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Abstract: This study concerns joint channel and power allocation scheme for multi-user orthogonal frequency division multiple
access system. The author’s highlight is margin adaptive (MA) resource allocation problem namely minimising the total transmit
power of users with rate requirement constraints. MA is generally provable NP-hard; the typical methods are either to relax and
round, or to fix the transmission mode of users (e.g. modulation and coding). Differently, they reorganise MA problem with only
power variables left and design a novel relaxation scheme to enable the convexity. The polynomial-time algorithm-interior-point
method-is employed to solve the relaxation problem and the theoretical complexity is further presented. Simulation results
demonstrate that the author’s scheme can provide high energy efficiency compared with the existing methods, 100% relative
error bounds with respect to the optimum in most cases, and low computational complexity.

1 Introduction

Two kinds of joint channel and power allocation problems
have mainly raised concern in orthogonal frequency
division multiple access (OFDMA) networks. One is to
maximise system capacity with total power constraint while
the counterpart is to minimise the total transmit power as
well as meeting user rate requirements [1]. They are called
rate adaptive (RA) problem and margin adaptive (MA)
problem, respectively. Recently, MA has been redrew more
and more attention in small cell networks [2]. Thanks to
minimising the total transmit power, small cell network can
mitigate inter-cell interference and conserve energy at the
same time, both are current issues.
MA is generally shown to be strongly NP-hard [3] because

of the binary variables (channel allocation indicators) and
OFDMA constraints (i.e. any two users cannot share the
same channel). In the existing literature, the solutions either
directly relax the original problem, or resort to discrete
methods. The method in [4] (Method A) first relaxes channel
allocation indicators into continuous variables and allocates
the channel to whom with the largest value [4]. After that,
transmit power is compensated for guaranteeing user rate
requirements. The method in [2] (Method B) first determines
the user’s transmission mode (modulation and coding) based
on the average channel conditions and then correspondingly
regulates the transmit power to meet the signal-to-
interference-plus-noise ratio (SINR) target of the selected
mode. Another computationally efficient approach is to
allocate channels using the proportionally fair algorithm and
control the power of water-filling algorithm (PF +WF).

Owing to the separate optimisation of channel and power,
multi-user channel variations cannot be sufficiently exploited
and hence the performance loss is expected.
In this paper, we design a novel relaxation scheme to

enable the convexity of MA problem. To be specific, we
first reformulate MA problem so that only power variables
are left. Using this expression, we loosen OFDMA
constraints (equations) into the inequations by introducing a
tolerant error constant, which shows to be free of
performance loss from the engineering perspective. In order
to get a standard convex expression, we attach a series of
auxiliary constraints in the optimisation model. The convex
counterpart is solved using interior-point method, a
polynomial-time algorithm. We provide the self-concordant
barrier functions (elaborate later) of all the constraints on
the convex counterpart and further derive the theoretical
complexity. Our method jointly optimises channel and
power and hence sufficiently exploits user channel
variations. Benefit from this, the algorithm costs less power
compared with the above-mentioned approaches, which is
shown in simulation results.
The rest of this paper is outlined as follows. Section 2

presents the system model and the formulation of MA
problem. We elaborate the novel relaxation method in
Section 3. Simulation results are arranged in Section 4,
followed by the conclusion in Section 5.

2 System model and problem formulation

We consider an OFDMA network with a base station as the
central controller. There exist U users indexed by
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u [ U = {1, 2, . . . , U}, where U denotes user set. K
channels are assumed; the band of each channel is denoted
by Bk. Similarly, k [ K = {1, 2, . . . , K} and K denotes
the index of channels and channel set. xku [ {0, 1}
indicates whether user u occupies channel k; xku = 1 if
occupies, and 0 otherwise.
The SINR of the kth channel of user u is expressed as

gku =
pku|hku|2
s2
0 + Iku

= ak
up

k
u (1)

by setting ak
u = |hku|2

( )
/ s2

0 + Iku
( )( )

, where hku and pku denote
the channel gain between the base station and user u in the kth
channel and the transmit power in this link, respectively. Iku
and s2

0 represent the interference and noise power, which
are assumed to be constant since the scenario of interest is a
single cell. Thus, the rates of user u [ U are the sum of all
rates in allocated channels, given by

Ru =
∑
k[K

Bk log 1+ ak
up

k
ux

k
u

( )
(2)

All of three significant factors in a typical radio link, path loss,
shadowing and channel variations in frequency ( f ) and time
(t) domains, are taken into account. In this sense, the channel
model is given by

L(dB) = a+ b log(d)+ Xs + Xt(t, f ) (3)

where a and b are constants determined by particular path
loss models, and d is the distance between the transmitter
and the receiver. Xs accounts the effect of shadowing.
Multipath effect on frequency variations ( f ) and time-
varying fading (t) are modelled as a Rayleigh fading and a
multi-tap filter, respectively; they are jointly considered in
Xt(t, f ).
In MA problem, each user is profiled with a rate

requirement [1], for example, Rtarget
u of user u. The objective

of MA is to minimise the total transmit power in the sense
that it can be formulated as follows

MA: min
{pku},{x

k
u}

∑
u[U

∑
k[K

pkux
k
u

s.t. Ru ≥ Rtarget
u , ∀u [ U (4a)

∑
u[U

xku ≤ 1, xku [ {0, 1}, ∀k [ K (4b)

pku [ {p|0 ≤ p ≤ pmax}, ∀u [ U (4c)

where (4a), (4b) and (4c) represent rate constraints,
OFDMA constraints and maximum power constraints,
respectively.
Based on the recent work [3], MA is strongly NP-hard

unless a special case of U =K. The non-trivial property
comes from the binary variables xku

{ }
and OFDMA

constraints (4b). To handle them, we devise a novel
relaxation scheme in the sequel.

3 Relaxation scheme to solve MA

We first reformulate MA with only power variables pku
{ }

and
reach the following problem (ReMA)

min
{pku}

∑
u[U

∑
k[K

pku

s.t.Rtarget
u −Ru ≤ 0, ∀u [ U (5a)∑

k[K
pkup

k
y = 0, ∀u = y, u, y [ U (5b)

pku [ {p|0 ≤ p ≤ pmax}, ∀u [ U (5c)

where Ru is given by (6) instead of (2)

Ru =
∑
k[K

Bk log 1+ ak
up

k
u

( )
(6)

Note that the OFDMA constraints (4b) are replaced by (5b).
In fact, the OFDMA constraints can also be represented as

pkup
k
y = 0, for all u = y, and k [ K (7)

We employ the form of (5b) in that it is more efficient in terms
of the complexity. The complexity of interior-point method is
dependent highly on the number of inequations [5] (also see
Theorem 1). We will later loosen OFDMA constraints into
inequations so the number of ‘new’ OFDMA constraints is
directly related to the complexity. By using the expression
of (5b), the number of inequations with respect to OFDMA
constraints is (U− 1)U/2 which does not associate with the
number of channels [but the number of inequations will be
(U− 1)UK/2 if we use (7)].
As we know, a standard convex problem requires the

objective and constraint functions to be convex, and the
equation constraint functions to be affine [5]. However,
the constraint function of (5b), that is, the left-side function
of ‘=’, is non-affine. To enable the convexity, we introduce
a tolerant error e to make the equation unequal and then
exploit the convexity of the constraint function at the ‘new’
inequality constraint.
The first step of getting the in equations can be obtained by

∑
k[K

pkup
k
y ≤ e, ∀u = y, u, y [ U (8)

In view of engineering, the introduction of the tolerant error is
reasonable in the sense that a small deviation of transmit
power is allowed and exists. For instance, e can be
designed as the transmit power error of a transmitter.
Consider a case of two channels and two users. Suppose
p1 = [10, 0], p2 = [0, 10] (pu denotes the vector containing
user u’s transmit power at all channels) is a solution of MA
or ReMA, in which case the constraint (5b) is strictly
satisfied. If the relaxed constraint (8) is used, the result
could be replaced by p1 = [10, 0.5 × 10−4] and p2 = [0.5 ×
10−4, 10] if e = 10−3. To get a feasible solution of our
original tight problem, we can allow the user with largest
transmit power to transmit at a certain channel while cutting
down the transmit power of others by setting p21 = 0 and
p12 = 0.
After loosening equality constraints into inequations, the

constraint function of (8) is still not convex (its Hessian
matrix is not semi-positive definite since the components
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are all 0 on the diagonal and exist 1 on other places). Then, we
further replace pku by eq

k
u = pku for the reason that the

exponential function can make the product to be linear and
its summation operation remains convex.
Unfortunately, since log(1 + ex) is convex the constraint

function in (5a) will be concave after the replacement. To
fix this problem, we reserve pku in (5a) and add auxiliary

constraints relating qku to pku. eq
k
u − pku ≤ 0

{ }
are introduced

as they reserve the convexity of the constraint functions.
Finally, after the relaxation and adding the auxiliary

constraints we reach the convex counterpart of MA as follows

CoxMA: min
{qku},{p

k
u}

∑
u[U

∑
k[K

pku

s.t. w(pu) W Rtarget
u −Ru ≤ 0, ∀u [ U (9a)

f(qu, qy) W
∑
k[K

eq
k
u+qky − e ≤ 0, ∀u = y (9b)

eq
k
u − pku ≤ 0, ∀u [ U, k [ K (9c)

pku − pmax ≤ 0, ∀u [ U, k [ K (9d)

Indeed, the introduction of new auxiliary constraints has
almost no effects on the solution. As we know, the
optimisation problem x* = argminf (x) is equivalent to [x*,
t*] = argmint, x∈ {x|f(x)≤ t} [5]. Admittedly, the

equivalence of eq
k
u and pku is obtained only when qku is able

to come down to −∞, which is unreachable in practical
implementation. Thus, there must exist a gap to the
optimum. However, qku does not need to be too small. As e
is tolerant error, it is meaningless to reserve the result less
than it. From this point, we simply request for the algorithm
being capable of making qu down to the same order of
log e. For example, if e is 10−6, the value will be −6.
CoxMA is a smooth convex problem with non-linear

constraints, and a well-known approach is leveraging interior-
point (IP) methods [6]. The idea of IP is to approximate the
solution of a convex problem with non-linear constraints by
solving a sequence of unconstrained optimisation problems
(called barrier problems in general). In a barrier problem,
‘barrier functions’ reflect the cost of the constraints because of
their deviation in the objective function. A typical barrier
function is the logarithmic barrier function that is −ln(−f(x)).
The theoretical convergency of IP needs the barrier

functions to be self-concordant [7]. Based on the existing
literature [8], the self-concordant barrier functions of
constraints (9b)–(9d) can be

f̂ (q) = −
∑
∀u=y

ln (−f(qu, qy)) (10)

ĉ (p, q) = −
∑
u[U

∑
k[K

( ln(pku)+ ln(ln (pku)− qku)) (11)

4̂(p) = −
∑
u[U

∑
k[K

ln(pmax − pku) (12)

However, the self-concordant barrier function of (9a) is
unknown. To provide it, a straightforward way is to use
logarithmic barrier function and prove the logarithmic
barrier function to be self-concordant. However, proving
whether a general function is self-concordant is NP-hard
[9]. With the help of [8], we can alternatively investigate

whether the constraint functions themselves possess some
particular properties; if they have, the logarithmic barrier
function associated with these constraint functions is
self-concordant. Based on that, we present the
self-concordant barrier function of (9a) in Lemma 1 and the
proof below the lemma.

Lemma 1: The barrier function of constraint (9a) that satisfies
self-concordant condition is

ŵ(p) W −
∑
u[U

ln(−w(pu)) (13)

Proof: Based on Theorem 9.1.1 in [8], −ln( f (x)) is
self-concordant if f (x) falls into two conditions:

† f (x) is concave meaning that

∇2f (x)[h, h] ≤ 0, ∀x [ Rn, ∀h [ Rn (14)

† There exists a constant β≥ 0, such that

∇3f (x)[h, h, h] ≤ −3b∇2f (x)[h, h] (15)

f (x) can be defined as f (x) = ∑
k[K Bk log(1+ akxk)− Rtarget

by removing the subscript u and replacing the variables {pku}
by {xk} in constraint (9a), where x = {xk}. From f (x), we learn
that its variables are separated and the derivatives (any order)
only have non-zero values along the direction of the variables
themselves.More specifically, to checkwhether f(x) is qualified
with respect to condition (14), only direction [xk, xk] is
required. In this case, ∇2f (x)[h, h] =−((αk)2)/((1 + αkxk)2)≤
0. Likewise, for condition (15), it can be satisfied by setting
β≥ αk through deriving the second and third derivatives
along the directions [xk, xk] and [xk, xk, xk]. Moreover,
self-concordance is reserved by summation [8], and hence
we complete the proof by summing −ln(−j(pu)). □

Note that the proof is motivated by the observation that f (x)
is separated. Since it is non-trivial to show whether −ln( f (x))
is self-concordant, a fairly good alternative is to investigate
the property of f (x).
Based on (10)–(13), we derive the ‘barrier problem’ of

CoxMA for certain penalty t, expressed as

min
{qku},{p

k
u}
t
∑
u[U

∑
k[K

pku + ŵ(p)+ f̂ (q)+ ĉ (p, q)+ 4̂(p) (16)

As we have mentioned, the principle of IP is to solve a
sequence of barrier problems (16) with fixed penalty t and
enlarge the penalty incrementally to approximate the
optimum. Formally, it has two kinds of iterations-outer
iteration and inner iteration-which can be summarised as
follows:

† Outer iteration: update t by t = ct till ϑ/t≤ ζ [5].
† Inner iteration: given t, solve problem (16) to obtain
ζin-solution (p*(t), q*(t)) through Newton’s method with
the input of (p, q) in last Inner iteration

where ϑ = ((U(U− 1))/2) + 2UK, that is, the number of
inequalities in CoxMA, c denotes the step size of updating
t, ζin and ζou are the termination criteria of inner iterations
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and outer iterations, respectively. c addresses a tradeoff
between outer and inner iteration; a large c indeed
accelerates outer iteration but may not be a good starting
point for the next inner iteration. A practical setting of c is
about 10–20 [5]. In addition, ζin can be set larger than ζou.
Such an inexact solution from inner iteration still generates
a sequence of points converging to the optimal as t→∞.
As we have provided all self-concordant barrier functions

of all the constraints, from [7] we know that our proposed
method can converge to ζou-optimality with respect to
CoxMA and the theoretical complexity can be directly
obtained. We conclude it in Theorem 1.

Theorem 1: Our proposed algorithm converges to
ζou-solutions to CoxMA and its complexity is

O(1)



q

√
ln

q

t0zou
+ 1

( )

where t0 denotes the initial point of t and O(1) is a constant
depending only on the step size c and ζin.

As we can see, the complexity is dependent mainly on the
number of inequality constraints (ϑ), which shows the reason
why we replace OFDMA constraint by (5b) instead of (7).
Let us recapitulate what we have done and provide an

insight into design parameters. To deal with OFDMA
constraints, we first introduce tolerant errors making them

to be inequities and replace pku
{ }

by eq
k
u

{ }
to reserve the

convexity. We have taken an example to show the tolerant
error (e) has almost no impact on the practical decision.
This viewpoint can also be supported by the fact that
interior-point method only obtains ζou-solutions, thus
whether we introduce tolerant errors does not make a
substantial difference with respect to the solution. In
practice, we can set ζou being equal to or the same order of
e. In spite of the increasing complexity with the decrease of
e, the effect is very small as e appears within logarithmic
function.

4 Simulation results

An OFDMA small cell network is chosen as our simulation
scenario, and the system-level parameters refer to [10].
Owing to hardware limitations, the simulation includes only
a limited number of users and channels; in particular, up to
ten channels are employed. The rate requirement rate is
384 kbps which is the typical demand of the video stream.
Moreover, channel model is based on [11]. Interference is
assumed a constant being equal to 10s2

0.
We compare our proposed scheme with three

above-mentioned methods: Method A, Method B and PF +
WF in order. To gauge the optimality, we also present
the optimal solutions obtained by exhaustive searching. The
performance metrics are total transmit power and the
complexity. In addition, we evaluate the instant property of
our proposed scheme with respect to the optimal solutions
in 50 realisations.
As we can see in Fig. 1, all the methods cost more power

with the increase of the number of users. Comparably, our
proposed method keeps a low level in terms of total power
even being served a large number of users in the network.
As for Method A, the transmit power increases significantly
when the number of users becomes large. The solutions in

relaxation procedure of Method A can be regarded as the
time share of channels and the largest one is rounded to
1. Such a scheme does not consider the overall performance
of users. If users’ channel conditions are unbalanced, it will
cause considerable performance loss. Since the transmission
mode is fixed in Method B, channel variations cannot be
sufficiently exploited. As for PF +WF, the performance loss
is because of variables’ separate optimisation.
Fig. 2 illustrates the theoretical complexity of all methods;

our proposed method acts out the best performance. The
complexity of Method A is O(KL†), L† ≫ K, U [1], and we
set L† = 10K in our simulation. Method B’s complexity is
O(V 2E logV ) [8], where V ≃ U + K and E ≃ UK. As for
PF +WF, the complexity is O(UK). In the exhaustive
searching, each channel can only be allocated to one user or
none of them, thus there exist U + 1 possibilities for each
channel. The total number of the exhaustive searching is
(U + 1)K as we have K channels. Note that all presented
complexities of three methods are in theoretically worst
case in that practical results depend heavily on network
conditions such as user location and channel conditions.

Fig. 2 Complexity of three methods with the increase of UK when
U = K

Fig. 1 Power with the increase of the number of users
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Finally, we investigate the performance of our proposed
method in particular simulation realisations in Fig. 3, where
the relative error with respect to the optimal solution is
assessed. The relative error is defined as the ratio of the
difference between the result from our proposed method
and the optimal to the optimal. As we can see, in most
cases (41 of 50 realisations) our proposed method obtains
100% relative error bounds.

5 Conclusion

We focus on a joint channel and power allocation problem
for OFDMA networks, where the objective is to minimise
the total power of users under the constraints of rate
requirements. The problem redrew the attention since it is
beneficial to interference avoidance and energy efficiency in
small cells. We propose a novel relaxation scheme to solve
this NP-hard problem. We first reform this optimisation
problem with only power variables and then loosen it into a
convex counterpart. The convex relaxation problem is

solved efficiently using interior-point method. As we jointly
optimise users’ channel and power, unlike existing methods,
channel variations can be sufficiently exploited and hence a
considerable improvement in terms of energy-saving is
obtained.
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