ECONOMICAL SEPARABILITY IN FREE GROUPS N. V. Buskin

UDC 512.543.14

Abstract: Consider the rank *n* free group F_n with basis *X*. Bogopol'skiĭ conjectured in [1, Problem 15.35] that each element $w \in F_n$ of length $|w| \ge 2$ with respect to *X* can be separated by a subgroup $H \le F_n$ of index at most $C \log |w|$ with some constant *C*. We prove this conjecture for all *w* outside the commutant of F_n , as well as the separability by a subgroup of index at most $\frac{|w|}{2} + 2$ in general.

Keywords: separability by a subgroup

§1. Introduction

Given some group G, say that $g \in G$ is separated by a subgroup $H \leq G$ if $w \notin H$. Consider the rank n free group $F_n = F(x_1, \ldots, x_n)$. Bogopol'skiĭ put forth the following

Conjecture [1, Problem 15.35]. An element $w \in F_n$ of length $|w| \ge 2$ is separated by some subgroup of index at most $C \log |w|$, where the constant C depends only on n.

Other versions of this problem are known as well. A rather recent article is devoted to the economical separability of *normal* subgroups. The results of [2] imply that an element w of the free group F_n , with $n \geq 2$, is separated by some normal subgroup of index $O(|w|^3)$. Rivin claims [3] that if w lies in $\gamma_k F_n \setminus \gamma_{k+1} F_n$ then w is separated by some normal subgroup of index $O(\log^k |w|)$. Moreover, it is proved in [4] that $k = O(\sqrt{|w|})$.

This article studies the economical separability of arbitrary subgroups of finite index, but the techniques differ from those used in [2, 3]. The estimate obtained here is much weaker than the conjecture; nevertheless, this is a new result constituting the main content of the present article.

Theorem. Each element $w \in F_n$ with $w \neq 1$ is separated by some subgroup of index $i \leq \frac{|w|}{2} + 2$.

We prove the theorem in Section 2. In the proof we will assume that the reader is familiar with the description of the subgroups of F_n as the fundamental groups of the marked graphs covering the bouquet of n circles (see [5] for instance).

Let us prove the conjecture under the assumption that $w \notin [F_n, F_n]$. To start off, consider an example with w of odd length. The group F_n includes an index 2 subgroup consisting precisely of all elements $w \in F_n$ of even length which is called the *subgroup of even words*. Therefore, each element of odd length is separated by the subgroup of even words.

Consider the general case. Since $w \notin [F_n, F_n]$, it follows that for one of the generators $a \in \{x_1, \ldots, x_n\}$ its total degree $\sigma_a(w)$ in $w = w(x_1, \ldots, x_n)$ differs from zero. Define a homomorphism $\varphi : F_n \to \mathbb{Z}$ as follows: $\varphi(a) = 1$ and $\varphi(x_j) = 0$ for every generator $x_j \neq a$.

Define the function $d : \mathbb{Z} \setminus \{0\} \to \mathbb{N}$ by putting d(t) to be equal to the smallest positive integer not dividing t. For instance, d(1) = 2, d(2) = 3, and d(2k+1) = 2, where k is an arbitrary integer.

Take the canonical homomorphism $\psi : \mathbb{Z} \to \mathbb{Z}_{d(\sigma_a(w))}$. Then the image of w under $\psi \circ \varphi$ is nontrivial. Therefore, w is separated by some normal subgroup $H = \text{Ker } \psi \circ \varphi$ of index $d(\sigma_a(w))$ in F_n . Since $|\sigma_a(w)| \leq |w|$, it suffices to prove that d(t) is dominated by $C \log |t|$, which would follow from the existence of two constants $C_1 > 0$ and $C_2 > 0$ with $d(t) \leq C_1 \log |t| + C_2$ for $t \in \mathbb{Z} \setminus \{0\}$. Indeed, given

The author was supported by the Program "Development of the Scientific Potential of Higher School" of the Russian Federal Agency for Education (Grant 2.1.1.419).

Novosibirsk. Translated from *Sibirskiĭ Matematicheskiĭ Zhurnal*, Vol. 50, No. 4, pp. 765–771, July–August, 2009. Original article submitted April 21, 2009.

this, we can choose a constant C such that $d(\sigma_a(w)) \leq C_1 \log |\sigma_a(w)| + C_2 \leq C \log |w|$ for every w with $\sigma_a(w) \neq 0$ and $|w| \geq 2$. Here we will need the following results of analysis and elementary number theory.

Lemma 1. $\left(\frac{k}{e}\right)^k \leq k!$ for every $k \in \mathbb{N}$.

It is not difficult to see that this lemma follows from Stirling's formula.

Lemma 2. Denote by $\pi(m)$ the number of primes at most m, where $m \ge 2$. There exists a constant c > 0 such that $c \frac{m}{\log m} < \pi(m)$.

The claim of this lemma is one part of Chebyshev's double inequality: $c_1 \frac{m}{\log m} < \pi(m) < c_2 \frac{m}{\log m}$ (see [6] for instance).

Let us prove the required inequality for d(t). List the primes p_1, \ldots, p_k not exceeding m = d(t) - 1. Then, since these primes are strictly less than d(t), it follows that $p_1, p_2, \ldots, p_k | t$, and so $p_1 p_2 \ldots p_k | t$, whence $k! \leq p_1 p_2 \ldots p_k \leq |t|$. This inequality and Lemma 1 imply that $\left(\frac{k}{e}\right)^k \leq |t|$. Taking the logarithms, we obtain

$$k(\log k - 1) \le \log |t|. \tag{(*)}$$

Lemma 2 implies that $c_{\overline{\log m}} < k$. Replacing k by $c_{\overline{\log m}}$ in (*), whose left-hand side is a strictly increasing function of k, we find that $c_{\overline{\log m}}(\log c + \log m - \log(\log m) - 1) \leq \log |t|$. For large m the left-hand side of the last inequality is of order cm; hence, for every $\varepsilon \in (0, c)$ there is $N(\varepsilon) \in \mathbb{N}$ such that $(c - \varepsilon)m \leq \log |t|$ for all $m \geq N(\varepsilon)$. Thereby, $(c - \varepsilon)m \leq \log |t| + (c - \varepsilon)N(\varepsilon)$ for every m, which implies the required inequality for d(t).

§2. Proof of the Theorem

We will prove our theorem in the case n = 2, writing $F_2 = F(a, b)$. All arguments translate easily to the general case. Take a bouquet B(a, b) of two circles marked with the letters a and b. We will work in the category of graphs marked with a and b, having a vertex designated as a basepoint and defining a finite-sheeted covering of B(a, b).

We can assume first that w belongs to the subgroup of even words (otherwise, for w the claim of the theorem is obvious), and consequently it is of even length: |w| = 2(i-1) for suitable i. Let us prove that there exists a subgroup of index at most i + 1 not containing w or, which is equivalent, there exists a marked graph Γ defining a covering of B(a, b) with at most i + 1 sheets such that the path marked with w beginning at the basepoint of Γ is not closed. Furthermore, we sometimes refer to an arbitrary marked graph which defines a finite-sheeted covering of B(a, b) as a covering graph.

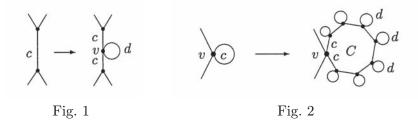
As usual, denote by $v(\Gamma)$ and $e(\Gamma)$ the vertex and edge sets of a graph Γ . Given a marked graph, refer as a *c*-edge to every edge marked with either *c* or c^{-1} . Given an edge *e*, denote by \bar{e} the same edge with the opposite orientation; and, similarly, given a path γ , define the path $\bar{\gamma}$. For an arbitrary loop *e* (an edge whose beginning and end coincide) naturally put $e^k = e \dots e$ (with *k* factors) for k > 0and $e^k = \bar{e} \dots \bar{e}$ (with |k| factors) for k < 0. Denote a path marked with *w* by γ_w independently of the ambient graph (for marked graphs corresponding to coverings, the path beginning at a fixed vertex is uniquely determined by its label). Agree to call a *direct* edge an edge that is not a loop.

Let us sketch how we seek a graph defining a covering of B(a, b) with at most i + 1 sheets such that the path marked with w beginning at the basepoint is not closed. Start with introducing the necessary operations I and II which enable us to obtain the new covering graphs from the old.

Take a covering graph Γ and a *c*-edge $e \in e(\Gamma)$ for some $c \in \{a, b\}$.

OPERATION I. Introduce a new vertex v by subdividing e into two c-edges and attaching at v a d-loop, where $d \in \{a, b\} \setminus \{c\}$ (Fig. 1).

OPERATION II_k. Given a c-loop $e \in e(\Gamma)$ with both endpoints at v, remove the loop and attach to v a cycle C (identifying v and some vertex of C) consisting of k c-edges. To every vertex of C but v attach a d-loop, with $d \in \{a, b\} \setminus \{c\}$, so that the resulting graph will also define a covering (Fig. 2).

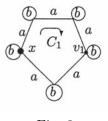


We can say that operation II_k amounts to the k-fold application of operation I.

The search begins with some initial graph Γ_1 defining a covering with at most *i* sheets. If Γ_1 is unsuitable (γ_w is closed in Γ_1) then we consider the graphs obtained from Γ_1 using operation I. Applied to an arbitrary edge of Γ_1 , operation I increases the number of its vertices by 1. If all graphs obtained using operation I are unsuitable (γ_w is closed in all these graphs, which is important) then using operation II_s for some s > 1, we obtain from Γ_1 either a covering graph Γ' with at most i + 1 vertices such that the path γ_w is not closed in Γ' or a covering graph $\Gamma_2 \neq \Gamma_1$ with at most *i* vertices.

If the second possibility is realized then we consider the covering graphs resulting from Γ_2 by using operation I: if among them there is no suitable graph then, as at the previous step, using operation II we obtain from Γ_2 either the required graph Γ' or a graph $\Gamma_3 \notin \{\Gamma_1, \Gamma_2\}$ with at most *i* vertices. Step by step we construct a sequence of covering graphs $\Gamma_1, \Gamma_2, \ldots, \Gamma_k$ with $|v(\Gamma_j)| \leq i$ for $j = 1, \ldots, k$. It is clear that this search is finite, and for some *k* either Γ_k will be the required graph or the required graph is contained among the graphs with at most i + 1 vertices resulting from Γ_k by using operations I and II.

Proceed to a more detailed description of our algorithm. Suppose that the reduced expression for w begins with the letter a; i.e., $w = a^t b^s \dots$ with $t \neq 0$. Put h(t) = |t| + 1 if $|t| \leq 2$, and $h(t) = \left\lfloor \frac{|t|}{2} \right\rfloor + 1$ otherwise. It is clear that h(t) does not divide t.



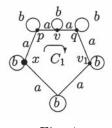
THE INITIAL GRAPH. Consider the graph Γ_1 all of whose *a*-edges constitute a cycle of length h(t), while the *b*-edges are loops at the vertices of this cycle (Fig. 3 shows the example for |t| = 8) and x is the basepoint.

An arrow shows the direction in which γ_w traverses the cycle C_1 formed by the *a*-edges of Γ_1 . The orientation of the edges is not fixed; therefore, Fig. 3 shows both cases $t = \pm 8$. A vertex v_1 of Γ_1 is the end of the path γ_{a^t} beginning at x(the first syllable of w). Since h(t) does not divide t, it follows that $v_1 \neq x$. The graph Γ_1 defines a covering of the bouquet B(a, b) with h(t) sheets, and therefore it corresponds to some subgroup of index h(t). If w is of syllabic length 1, i.e.,

 $w = a^t$, then $h(t) \leq \frac{|w|}{2} + 2$ and Γ_1 is the required graph.

Assume now that the syllabic length of w is at least 2. In this case we also have an inequality $h(t) \leq \frac{|w|}{2} + 2 = i + 1$. Actually, in the case of syllabic length 2 the path γ_w is also not closed, and the case of syllabic length 3 reduces by conjugation (or an application of the construction we described to the unique *b*-syllable b^s) to the case of syllabic length 2 or 1. Thus, the truly interesting case is that of syllabic length at least 4.

If the path γ_w is not closed in Γ_1 , there is nothing left to prove.



Suppose that γ_w is closed. Assume that for some edge e_a marked with a the total number of occurrences of the edges e_a and \bar{e}_a in γ_w is equal to 1 (i.e., exactly one of the two oriented edges e_a and \bar{e}_a occurs in γ_w , and exactly once). Suppose for definiteness that e_a occurs in γ_w . Denote the beginning and end of e_a by p and q. Then $\gamma_w = \gamma_1 e_a \gamma_2$, where the subpaths γ_1 and γ_2 contain no occurrences of e_a and \bar{e}_a . Apply operation I to e_a and denote the new vertex by v (Fig. 4). It is clear that the new graph Γ' corresponds to a subgroup of index at most i+1. The equality $\gamma_w = \gamma_1 e_a \gamma_2$ yields the reduced representation $w = w_1 a w_2$ for w, where the subwords w_1 and w_2 mark the subpaths γ_1 and γ_2 respectively. In Γ'

Fig. 4

the ends of the paths marked with $w_1 a$ and w_2^{-1} beginning at x are distinct (these are the vertices v and q). Hence, γ_w cannot be a closed path in this graph. Therefore, we have found a subgroup of index at most i + 1 not containing w.

In exactly the same fashion we can separate w by a subgroup of index at most i + 1 provided that the total number of occurrences of some b-loop in γ_w is equal to 1. If γ_w is a closed path in Γ_1 and every edge of Γ_1 appears in γ_w at least twice, disregarding the orientation, then we proceed to the next step of the algorithm.

STEP OF THE ALGORITHM. Assume that for some $k \ge 1$ we have already constructed a graph Γ_k with marked vertices v_1, \ldots, v_k such that $|v(\Gamma_k)| \le i$, which is of the form depicted in Fig. 5.

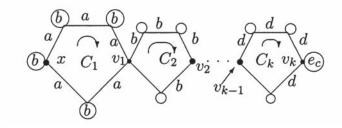


Fig. 5

The vertex v_j , where j = 1, ..., k, is the end of the subpath α_j of γ_w corresponding to the first j syllables of w. The index c in the symbol e_c is one of the letters a and b, while $d \in \{a, b\} \setminus \{c\}$. For k = 1 there is a unique cycle C_1 , and we have the graph Γ_1 . A cycle C_j in this graph, where $1 \le j \le k$, corresponds to the *j*th syllable $c^{\pm s_j}$ of w, with $c \in \{a, b\}$: it consists of $h(s_j)$ c-edges, where s_j is the length of the *j*th syllable of w. For simplicity we illustrate a concrete situation, when the first k syllables are of length 8.

Some remark is in order: If l_j , where $1 \le j \le k$, is the number of distinct pairs of direct edges $\{e, \bar{e}\}$ in the cycle C_j of Γ_k such that e or \bar{e} appears in the subpath β_j of γ_w corresponding to the *j*th syllable of w and beginning at the vertex v_{j-1} (with $v_0 = x$) then

(A) $|C_j| = h(s_j) \le l_j + 1.$

These inequalities are easy to verify (it suffices to verify the inequality for j = 1, and the others follow similarly).

If the path γ_w is not closed in Γ_k then we have found the required graph. If γ_w is closed then since the vertex v_k is the end of the path α_k corresponding to the first k syllables of w, it follows that the loop e_c must appear in γ_w . Furthermore, if an edge e of Γ_k is such that the total number of occurrences of e and \bar{e} in γ_w is equal to 1 (i.e., only one of the edges e and \bar{e} appears in γ_w , and exactly once) then operation I applied to this edge produces a graph with at most i + 1 vertices in which γ_w is not closed.

Suppose now that the path γ_w is closed in every graph obtained from Γ_k by operation I. In particular, the following condition holds:

(B) For every edge e of the graph Γ_k appearing in γ_w the total number of occurrences of the edges e and \bar{e} in γ_w is at least 2.

Incidentally, this implies that $2k \leq 2(l_1 + \cdots + l_k) \leq |\gamma_w| = |w|$. As we mentioned in the sketch of the algorithm starting the proof, the purpose of operation II is to construct either Γ' , which will be the required graph, or Γ_{k+1} . In order to understand which of these possibilities is realized, it is important to know the number and location of the occurrences of the loops e_c and \bar{e}_c in the path γ_w in Γ_k .

Select the first occurrence of the loop e_c in γ_w . There are several cases here (the total number of occurrences of e_c and \bar{e}_c is certainly at least 2):

(1a) $\gamma_w = \gamma_1 e_c^{\pm 2} \gamma_2$ and the subpaths γ_1 and γ_2 avoid the loop e_c and its inverse;

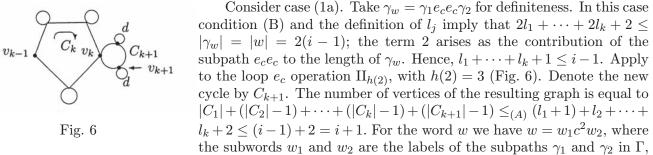
(1b) $\gamma_w = \gamma_1 e_c^s \gamma_2, s \in \mathbb{Z}, |s| > 2$, and the conditions on γ_1 and γ_2 are the same as in case 1a;

(2a) $\gamma_w = \gamma_1 e_c^{\pm 1} \gamma_2$, the subpath γ_1 avoids the loop e_c and its inverse, while in the subpath γ_2 the total number of occurrences of these edges is at least 1; moreover, γ_2 does not begin with e_c, \bar{e}_c ;

(2b) $\gamma_w = \gamma_1 e_c^{\pm 2} \gamma_2$ and the conditions on γ_1 and γ_2 are the same as in case 2a;

(2c) $\gamma_w = \gamma_1 e_c^s \gamma_2$, |s| > 2, and the conditions on γ_1 and γ_2 are the same as in case 2a.

Let us show that in the cases 1a and 1b of the first group we can construct Γ' , while in the cases 2a, 2b, and 2c of the second group we construct Γ_{k+1} .



and in the resulting graph the ends of the paths with the labels w_1c^2 and w_2^{-1} do not coincide (these are vertices v_{k+1} and v_k). Hence, γ_w will not be a closed path in the so-constructed graph. Therefore, we have found a subgroup of index i + 1 not containing w.

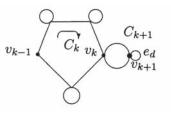
Consider case (1b). For convenience assume that s > 0. As above, condition (B) yields $2l_1 + \cdots + l_{s-1}$ $2l_k + s \leq |w| = 2(i-1)$, whence $l_1 + \cdots + l_k + \left[\frac{s}{2}\right] \leq i-1$. Apply to the loop e_c operation $II_{h(s)}$ with $h(s) = \left\lfloor \frac{s}{2} \right\rfloor + 1$. Denote the new cycle by C_{k+1} . The number of vertices in the resulting graph is equal to

$$|C_1| + (|C_2| - 1) + \dots + (|C_k| - 1) + (|C_{k+1}| - 1) \le (l_1 + 1) + l_2 + \dots + l_k + \left\lfloor \frac{s}{2} \right\rfloor \le i.$$

As above, the equality $\gamma_w = \gamma_1 e_c^s \gamma_2$ yields the reduced expression $w = w_1 c^s w_2$. Since h(s) does not divide s, in the new graph the paths with the labels w_1c^s and w_2^{-1} beginning at x have distinct ends v_{k+1} and v_k ; consequently, the path γ_w beginning at x will not be closed. Thus, there is a subgroup of index at most i not containing w.

Let us now address the second group of cases.

Case (2a). Since the total number of occurrences of e_c and \bar{e}_c in γ_w is at least 2, it follows that $2l_1 + \cdots + 2l_k + 2 \leq |w| = 2(i-1)$. Apply to the loop e_c operation $II_{h(1)}$ with h(1) = 2. The end of the subpath α_{k+1} of γ_w (the label of this subpath is equal to $w_1 c^{\pm 1}$) is a vertex of a new cycle C_{k+1} distinct from v_k . Denote it by v_{k+1} (Fig. 7).



The number of vertices of the constructed graph Γ is equal to $|C_1|$ + $(|C_2|-1) + \dots + (|C_k|-1) + (|C_{k+1}|-1) \le (l_1+1) + l_2 + \dots + l_k + 1 \le i$. Put $\Gamma_{k+1} = \Gamma$. Consider case (2b). Since in this case the loop e_c appears in γ_w at least three times, we have an obvious inequality $2l_1 + \dots + 2l_k + 3 \le i$.

2(i-1). Since the left-hand side here is an odd number, we actually have an even stronger inequality $2l_1 + \cdots + 2l_k + 4 \leq 2(i-1)$. Apply to the loop e_c operation $II_{h(2)}$ with h(2) = 3, as in case (1a). Denote the new cycle by C_{k+1} . The number of vertices of the resulting graph is equal to $|C_1| + (|C_2| - 1) + \dots + (|C_{k+1}| - 1) \le (l_1 + 1) + l_2 + \dots + l_k + 2 \le i$. Denote this graph by Γ_{k+1} .

Consider case (2c). Apply to the loop e_c operation $II_{h(s)}$, as in case (1b). Denote the new cycle by C_{k+1} . The number of vertices of the resulting graph is at most *i*. Therefore, in this case as well we can construct the graph Γ_{k+1} .

The proof is complete.

References

- 1. Kourovka Notebook: Unsolved Problems of Group Theory [in Russian], 15th edit., Inst. Mat. (Novosibirsk), Novosibirsk (2002).
- 2. Khalid Bou-Rabee, "Quantifying residual finiteness," Technical Report arXiv:0807.0862v2 [math.GR], arxiv.org, 2008.
- 3. *Rivin I.*, "Geodesics with one self-intersection, and other stories," Technical Report arXiv:0901.2543v3 [math.GT], arxiv.org, 2009.
- 4. Malestein J. and Putman A., "On the self-intersections of curves deep in the lower central series of a surface group," arXiv, math.GT, January 2009; 12 pages and 2 figures.
- 5. Bogopol'skiĭ O. V., Introduction to the Theory of Groups [in Russian], Institute of Computer Science, Moscow; Izhevsk (2002).
- 6. Ireland K. and Rosen M., A Classical Introduction to Modern Number Theory, Springer-Verlag, New York etc. (1990).

N. V. BUSKIN

NOVOSIBIRSK STATE UNIVERSITY, NOVOSIBIRSK, RUSSIA E-mail address: buskin1983@mail.ru Copyright of Siberian Mathematical Journal is the property of Springer Science & Business Media B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.