] for which we
can avoid cycles of length four. We show that such codes
outperform finite length random codes.
The rest of this paper is organised as follows. Section 2

gives a description of the OCDMA system model. In
Section 3, maximum a posteriori probability (MAP)
detector in an OCDMA system and its factor graph
representation are described. In Section 4, the BP-based
receivers for multiuser detection in optical fibre channels
are presented. Section 5 is dedicated to the choice of proper
codes for the proposed receivers. Section 6 presents
simulation results in the optical fibre channel and Section 7
concludes the paper.

2 System model

We consider a bit synchronous OCDMA system in which
users transmit signals simultaneously with on–off keying
(OOK) modulation. It is important to note that this
assumption is only for simplicity and the proposed scheme
can be generalised to asynchronous OCDMA systems. In
this system, each user has a unique spreading code of
length L and the signal of the ith user in 1 bit duration time
can be written as

xi(t) = Xi

∑L
l=1

cilpTc t − lTc
( )

, 0 ≤ t ≤ Tb = LTc (1)

where Xi is the ith user’s binary data, cil is the lth component
of the spreading code, Tc is the chip time interval, Tb is the bit
period and pTc (t) is a rectangular pulse defined as

pTc (t) =
1, 0 ≤ t ≤ Tc
0, otherwise

{
(2)

In the noiseless channel with K users, the received signal at
nth time interval (nTb≤ t≤ (n + 1)Tb) can be expressed as

y(t) =
∑K
i=1

∑L
l=1

cilXipTc t − lTc − nTb
( )

(3)

This model can be considered in the ideal optical fibre
channel in which the performance of the system is limited
only by the multiple access interference. In such a channel,
the effects of optical sources and the photodetector and the
effects of all sources of noise are not considered. Therefore
the sampled received signal can be written in discrete
matrix form as

Y = CX (4)

where C is a binary matrix whose columns are the spreading
code and X is a binary column vector, where X = [X1,…, XK]

T

and Y = [Y1, …, YL]
T is the received vector.

In a non-ideal optical fibre channel, we must consider the
effect of noise and the channel model. We consider a
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receiver as shown in Fig. 1 that includes a photodetector and
an integrator for each chip. We sample the output at the end of
each chip. The sampled output for the ith user at the lth chip
can be modelled by a Poisson distribution with mean XiλxTc,
where

lx =
2

w
Pav

h

hv
(5)

In (5), Pav, λx, η, v and h indicate, respectively, the average
received signal power on the photodetector area, the
photo-electron count rate of the received signal, quantum
efficiency, optical frequency and the Planck constant.
Parameter w is the weight of spreading codes which will be
defined more precisely later. We consider the effect of dark
current noise and neglect the effects of other sources of
noise such as thermal noise and beat noise. Dark current of
photodetector can be modelled as a Poisson process with
mean λnTc, where

ln =
idc
q

(6)

In (6), λn, idc and q are the photoelectron count rate of dark
current noise, the dark current of photodetector and electron
charge, respectively. Hence, the received signal with K
users in the lth chip can be modelled by a Poisson random
variable with mean (ml(X)λx + λn)Tc, where ml(X) is the
number of users which send ‘1’ in the lth chip duration. In
this case, the lth element of vector Y defined in (4) has a
Poisson distribution with mean (ml(X)λx + λn)Tc.

3 MAP detection and its factor graph
representation

Let vectors X and Y be defined as in (4) and assume that we
have received vector Y and want to estimate Xi, the ith
element of X, given Y. Individually optimum MAP detector
estimates Xi by maximising its a posteriori probability as

Xi = arg max
Xi[{0,1}

P Xi|Y
( )

(7)

Equation (7) can be written based on the marginal functions
of the joint a posteriori probability as

Xi = arg max
a[{0,1}

∑
X[{0,1}K ,Xi=a

P(X |Y )

= arg max
a[{0,1}

∑
X[{0,1}K ,Xi=a

P(Y |X )P(X )

P(Y )

(8)

By eliminating the constant term P(Y) from the denominator,

the MAP rule can be simplified as

Xi = arg max
a[{0, 1}

∑
X[{0, 1}K ,Xi=a

P(Y |X )P(X )

= arg max
a[{0, 1}

∑
X[{0, 1}K ,Xi=a

P Y1, . . . , YL
{ }|X( )

P(X ) (9)

It can be seen that given X, Yl’s are independent of each other
and therefore P(Y |X ) =∏

l P Yl|X
( )

. Moreover, Xi’s are
independent of each other and hence we have

Xi = arg max
a[{0,1}

∑
X[{0,1}K ,Xi=a

∏
l

P Yl|X
( )∏

k

P Xk

( )
(10)

which shows the MAP detection can be converted into finding
marginal functions of the following function [25]

f (X , Y ) =
∏
l

P(Yl|X )
∏
i

P(Xi) (11)

Marginal functions of f (X, Y) can be found by the BP
algorithm on the factor graph model [25]. A factor graph is
a bipartite graphical representation of a mathematical
relation between some variable nodes and some factor
nodes. We can realise the factor graph representation of an
OCDMA scheme as depicted in Fig. 2. Each user bit Xk is
represented by a circle, called the variable node or the
symbol node. Each received signal entry Yl represented by a
square, called the factor node or the chip node. For any k
and l, symbol node k and chip node l are connected by an
edge if Cl,k, the element in lth row and the kth column of
matrix C, is equal to 1. Consequently, the MAP multiuser
detection of OCDMA can be efficiently implemented using
the BP algorithm.

4 Proposed BP-based multiuser receivers for
OCDMA systems

In this section, three BP-based multiuser receivers for
OCMDA systems over an optical fibre channel are
proposed. The BP algorithm can be performed on the factor
graph representation as follows. Each iteration of the BP
algorithm has two halves. In the first half iteration,
messages that are in the form of probabilities are sent from
symbol nodes to chip nodes. Each chip node then computes
the output message based on the received messages and
sends it back to the symbol nodes to be used in the second
half iteration. Therefore the BP algorithm at tth iteration can

Fig. 1 Block diagram of receiver in each chip

Fig. 2 Factor graph model of the bit synchronous OCDMA system
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be written as [20]

Pt Xk | Y j=l

{ }( )
= bt

l,k

∏
j=l

Pt Yj|Xk , Ym=j

{ }( )
(12)

Pt+1 Yl|Xk , Y j=l

{ }( )
= at

l,k

∑
Xm=k{ }

P Yl|X
( )

×
∏
m=k

Pt Xm| Y j=l

{ }( )
(13)

where at
l, k and bt

l, k are constants for normalisation and {Yj≠

l} is a vector of all of Yj’s excluding Yl. P
t(Xk|·) [or P

t(Yk|·)]
indicates the conditional probability that Xk (or Yk) has a
certain value in tth iteration. A posteriori probability, Pt(Xk|Y),
can be obtained as

Pt Xk |Y
( ) = ak

∏
j

Pt Yl|Xk , Y j=l

{ }( )
(14)

Since we consider OOK signalling, the probabilities in (12) and
(13) have to be computed twice for Xk = 0 and Xk = 1. Instead of
doing so, we can use log-likelihood ratio value of the messages
as

V t
k�l = ln

Pt Xk = 1| Y j=l

{ }( )
Pt Xk = 0| Y j=l

{ }( )
⎛
⎝

⎞
⎠ (15)

V t
l�k = ln

Pt Yl|Xk = 1, Y j=l

{ }( )
Pt Yl|Xk = 0, Y j=l

{ }( )
⎛
⎝

⎞
⎠ (16)

where V t
k�l represents the message from symbol node k to chip

node l and V t
l�k represents the message from chip node l to

symbol node k at the tth iteration. From (15) and (16), the
first half iteration of the BP algorithm, (12), can be written as

V t
k�l =

∑
j[∂k\l

V t
j�k (17)

where ∂k denotes the subset of chips connected directly to user
k which is referred to as neighbourhood of the symbol node k.
Also, let ∂k\l denote the neighbourhood of symbol node k
excluding chip node l. Then, the second step of the algorithm
in the lth chip can be written as (see (18))

The conditional probability distribution of Yl, P(Yl|Xk, {Xt}t∈ ∂l/

k), is Poisson with mean λl(X)Tc and is given by

P Yl|Xk , Xt

{ }
t[∂l/k

( )
= exp −ll(X )Tc

( )
ll(X )Tc
( )Yl

(Yl)!
(19)

where λl(X) =ml(X)λx + λn in which ml(X) is the number of
users which send 1 in the lth chip. In the rest of the paper for
simplicity, we show λl(X) and ml(X) by λl and ml,
respectively, and without loss of generality set Tc = 1. By

substituting (19) into (18), we have

V t+1
l�k = ln

A

B

( )
(20)

where

A =
∑

Xt[∂l/k

{ }
,Xk=1

exp −ll
( )

ll
( )Yl

Yl
( )

!

[ ] ∏
j[∂l/k,Xj=1

exp V t
j�l

( )⎡
⎣

⎤
⎦

(21)

and

B =
∑

Xt[∂l/k

{ }
,Xk=0

exp −ll
( )

ll
( )Yl

Yl
( )

!

[ ]

×
∏

j[∂l/k,Xj=1

exp V t
j�l

( )⎡
⎣

⎤
⎦ (22)

By eliminating (Yl)! from numerator and denominator and using
the approximation

ln
∑
i

exp (ri)

( )
≃ max

i
(ri) (23)

(20) can be written as

V t+1
l�k = max

Xt[∂l/k

{ }
,

Xk=1

Yl ln (ll)− ll +
∑

j[∂l/k,Xj=1

V t
j�l

⎛
⎝

⎞
⎠

− max
Xt[∂l/k

{ }
,

Xk=0

Yl ln (ll)− ll +
∑

j[∂l/k,Xj=1

V t
j�l

⎛
⎝

⎞
⎠
(24)

We can summarise the operations in Algorithm 1 (see Fig. 3):
Two maximisations in the fourth step of Algorithm 1

(Fig. 3) in each iteration are done between 2zl−1 terms in
the lth chip, where ζl is the number of variable nodes
connected to the lth chip node. If the values of ζl/K are
small for all l∈ {1, …, L} and the algorithm converges
with finite number of iterations, the algorithm uses a
number of operations that is linear in the number of chips.
However, Algorithm 1 is more complicated than many
conventional algorithms in OCDMA systems. In fact, the
second stage of the BP algorithm [(18)] makes it too
complicated. Now, we try to simplify (18) to obtain a
simpler algorithm. It can be seen that (18) can be converted to

V t+1
l�k = ln

∑
I t
lk
[ 0, ..., zl−1{ } P Yl|Xk = 1, I tl

( )
P Itlk
( )

∑
I t
lk
[ 0, ..., zl−1{ } P Yl|Xk = 0, I tlk

( )
P Itlk
( )

( )
(25)

V t+1
l�k =

∑
Xi[∂l/k

{ }
P Yl|Xk = 1, Xt[∂l/k

{ }( )
Pi[∂l/kP

t Xi| Y j=l

{ }( )[ ]
∑

Xi[∂l/k

{ }
P Yl|Xk = 0, Xt[∂l/k

{ }( )
Pi[∂l/kP

t Xi| Y j=l

{ }( )[ ] (18)
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where

P Itlk
( ) = ∏

∑
u[∂l\k Xu=I t

lk

Pt Xu| Y j=l

{ }( )
(26)

One can interpret I tlk as the total interference caused by all
users excluding the kth user. From (26), it can be seen that
I tlk is a Poisson Binomial random variable [The Poisson
Binomial distribution is a discrete probability distribution of
a sum of independent Bernoulli trials with unequal
probabilities.] which can be approximated by a Gaussian
distribution N mt

lk , s
2
lkt

( )
in the large system limit, where

mt
lk =

∑
u[∂l/k

Pt Xu = 1| Y j=l

{ }( )

=
∑

u[∂l/k

exp V t
u�l

( )
exp V t

u�l

( )+ 1
(27)

and

s2
lkt =

∑
u[∂l/k

Pt Xu = 1| Y j=l

{ }( )

1− Pt Xu = 1| Y j=l

{ }( )( )
=

∑
u[∂l/k

exp V t
u�l

( )
exp V t

u�l

( )+ 1
( )2

(28)

Equations (27) and (28) can also be approximated by two

simple functions as

mt
lk =

∑
u[∂l\k

U V t
u�l

( )
(29)

and

s2
lkt =

∑
u[∂l\k

F V t
u�l

( )
(30)

respectively, where

U (x) = 0, x ≤ 0
1, x . 0

{
(31)

and

F(x) = −0.09|x| + 0.29, −3.22 ≤ x ≤ 3.22
0, otherwise

{
(32)

By substituting Gaussian approximation of P Itlk
( )

and (19)
into (25) and using approximation (23), we have (see (33))

where I t1lk and I t0lk maximise the first and the second terms in
the right-hand side of (33), respectively. Therefore I t1lk and
I t0lk can be obtained by setting derivatives of the first and the
second terms in the right-hand side of (33) equal to zero,
respectively. Then, by some simplifications we have

−lxs
2
lkt ln + I t1lk lx + lx
( )+ Ylls

2
lkt

− ln + I t1lk lx + lx
( )

I t1lk − mt
lk

( ) = 0 (34)

Fig. 3 Algorithm 1

V t+1
l�k = − ln + I tlklx + lx

( )+ Yl ln ln + I tlklx + lx
( )− I tlk − mt

lk

( )2
2s2

lkt

{ }
I t
lk
=I t1

l

− − ln + I tlklx
( )+ Yl ln ln + I tlklx

( )− I tlk − mt
lk

( )2
2s2

lkt

{ }
I t
lk
=I t0

lk

(33)
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and

−lxs
2
lkt ln + I t0lk lx
( )+ Ylls

2
lkt − ln + I t0lk lx

( )
I t0lk − mt

lk

( ) = 0

(35)

Equations (34) and (35) are two quadratic equations that can
be solved easily. One can simplify (33) more by assuming
large average rate of photoelectron (λx) as

V t+1
l�k = I t0lk − I t1lk

( )
lx + Yl ln

ln + I t1lk lx + lx
( )

ln + I t0lk lx
( ) (36)

To simplify more, we approximate V t
k�l by

V t
k =

∑
l[∂k V

t
l�k . This assumption is valid in the large

system limit. Therefore, in each iteration of the algorithm,
only K messages V t

k

( )
have to be updated. Moreover, we

should update mt
lk and s2

lkt in each iteration with much less
complexity than the update process in step 4 of Algorithm
1 (see Fig. 3). The proposed simplified algorithm can be
summarised in Algorithm 2 (see Fig. 4):
we will show in simulation results that Algorithm 2 (Fig. 4)
performs pretty closely to Algorithm 1 despite the
considerable reduction in its complexity.
We now make some more simplification to Algorithm 2

which results in a new algorithm called Algorithm 3. To do
so, we assume that s2

lkt ≪ 1, therefore the solutions of (41)

and (42) (see Fig. 4) can be easily obtained as

I t1lk = mt
lk (37)

and

I t0lk = mt
lk (38)

Hence, step 4 in Algorithm 2 can be simplified by substituting
(37) and (38) into it as

V t+1
k =

∑
l[∂k

−lx + Yl ln 1+ 1

ln/lx
( )+ mt

lk

( )
(39)

As a result, step 3.2 and the variance update in step 3.1 are
removed from Algorithm 2. In this new algorithm, two
variables V t

k and mt
lk have to be updated. It can be observed

that Algorithm 3 is the same as the well-known multistage
detector introduced in [11]. In other words, the multistage
detector can be considered as a simplified version of the BP
algorithm. It is important to remind that this result is based
on the assumption that s2

lkt ≪ 1 and it can be easily seen
that in the beginning of the algorithm, this assumption is
not valid. For example, in the first iteration, it can be seen
from (28) that

s2
lk1 =

(zl − 1)

4
(40)

Fig. 4 Algorithm 2
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where ζl is the degree of the lth chip. Equation (40) clearly
shows that the assumption s2

lkt ≪ 1 is not valid. As
iterations continue, the value of s2

lkt starts to decrease
making this assumption valid for larger number of
iterations. This inconsistency causes the performance of
Algorithm 3 to be worst than the two former algorithms.
To summarise, Algorithms 1, 2 and 3 (see Figs. 3 and 4)

can provide a trade-off between complexity and
performance of OCDMA detection.

5 Spreading code design

It is known that the BP algorithm performs optimally on
graphs that are cycle free. However, for some of the most
important applications of the BP algorithm such as
decoding of LDPC codes, the underlying factor graph has
cycles. Extensive simulation results show that for graphs
with no short cycle, the BP algorithm can achieve
astonishing performance [25]. Consequently, in graphs
corresponding to OCDMA systems, we must choose the
ones with no short cycles. In order to satisfy this condition,
the spreading matrix should be sparse. In sparse matrices, if
the average number of non-zero elements in each column of
spreading matrix grows as slow as o(L1/4t) with L (the
number of chips), the probability that a variable node is
involved in a cycle of length shorter than t approaches zero
in the large system limit [26]. This is often called the ACF
property. From ACF property, it can be observed that the
number of short cycles decreases if the weight of spreading
codes decreases. However, when the weight of codes
decreases, the transformation between the user information
bits, X, and the channel output (in the noiseless channel),
CX, may not be one-to-one anymore. This is particularly
more probable in the overloaded case, where the number of
users is greater than the number of chips.
In general, the spreading matrix C is called uniquely

detectable if there is a unique solution for Y =CX, that is

CX1 = CX2 ⇒ X1 = X2 (41)

For OCMDA systems with OOK modulation, we have X1,
X2∈ {0, 1}K. Moreover, we can write (41) as follows

C X 1 − X2

( ) = 0 ⇒ X1 − X2 = 0 (42)

By defining Z = X1− X2∈ {± 1, 0}K, one can represent (42)
as

CZ = 0 ⇒ Z = 0 (43)

Another way to show (43) is [27–29]

null(C)
⋂

{+1, 0}K = f (44)

where null(C) is the null space of C and φ indicates the empty
set. In [30], authors prove that random uniquely detectable
matrices (when the entries of matrix are chosen randomly
from {0, 1} with equal probability) exist even for large
loading factor when the dimensions of matrix tend to
infinity. Moreover, in [31], it is proved that under certain
conditions, the so-called optimum asymptotic multiuser
efficiency of a CDMA system with a spreading matrix C
with i.i.d elements tends to 1 if the loading factor β =K/L is
kept equal to an arbitrary constant when K tends to infinity.
This implies that for such a system, the spreading matrix C

is uniquely detectable in the large system limit. However,
the conditions in [31] are not satisfied when the spreading
matrix is chosen based on the ACF property, for example,
when the matrix is sparse. In the next theorem, we prove
that in the large system limit, choosing random sparse
matrices based on the ACF property, will result in uniquely
detectable matrices with probability tending to 1.

Theorem 1: Let A be an L × K binary random matrix whose
elements have Bernoulli (p) distribution [If z has a
Bernoulli (p) distribution, its value is 1 with probability p
and 0 with probability 1− p.] such that the average number
of 1’s in each row, that is, Kp, satisfies the following equation

Kp = K (1/a) (45)

where α is a finite real number greater than 1. If K and L tend
to infinity such that the loading factor is kept equal to an
arbitrary constant, then A is uniquely detectable with
probability approaching 1.

Proof: See the Appendix.

Theorem 1: Implies that if we select an L × K random matrix
whose elements are in {0, 1} and the average number of
non-zero elements in each row is equal to K1/α for some
α > 1, it is uniquely detectable with probability 1 in the
large system limit. Moreover, based on the ACF property
such a matrix has no cycles of length shorter than α/4.

In a system with finite length, choosing the value of α is very
important. It can be seen that in the finite length systems, there
is in fact an optimum value for α. In other words, there is an
optimum value for the average number of non-zero elements
in each row. In simulation results section, we show this fact
for the first proposed receiver.
In the finite length systems as opposed to large system

limit, we cannot guarantee that there is no cycles shorter
than a given length and this can degrade the performance.
Therefore, for the considered OCDMA system, we
investigate the existences of graphs for which we can
guarantee that there are no cycles of length 4. To do so, we
need sparse codes that have at most one chip interference
with each other. A natural choice of codes that satisfy this
condition are OOC with low weight and their shifted
versions when the maximum cross-correlation between
codes is set to 1. We abbreviate such codes by shifted
optical orthogonal codes (SOOC).
In general, an (L, w, λa, λc) OOC is a family of (0, 1)

sequences of length L and weight w with maximum auto-
and cross-correlation λa and λc, respectively. These codes
are designed for asynchronous OCDMA systems. For
synchronous OCDMA systems, the OOC codes and their
cyclically shifted versions can be used. This makes it
possible to significantly increase the number of codes
compared with the asynchronous case. We use OOC’s with
small values for w (around 4 in our case) and λc = 1. In
such a case, the maximum number of codes is obtained by
Johnson’s bound as follows [32]

Nc ,
L

w

L− 1

w− 1

[ ][ ]
(46)

In the simulation results section, we compare the performance
of the random codes with that of SOOC codes.
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6 Simulation results

In this section, simulation results are presented to demonstrate
the performance of the proposed receivers in optical fibre
channels. First, the performance of Algorithm 1 is
investigated for random codes and SOOC codes in the
noiseless channel. A noiseless channel can be easily
obtained by letting λn = 0 and lx ≫ 1.
Fig. 5 shows the BER performance of Algorithm 1 against the

number of iterations using random codes of weight 5 for a
system with L = 64 chips and with K = 80, 92 users in the
noiseless channel. To do so, we have randomly generated the
spreading matrix while guaranteeing to have exactly 5 ones on
each column of the matrix. From Fig. 5, it is observed that a
few number of iterations is enough to obtain the best
performance of Algorithm 1. To achieve BER of 10−3, the
number of users is limited to 80, which is still in the
overloaded region; however, we show that SOOC codes can
accommodate a larger number of users to achieve the sameBER.
In Fig. 6, we plot the BER performance of Algorithm 1

against the number of users for the random codes with
different weights in the overloaded region. Moreover, the

number of iteration is set 10 to obtain the best performance.
As can be seen, there is an optimum value for the row weight
of the spreading matrix, which is 5 in this case. The existence
of this optimum weight is because of two sources of error in
Algorithm 1 in the overloaded region. The first source of error
is the cycles in the factor graph representation of the system
[25] and the second one is the existence of multiple user data
vectors for a given spread vector. The probability of having
cycle increases when the weight increases. However, the
probability of the second source of error decreases when the
weight increases. Therefore there is an optimum weight that
results in the best BER. Note that this optimum weight
depends on the code length. In fact, for each code length L,
there is an optimum weight that minimises the probability of
error. Our simulation shows that the optimum weight for
random codes with length 64 is 4.
Fig. 7 shows the performance of Algorithm 1 for the SOOC

codes. In this figure, the same parameters as in Fig. 5 are used.
We have also included the best random code from the
previous figure. It can be observed from Fig. 7 that SOOC
has a better performance than the random codes in terms of
number of supported users. It is notable that the optimum
value of the weight of codes for SOOC codes is 4. We also
compare the performance of Algorithm 1 with that of
conventional correlator and a new interference cancellation
method presented in [33]. It can be observed that Algorithm
1 has a performance much better than the two other methods.
In the remaining parts of the simulation results, we

investigate the performance of the proposed receivers in a
real optical channel, that is, non-zero λx and finite λn and
consider the effect of different system parameters, namely,
number of iterations, number of chips, number of users and
average photoelectron count on the BER performance of the
three proposed algorithms. In the simulations, SOOC codes
with weight 4 are used because of their superior
performance as shown in Fig. 7.
In Fig. 8, we have investigated the BER performance of the

proposed receivers against the number of iterations for
different number of users. We have set L = 128, λn = 0.1
and λx = 5. Fig. 8 shows that the three proposed algorithms
converge in a few number of iterations.
In Fig. 9, we have investigated the BER performance of the

proposed methods against the number of chips for 20 users.
We set λn = 0.1, λx = 5 and T the number of iterations to 10.
From this figure, we see that the performance of Algorithm

Fig. 5 BER results of Algorithm 1 against the number of iterations
(L = 64, λn = 0 and lx ≫ 1)

Fig. 6 BER performance of Algorithm 1 for random codes (L = 64,
λn = 0 and lx ≫ 1)

Fig. 7 BER performance of Algorithm 1 for SOOC (L = 64, λn = 0
and lx ≫ 1)
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1 is very close to the known interference lower bound for
large number of chips. We also see that the performance of
Algorithm 2 is pretty close to Algorithm 1 and the
performance of Algorithm 3 is considerably worst than
Algorithm 2. This is because of the approximation used in
Algorithm 3 which results in (37) and (38). On the positive
side, the complexity of this algorithm is less than that of
Algorithm 2. Therefore the proposed BP-based receivers
present different complexity/performance specifications.
Fig. 10 investigates the BER performance for the proposed

receivers against the number of users when L (the number of
chips) is set to 128. In this figure we set λn = 0.1 and λx = 5.
As it can be seen from this figure, the performance of the
proposed receivers is in similar order as Fig. 9.
In Fig. 11, we have investigated the BER performance

against the average photo-electron count in each chip. We
have set L = 128, K = 30, λn = 0.1 and the number of
iteration to 10. As Fig. 11 shows, the performance of
Algorithm 1 is very close to the known interference lower
bound and Algorithms 2 and 3 have worst performance
than the known interference lower bound as predicted. By
increasing the average photoelectron count which can be
achieved by increasing the transmitted power, BER improves.

7 Conclusions

In this paper, three multiuser receivers for OCDMA systems
based on the BP algorithm were proposed. The first
proposed receiver was shown to exhibit a performance close
to the known interference lower bound. The second receiver
was obtained by applying some approximations to the first
receiver to make it considerably simpler at the expense of a
slight degradation in performance. It was shown that the
third receiver is in fact identical to the multistage detector
already proposed for OCDMA systems. We then
investigated the spreading codes that can perform well with
the proposed receivers. Consequently, we looked for sparse
spreading matrices that are also uniquely detectable. We
proved the existence of such matrices with probability
approaching one in the large system limit. Nevertheless,
systems with random sparse spreading matrices with finite
dimensions can also exhibit a pretty good performance. For
spreading codes of finite length, we also investigated the
performance of SOOC codes when the maximum
cross-correlation between codes is set to 1. In this case,

Fig. 8 BER results of the proposed receivers against the number of
iterations for various number of users (L = 128, λx = 5 and λn = 0.1)

Fig. 9 Performance comparison of the proposed receivers against
the number of chips (λx = 5, λn = 0.1 and K = 20)

Fig. 10 Performance comparison of the proposed methods against
the number of users (λn = 0.1, λx = 5 and L = 128)

Fig. 11 BER performance of the proposed receivers against the
average of photo-electron count in each chip (λx) for 30 users
(λn = 0.1 and L = 128)
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there is no cycle with length 4 in the factor graph
representation of the corresponding spreading matrix. It was
shown that the proposed SOOC codes outperform random
codes.
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10 Appendix

10.1 Proof of Theorem 1

Suppose that P(B) is the probability that A is a uniquely
detectable matrix. A is not uniquely detectable matrix if there
is at least one x∈ {0, 1, − 1}K, x≠ 0{K × 1} such that Ax =
0{L × 1}. Therefore by using the union bound we can write

P(B) = 1− P(�B)

≥ 1−
∑

x[{0, 1,−1}K , x=0{K×1}

P Ax = 0{L×1}

( )
(47)

It can be proven that P(Ax = 0{L × 1}) is the same for all x’s with
the same weight and the same number of 1’s. [By the weight of
a vector, we mean the number of non-zero elements in it.]
Therefore the summation in (47) can be changed into two
summations and we have

P(�B) ≤
∑K
k=1

K

k

( )

×
∑k
l=0

k

l

( )
P Ax = 0{L×1}|wx = k, lx = l
( )

(48)

where wx is the weight of the vector x and lx is the number of
1’s in x. The elements of each row of A are independent.
Therefore P(Ax = 0{L × 1}/wx = k, lx = l ) in (48) can be written
as

P Ax = 0{L×1}|wx = k, lx = l
( )

= P
∑K
j=1

Ai, jxj = 0|wx = k, lx = l

( )[ ]L

=
∑min (l, k−l)

r=0

k − l

r

( )
l

r

( )
p2r(1− p)k−2r

[ ]L

(49)
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Now we try to find an upper bound for (49). The maximum
value of (49) is obtained when l = [k/2]. We only obtain this
upper bound when k is even. For odd k, the upper bound can
be obtained in a similar way. For an even k, we can write

∑min (l, k−l)

r=0

k − l

r

( )
l

r

( )
p2r(1− p)k−2r

≤ max
r′[{0, ..., k/2}

k/2

r′

( )
pr

′
(1− p)k/2−r′

×
∑k/2
r=0

k/2

r

( )
pr(1− p)k/2−r

= max
r[{0, ..., k/2}

k/2

r

( )
pr(1− p)k/2−r (50)

It can be easily proven that the maximisation of (50) happens
when

r = kp

2

[ ]
(51)

Thus using (48)–(51), we have

P(�B) ≤
∑K
k=1

K
k

( )
2k

k/2
kp/2
[ ]( )

p kp/2[ ](1− p)k/2− kp/2[ ]
[ ]L

(52)

Let k0 be an integer number such that if k≤ k0, then [kp/2] = 0.
Hence (52) can be written as

P(�B) ≤
∑k0
k=1

K

k

( )
2k(1− p)(kL/2)

+
∑K

k=k0+1

K

k

( )
2k

k/2

kp/2
[ ]

( )
p kp/2[ ](1− p)k/2− kp/2[ ]

[ ]L

(53)

Let z be defined as

z = k/K (54)

We first calculate the first summation in (53) in the large
system limit as

lim
K ,L�1

∑k0
k=1

K

k

( )
2k (1− p)kL/2

= lim
K, L�1

∫k0/K
1/K

2KH(z)+Kz+(1/2)KzL log2 (1−p)K dz

(55)

In (55), we used the following asymptotic approximation

K
kz

( )
≃ 2KH(z) (56)

where H(t) = −t log2 t− (1− t) log2 (1− t). Since based on
(45), p tends to zero in large system limit, we can use the
following approximation in the large system limit

log2 (1− p) ≃ −p log2 (e) = −K (1/a)−1 log2 (e) (57)

Using (57), the right-hand side of (55) can be written as

lim
K ,L�1

∫k0/K
1/K

2K H(z)+z−(1/2b)K(1/a)z log2 (e)
( )

K dz (58)

For finite values α and β, it can be easily proven that for
z∈ [1/K, k0/K]

H(z)+ z− 1

2b
K (1/a)z log2 (e) , 0 (59)

and therefore the limit in (58) is equal to zero.
For the second summation in (53) in the large system limit,

we have

lim
K,L�1

∑K
k=k0+1

K

k

( )
2k

k/2

kp/2
[ ]

( )
p (kp/2)[ ](1− p)k/2− (kp/2)[ ]

[ ]L

≤ lim
K, L�1

∑K
k=k0+1

K

k

( )
2k

''''''''''''
pkp(1− p)

√[ ]−L

= lim
K,L�1

∫1
k0+1( )/K

2K H (z)+z−(1/2b) log2 pzK(1/a)
( )( )[ ]

K dz

(60)

where we used the following inequality

K
Kz

( )
≤ 2KH (z)

/ ''''''''''''''
2pKz(1− z)

√( )
(61)

For finite values of α and β, it is easy to prove that for z∈
[((k0 + 1)/K ), 1]

H(z)+ z− 1

2b
log2 pzK (1/a)( )

, 0 (62)

and therefore the right-hand side of equality in (60) is equal to
zero. Since both terms in the right-hand side of (53) tend to
zero in the large system limit, we conclude that

lim
K, L�1P(�B) = 0 (63)

and consequently

lim
K, L�1P(B) = 1 (64)

This proves the theorem.
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