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ECONOMICAL SEPARABILITY IN FREE GROUPS

N. V. Buskin UDC 512.543.14

Abstract: Consider the rank n free group Fn with basis X. Bogopol
′skĭı conjectured in [1, Prob-

lem 15.35] that each element w ∈ Fn of length |w| ≥ 2 with respect to X can be separated by a subgroup
H ≤ Fn of index at most C log |w| with some constant C. We prove this conjecture for all w outside
the commutant of Fn, as well as the separability by a subgroup of index at most

|w|
2 + 2 in general.
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§ 1. Introduction
Given some group G, say that g ∈ G is separated by a subgroup H ≤ G if w /∈ H. Consider the

rank n free group Fn = F (x1, . . . , xn). Bogopol
′skĭı put forth the following

Conjecture [1, Problem 15.35]. An element w ∈ Fn of length |w| ≥ 2 is separated by some subgroup
of index at most C log |w|, where the constant C depends only on n.
Other versions of this problem are known as well. A rather recent article is devoted to the economical

separability of normal subgroups. The results of [2] imply that an element w of the free group Fn, with
n ≥ 2, is separated by some normal subgroup of index O(|w|3). Rivin claims [3] that if w lies in
γkFn \ γk+1Fn then w is separated by some normal subgroup of index O(logk |w|). Moreover, it is proved
in [4] that k = O(

√|w|).
This article studies the economical separability of arbitrary subgroups of finite index, but the tech-

niques differ from those used in [2, 3]. The estimate obtained here is much weaker than the conjecture;
nevertheless, this is a new result constituting the main content of the present article.

Theorem. Each element w ∈ Fn with w �= 1 is separated by some subgroup of index i ≤ |w|
2 +2.

We prove the theorem in Section 2. In the proof we will assume that the reader is familiar with the
description of the subgroups of Fn as the fundamental groups of the marked graphs covering the bouquet
of n circles (see [5] for instance).
Let us prove the conjecture under the assumption that w /∈ [Fn, Fn]. To start off, consider an example

with w of odd length. The group Fn includes an index 2 subgroup consisting precisely of all elements
w ∈ Fn of even length which is called the subgroup of even words. Therefore, each element of odd length
is separated by the subgroup of even words.
Consider the general case. Since w /∈ [Fn, Fn], it follows that for one of the generators a ∈ {x1, . . . , xn}

its total degree σa(w) in w = w(x1, . . . , xn) differs from zero. Define a homomorphism ϕ : Fn → Z as
follows: ϕ(a) = 1 and ϕ(xj) = 0 for every generator xj �= a.
Define the function d : Z \ {0} → N by putting d(t) to be equal to the smallest positive integer not

dividing t. For instance, d(1) = 2, d(2) = 3, and d(2k + 1) = 2, where k is an arbitrary integer.
Take the canonical homomorphism ψ : Z→ Zd(σa(w)). Then the image of w under ψ ◦ϕ is nontrivial.

Therefore, w is separated by some normal subgroup H = Ker ψ ◦ ϕ of index d(σa(w)) in Fn. Since
|σa(w)| ≤ |w|, it suffices to prove that d(t) is dominated by C log |t|, which would follow from the
existence of two constants C1 > 0 and C2 > 0 with d(t) ≤ C1 log |t| + C2 for t ∈ Z \ {0}. Indeed, given
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this, we can choose a constant C such that d(σa(w)) ≤ C1 log |σa(w)|+ C2 ≤ C log |w| for every w with
σa(w) �= 0 and |w| ≥ 2. Here we will need the following results of analysis and elementary number theory.
Lemma 1.

(
k
e

)k ≤ k! for every k ∈ N.
It is not difficult to see that this lemma follows from Stirling’s formula.

Lemma 2. Denote by π(m) the number of primes at most m, where m ≥ 2. There exists a constant
c > 0 such that c m

logm < π(m).

The claim of this lemma is one part of Chebyshev’s double inequality: c1
m
logm < π(m) < c2

m
logm

(see [6] for instance).

Let us prove the required inequality for d(t). List the primes p1, . . . , pk not exceeding m = d(t)− 1.
Then, since these primes are strictly less than d(t), it follows that p1, p2, . . . , pk|t, and so p1p2 . . . pk|t,
whence k! ≤ p1p2 . . . pk ≤ |t|. This inequality and Lemma 1 imply that

(
k
e

)k ≤ |t|. Taking the logarithms,
we obtain

k(log k − 1) ≤ log |t|. (∗)
Lemma 2 implies that c m

logm < k. Replacing k by c m
logm in (∗), whose left-hand side is a strictly

increasing function of k, we find that c m
logm(log c + logm − log(logm) − 1) ≤ log |t|. For large m the

left-hand side of the last inequality is of order cm; hence, for every ε ∈ (0, c) there is N(ε) ∈ N such that
(c− ε)m ≤ log |t| for all m ≥ N(ε). Thereby, (c− ε)m ≤ log |t|+ (c− ε)N(ε) for every m, which implies
the required inequality for d(t).

§ 2. Proof of the Theorem
We will prove our theorem in the case n = 2, writing F2 = F (a, b). All arguments translate easily to

the general case. Take a bouquet B(a, b) of two circles marked with the letters a and b. We will work
in the category of graphs marked with a and b, having a vertex designated as a basepoint and defining
a finite-sheeted covering of B(a, b).
We can assume first that w belongs to the subgroup of even words (otherwise, for w the claim of the

theorem is obvious), and consequently it is of even length: |w| = 2(i − 1) for suitable i. Let us prove
that there exists a subgroup of index at most i+ 1 not containing w or, which is equivalent, there exists
a marked graph Γ defining a covering of B(a, b) with at most i + 1 sheets such that the path marked
with w beginning at the basepoint of Γ is not closed. Furthermore, we sometimes refer to an arbitrary
marked graph which defines a finite-sheeted covering of B(a, b) as a covering graph.
As usual, denote by v(Γ) and e(Γ) the vertex and edge sets of a graph Γ. Given a marked graph,

refer as a c-edge to every edge marked with either c or c−1. Given an edge e, denote by ē the same
edge with the opposite orientation; and, similarly, given a path γ, define the path γ̄. For an arbitrary
loop e (an edge whose beginning and end coincide) naturally put ek = e . . . e (with k factors) for k > 0
and ek = ē . . . ē (with |k| factors) for k < 0. Denote a path marked with w by γw independently of the
ambient graph (for marked graphs corresponding to coverings, the path beginning at a fixed vertex is
uniquely determined by its label). Agree to call a direct edge an edge that is not a loop.
Let us sketch how we seek a graph defining a covering of B(a, b) with at most i+ 1 sheets such that

the path marked with w beginning at the basepoint is not closed. Start with introducing the necessary
operations I and II which enable us to obtain the new covering graphs from the old.
Take a covering graph Γ and a c-edge e ∈ e(Γ) for some c ∈ {a, b}.
Operation I. Introduce a new vertex v by subdividing e into two c-edges and attaching at v a d-loop,

where d ∈ {a, b} \ {c} (Fig. 1).
Operation IIk. Given a c-loop e ∈ e(Γ) with both endpoints at v, remove the loop and attach to v

a cycle C (identifying v and some vertex of C) consisting of k c-edges. To every vertex of C but v attach
a d-loop, with d ∈ {a, b} \ {c}, so that the resulting graph will also define a covering (Fig. 2).
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Fig. 1 Fig. 2

We can say that operation IIk amounts to the k-fold application of operation I.
The search begins with some initial graph Γ1 defining a covering with at most i sheets. If Γ1 is

unsuitable (γw is closed in Γ1) then we consider the graphs obtained from Γ1 using operation I. Applied
to an arbitrary edge of Γ1, operation I increases the number of its vertices by 1. If all graphs obtained using
operation I are unsuitable (γw is closed in all these graphs, which is important) then using operation IIs
for some s > 1, we obtain from Γ1 either a covering graph Γ

′ with at most i + 1 vertices such that the
path γw is not closed in Γ

′ or a covering graph Γ2 �= Γ1 with at most i vertices.
If the second possibility is realized then we consider the covering graphs resulting from Γ2 by using

operation I: if among them there is no suitable graph then, as at the previous step, using operation II
we obtain from Γ2 either the required graph Γ

′ or a graph Γ3 /∈ {Γ1,Γ2} with at most i vertices. Step
by step we construct a sequence of covering graphs Γ1,Γ2, . . . ,Γk with |v(Γj)| ≤ i for j = 1, . . . , k. It is
clear that this search is finite, and for some k either Γk will be the required graph or the required graph
is contained among the graphs with at most i+1 vertices resulting from Γk by using operations I and II.
Proceed to a more detailed description of our algorithm. Suppose that the reduced expression for w

begins with the letter a; i.e., w = atbs . . . with t �= 0. Put h(t) = |t| + 1 if |t| ≤ 2, and h(t) = [ |t|2
]
+ 1

otherwise. It is clear that h(t) does not divide t.

Fig. 3

The initial graph. Consider the graph Γ1 all of whose a-edges constitute
a cycle of length h(t), while the b-edges are loops at the vertices of this cycle (Fig. 3
shows the example for |t| = 8) and x is the basepoint.
An arrow shows the direction in which γw traverses the cycle C1 formed by

the a-edges of Γ1. The orientation of the edges is not fixed; therefore, Fig. 3 shows
both cases t = ±8. A vertex v1 of Γ1 is the end of the path γat beginning at x
(the first syllable of w). Since h(t) does not divide t, it follows that v1 �= x. The
graph Γ1 defines a covering of the bouquet B(a, b) with h(t) sheets, and therefore
it corresponds to some subgroup of index h(t). If w is of syllabic length 1, i.e.,

w = at, then h(t) ≤ |w|
2 + 2 and Γ1 is the required graph.

Assume now that the syllabic length of w is at least 2. In this case we also have an inequality

h(t) ≤ |w|
2 + 2 = i + 1. Actually, in the case of syllabic length 2 the path γw is also not closed, and the

case of syllabic length 3 reduces by conjugation (or an application of the construction we described to
the unique b-syllable bs) to the case of syllabic length 2 or 1. Thus, the truly interesting case is that of
syllabic length at least 4.
If the path γw is not closed in Γ1, there is nothing left to prove.

Fig. 4

Suppose that γw is closed. Assume that for some edge ea marked with a the
total number of occurrences of the edges ea and ēa in γw is equal to 1 (i.e., exactly
one of the two oriented edges ea and ēa occurs in γw, and exactly once). Suppose
for definiteness that ea occurs in γw. Denote the beginning and end of ea by p
and q. Then γw = γ1eaγ2, where the subpaths γ1 and γ2 contain no occurrences
of ea and ēa. Apply operation I to ea and denote the new vertex by v (Fig. 4).
It is clear that the new graph Γ′ corresponds to a subgroup of index at most i+1.
The equality γw = γ1eaγ2 yields the reduced representation w = w1aw2 for w,
where the subwords w1 and w2 mark the subpaths γ1 and γ2 respectively. In Γ

′
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the ends of the paths marked with w1a and w
−1
2 beginning at x are distinct (these are the vertices v

and q). Hence, γw cannot be a closed path in this graph. Therefore, we have found a subgroup of index
at most i+ 1 not containing w.
In exactly the same fashion we can separate w by a subgroup of index at most i + 1 provided that

the total number of occurrences of some b-loop in γw is equal to 1. If γw is a closed path in Γ1 and every
edge of Γ1 appears in γw at least twice, disregarding the orientation, then we proceed to the next step of
the algorithm.

Step of the algorithm. Assume that for some k ≥ 1 we have already constructed a graph Γk
with marked vertices v1, . . . , vk such that |v(Γk)| ≤ i, which is of the form depicted in Fig. 5.

Fig. 5

The vertex vj , where j = 1, . . . , k, is the end of the subpath αj of γw corresponding to the first j
syllables of w. The index c in the symbol ec is one of the letters a and b, while d ∈ {a, b} \ {c}. For
k = 1 there is a unique cycle C1, and we have the graph Γ1. A cycle Cj in this graph, where 1 ≤ j ≤ k,
corresponds to the jth syllable c±sj of w, with c ∈ {a, b}: it consists of h(sj) c-edges, where sj is the
length of the jth syllable of w. For simplicity we illustrate a concrete situation, when the first k syllables
are of length 8.
Some remark is in order: If lj , where 1 ≤ j ≤ k, is the number of distinct pairs of direct edges {e, ē}

in the cycle Cj of Γk such that e or ē appears in the subpath βj of γw corresponding to the jth syllable
of w and beginning at the vertex vj−1 (with v0 = x) then

(A) |Cj | = h(sj) ≤ lj + 1.
These inequalities are easy to verify (it suffices to verify the inequality for j = 1, and the others

follow similarly).
If the path γw is not closed in Γk then we have found the required graph. If γw is closed then since

the vertex vk is the end of the path αk corresponding to the first k syllables of w, it follows that the
loop ec must appear in γw. Furthermore, if an edge e of Γk is such that the total number of occurrences
of e and ē in γw is equal to 1 (i.e., only one of the edges e and ē appears in γw, and exactly once) then
operation I applied to this edge produces a graph with at most i+ 1 vertices in which γw is not closed.
Suppose now that the path γw is closed in every graph obtained from Γk by operation I. In particular,

the following condition holds:

(B) For every edge e of the graph Γk appearing in γw the total number of occurrences of the edges e
and ē in γw is at least 2.

Incidentally, this implies that 2k ≤ 2(l1 + · · · + lk) ≤ |γw| = |w|. As we mentioned in the sketch of
the algorithm starting the proof, the purpose of operation II is to construct either Γ′, which will be the
required graph, or Γk+1. In order to understand which of these possibilities is realized, it is important to
know the number and location of the occurrences of the loops ec and ēc in the path γw in Γk.
Select the first occurrence of the loop ec in γw. There are several cases here (the total number of

occurrences of ec and ēc is certainly at least 2):

(1a) γw = γ1e
±2
c γ2 and the subpaths γ1 and γ2 avoid the loop ec and its inverse;
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(1b) γw = γ1e
s
cγ2, s ∈ Z, |s| > 2, and the conditions on γ1 and γ2 are the same as in case 1a;

(2a) γw = γ1e
±1
c γ2, the subpath γ1 avoids the loop ec and its inverse, while in the subpath γ2 the

total number of occurrences of these edges is at least 1; moreover, γ2 does not begin with ec, ēc;

(2b) γw = γ1e
±2
c γ2 and the conditions on γ1 and γ2 are the same as in case 2a;

(2c) γw = γ1e
s
cγ2, |s| > 2, and the conditions on γ1 and γ2 are the same as in case 2a.

Let us show that in the cases 1a and 1b of the first group we can construct Γ′, while in the cases 2a,
2b, and 2c of the second group we construct Γk+1.

Fig. 6

Consider case (1a). Take γw = γ1ececγ2 for definiteness. In this case
condition (B) and the definition of lj imply that 2l1 + · · · + 2lk + 2 ≤
|γw| = |w| = 2(i − 1); the term 2 arises as the contribution of the
subpath ecec to the length of γw. Hence, l1+ · · ·+ lk+1 ≤ i− 1. Apply
to the loop ec operation IIh(2), with h(2) = 3 (Fig. 6). Denote the new
cycle by Ck+1. The number of vertices of the resulting graph is equal to
|C1|+(|C2|−1)+ · · ·+(|Ck|−1)+(|Ck+1|−1) ≤(A) (l1+1)+ l2+ · · ·+
lk+2 ≤ (i− 1)+2 = i+1. For the word w we have w = w1c2w2, where
the subwords w1 and w2 are the labels of the subpaths γ1 and γ2 in Γ,

and in the resulting graph the ends of the paths with the labels w1c
2 and w−12 do not coincide (these are

vertices vk+1 and vk). Hence, γw will not be a closed path in the so-constructed graph. Therefore, we
have found a subgroup of index i+ 1 not containing w.
Consider case (1b). For convenience assume that s > 0. As above, condition (B) yields 2l1 + · · · +

2lk + s ≤ |w| = 2(i − 1), whence l1 + · · · + lk +
[
s
2

] ≤ i − 1. Apply to the loop ec operation IIh(s) with
h(s) =

[
s
2

]
+1. Denote the new cycle by Ck+1. The number of vertices in the resulting graph is equal to

|C1|+ (|C2| − 1) + · · ·+ (|Ck| − 1) + (|Ck+1| − 1) ≤ (l1 + 1) + l2 + · · ·+ lk +
[s
2

]
≤ i.

As above, the equality γw = γ1e
s
cγ2 yields the reduced expression w = w1c

sw2. Since h(s) does not
divide s, in the new graph the paths with the labels w1c

s and w−12 beginning at x have distinct ends vk+1
and vk; consequently, the path γw beginning at x will not be closed. Thus, there is a subgroup of index
at most i not containing w.
Let us now address the second group of cases.

Case (2a). Since the total number of occurrences of ec and ēc in γw is at least 2, it follows that
2l1 + · · ·+ 2lk + 2 ≤ |w| = 2(i− 1). Apply to the loop ec operation IIh(1) with h(1) = 2. The end of the
subpath αk+1 of γw (the label of this subpath is equal to w1c

±1) is a vertex of a new cycle Ck+1 distinct
from vk. Denote it by vk+1 (Fig. 7).

Fig. 7

The number of vertices of the constructed graph Γ is equal to |C1| +
(|C2| − 1) + · · ·+ (|Ck| − 1) + (|Ck+1| − 1) ≤ (l1+1)+ l2+ · · ·+ lk +1 ≤ i.
Put Γk+1 = Γ.
Consider case (2b). Since in this case the loop ec appears in γw at

least three times, we have an obvious inequality 2l1 + · · · + 2lk + 3 ≤
2(i− 1). Since the left-hand side here is an odd number, we actually have
an even stronger inequality 2l1 + · · · + 2lk + 4 ≤ 2(i − 1). Apply to the
loop ec operation IIh(2) with h(2) = 3, as in case (1a). Denote the new
cycle by Ck+1. The number of vertices of the resulting graph is equal to

|C1|+ (|C2| − 1) + · · ·+ (|Ck+1| − 1) ≤ (l1 + 1) + l2 + · · ·+ lk + 2 ≤ i. Denote this graph by Γk+1.
Consider case (2c). Apply to the loop ec operation IIh(s), as in case (1b). Denote the new cycle

by Ck+1. The number of vertices of the resulting graph is at most i. Therefore, in this case as well we
can construct the graph Γk+1.
The proof is complete.
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