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Abstract: Owing to limited resources, it is hard to guarantee minimum service levels to all users in conventional cellular systems.
Although global cooperation of access points (APs) is considered promising, practical means of enhancing efficiency of cellular
systems is by considering distributed or clustered jointly processed APs. The authors present a novel ‘quality of service (QoS)
balancing scheme’ to maximise sum rate as well as achieve cell-based fairness for clustered jointly processed cellular multiple
access channel (referred to as CC-CMAC). Closed-form cell level QoS balancing function is derived. Maximisation of this
function is proved as an NP hard problem. Hence, using power-frequency granularity, a modified genetic algorithm (GA) is
proposed. For inter site distance (ISD) < 500 m, results show that with no fairness considered, the upper bound of the capacity
region is achievable. Applying hard fairness restraints on users transmitting in moderately dense AP system, 20% reduction in
sum rate contribution increases fairness by upto 10%. The flexible QoS can be applied on a GA-based centralised dynamic
frequency planner architecture.

1 Introduction

Global access points (AP) cooperation which has been
studied in classical Wyner model [1], extended with fading
[2] and distance dependent pathloss [3], is considered too
complex to implement. Recently, localised joint processing
of APs has been proposed in the framework of isolated
groups [4], local message passing [5, 6] and limited
backhaul [7]. In [8], the concept of rate splitting from
interference channel was applied to clustered jointly
processed APs. In such schemes, inter cluster interference
from users outside cluster is the only dominant type of
interference. Since edge cells are more prone to interference
from neighbouring cells, the level of interference at the
edge and centre of a cluster is not the same [9]. Hence,
techniques involving strongest channel coefficients like
dynamic clustering [10] are proposed to address the varying
degree of interference levels. In this work however, we
consider geographically fixed clusters. To conform to
current cellular networks, each cluster processing unit (CU)
(analogous to base station controller (BSC)) handles a
collection of APs (analogous to base transceiver station
(BTS)); each geographically fixed cluster hence behaves as
a network multiple-input multiple-output (MIMO)
(analogous to uplink of coordinated multipoint transmission
reception concept in fourth generation [11] but with
interference between clusters).
Similar to conventional cellular networks, frequency

planning can be considered an effective method to control
the interference situation. Here, we refer to such systems as
cluster cooperative cellular multiple access channels or
(CC-CMAC) [12]. We consider frequency planning for

CC-CMAC in order to maximise network utility using a
derived formulation of per cell sum rate. We consider
‘balancing of per cell sum rate’ within cell users in a seven
cell cluster surrounded by six first tier interfering clusters
and so on. In this context, per cell sum rate balancing takes
place at the PU of the cluster. Cumulatively, the network
wide balancing of per cell sum rate for users transmitting in
a CC-CMAC is referred to as ‘quality of service (QoS)
balancing function’. This balancing approach is useful in
quantifying cell utility for a range of per cell sum rate
conditions. The proposed QoS-based utility function is used
to study resource allocation problem in cluster-based
CMAC. Two cases of interest are: (a) maximising sum rate
and (b) achieving cell-based fairness.
We take a cell-based approach as in [13] and assume a

medium-term time scale corresponding to cell-level load
variations. The short term variations related to user mobility
and instantaneous channel conditions are assumed to be
handled by each cluster’s radio resource management
functionality.
The rest of the paper is organised as follows. Section 2

introduces the concept of CC-CMAC and bin allocation
over AP-based fixed clusters and presents the system model
and architecture. Performance measure of CC-CMAC is
presented in Section 3. Here, the closed-form representation
of cell-based QoS balancing function for CC-CMAC is
derived. In Section 4, the solution to this formulation is
proved to be NP hard. Section 5 discusses the solution
framework using a modified heuristic, that is genetic
algorithm (GA). The GA implementation and effect of
power-frequency granularity and fairness are discussed in
Section 6. The application of CC-CMAC in a practical
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GA-based architecture, optimising QoS balancing function,
with architectural complexity analysis is presented in
Section 2.2. We conclude in Section 8.

Notation: Lower and upper case boldface symbols denote
vectors and matrices, respectively; Math Curl represents the
set notation, (.)† denotes the Hermitian transpose, |·|
represents the cardinality of a set, diag is the diagonal of
the matrix, tr represents the matrix trace and E[.] represents
the expectation operator.

2 System model

2.1 Transmitted signal model

The uplink capacity of CC-CMAC is analysed using bin
allocation. Bins are disjoint equal width frequency bands
with a flat transmit power spectral density used over them
[13]. Specifically, a hexagonal grid of N cells is assumed
which is divided into Q fixed, equal and identical clusters.
N q is the set of all cells belonging to cluster q, where q =
1, …, Q, and |N q| = N/Q. Similarly, N q is the set of all

cells not belonging to cluster q where |N q| = N − (N/Q).
Noise is additive white Gaussian noise (AWGN). For
transmission over a given bin b, the |N q| × 1 received
signal vector yq for the qth cluster can be modelled as

yq = Hqxq + ẑq (1)

ẑq = Ĥqx̂q + zq (2)

where the |N q| × K|N q| channel matrix,

Hq = Hq
1, . . . , H

q
|N q|

[ ]
, contains complex gain matrices for

K users per cell, within the |N q| cells which are located

within qth cluster and |N q| × K N − |N q|
( )

channel

matrix, Ĥq = Ĥq
1 , . . . , Ĥ

q
N−|N q|

[ ]
, contains complex gain

matrices for all N − |N q| cells out of the qth cluster.

Similarly, xq = xq1, . . . , x
q
|N q|

[ ]T
is a K|N q| × 1 transmit

symbol vector for all cells within qth cluster and

x̂q = x̂q1, . . . , x̂
q
N−|N q|

[ ]T
is a K N − |N q|

( )
× 1 transmit

symbol vector for all cells outside cluster q. zq represents
the |N q| × 1 independent complex circularly
symmetric AWGN vector at receiver. The transmitters are

subject to power constraint tr E xqi xqi
( )†[ ]( )

≤ KPi and

tr E x̂qj x̂qj

( )†[ ]( )
≤ KPj, where cell i and cell j are located

within and outside cluster, q respectively. We assume that
the users have same per user power constraint. Hence, Pi =
Pj = Pn, ∀n = 1, …, N. This has applications in energy
constrained transmitter, where power is restricted over the
entire spectrum.
Let an,b be the nth row and bth column entry for allocation

matrix, A. Allocation matrix A represents allocation of bth bin
to users in nth cell (non-zero integer implies allocation; 0
implies otherwise). If allocation matrix for users
transmitting in cell 1 in Fig. 1 is produced it will have
values of P(1,1) at a1,1 and so on. The maximum bins
(discrete frequency allocation intervals) that are
implemented are B bins. For V quantisation bits per bin,

A∈ {1, …, 2V− 1}N × B represents joint bin and power
allocation to the N cells in the system. Here, N b(A)
represents the set of cells which have been allocated the bth
bin. A simple scenario for two cells transmitting to APs in
two different clusters is explained in Fig. 1. We consider
allocating sets of frequency bins to each cell in a cluster. A
simple case of two interfering cells with all users in each
cell allocated similar bin allocation is shown in the bottom
of Fig. 1.

2.2 System architecture

Consider a conventional cellular network. The BSC handles
the base-band signal processing and encoding/decoding of
users served by individual BTS. The collection of BTS
served by a BSC handles the base band signal processing of
all user transmissions associated with the cluster of BTS
served by BSC. Owing to the nature of radio propagation,
user transmission from other BSC clusters is also received
at BTS; this is considered as interference. In a similar way,
CC-CMAC considers limited cooperation using clustering at
APs. It consists of a cluster of APs which treats signals
from users within the cluster as useful signal and signal
from users located outside the cluster as interference.
Hence, to maximise performance, two types of coordination
activities take place between APs. These are referred to as
‘inter cluster’ and ‘intra cluster’ coordination:

† Inter cluster coordination: A basic coordination level
exists between different clusters and is handled at the
Network wide central processing unit. This unit handles the
CSI strategies allowing the centralised unit to coordinate
signaling strategies such as power allocation and spectrum
assignment. The analysis on frequency allocation which is
the scope of this paper achieves a network wide criterion
based on this iterative feedback model.
† Intra cluster coordination: All APs within a cluster fully
share their CSI and user data. Combined use of several AP
antennas belonging to different cells to send or receive
multiple user datastreams mimics transmission over MIMO)

Fig. 1 Demonstration of uplink transmission by users in cells from
two adjacent clusters. Here the scenario is shown across three bins
which are allocated power to cater interference in FC as per
CC-CMAC. Here the backhaul is also shown
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channel and is conventionally referred to as MIMO
cooperation or MU-MIMO.

Information theoretic models (Wyner’s GC-MAC model)
considered in evaluating CC-CMACs architecture do not
assume any physical layer (CDMA etc.) a priori. However,
since the objective of the model under study is to maximise
a criterion which handles both inter cluster and intra cluster
coordination, any resource allocation at cell user level
should ensure how much power is allocated to each cell
user at each of the different sub bands. To maximise
resource usage, the allocation to each cell within a cluster
will not be orthogonal. In that sense, inter cluster
coordination is close to orthogonal frequency division
multiple access (OFDMA) in which multiple cells within
each cluster are separated in the frequency domain.

3 Performance measure of CC-CMAC

As per ITU Standard X.902, QoS is defined as the ability of a
network to guarantee a set of quality requirements on a single
or group of users. High QoS improves level of service from
the operator’s point of view. In the context of bin
allocation, QoS refers to the sum rate generated because of
bins allocated to users within a cell. This indirectly
determines QoS for users belonging to a network. Hence,
QoS is rate centric rather than service and application
specific. An acceptable QoS would mean that the users in
a cell have a data rate which is acceptable, whereas a
non-acceptable QoS would mean that users in a cell have a
data rate which is not acceptable to the operator as per
requirements of the business. If the operator’s objective is
to maximise system throughput, only the cells with good
channel conditions are given preferential treatment. The
cells with poor channel condition are not given equal share
of bin resources as compared with the cells with good
channel conditions. To solve this disparity, a fair metric can
be framed on the level of user groups. Tradeoff between
sum rate and fairness helps satisfy service requirement of
users which motivates the use of utility in communication
theoretic framework [14]. This is discussed in the next
section.

3.1 Network wide QoS balancing framework

Mobile network operators would like to ascertain network
wide efficiency criterion to meet the objectives of profit
maximisation. Hence, the need for a system wide efficiency
criterion. Utility optimisation is a useful tool to measure
system performance against user satisfaction criterion [15,
16]. Using sum rate as a function of utility function is a
common approach. Utility can also address a wide range of
fairness conditions as in [14]. It has been associated with
particular choice of bandwidth or power allocation and can
be measured using a composite function known as network
utility maximisation (NUM) function [14, 17, 18].
Depending on the type of resource allocation, the N cells
within a cellular system can be paired independently.
Hence, total network utility decomposes into the sum of
user utilities. Therefore as in [19]

U (R(x)) =
∑N
n=1

∑K
k=1

un,k Rn,k(x)
( )

(3)

Here, un,k is the utility for kth user in nth cell, Rn,k(x) is the

sum rate because of transmission from kth user in nth cell,
x determines transmission allocation and U is global utility
function.
Per cluster analysis does not give insight into actual user

contributions and per user sum rate would require
additional feedback overheads for CC-CMAC. The short
term variations related to user’s mobility and instantaneous
channel conditions are assumed to be handled by each
cluster’s radio resource management functionality. As far as
provision of service levels (QoS provisioning) is concerned,
cell-based service provision helps to maintain differentiated
levels of service.
In this section we determine this efficiency in terms of QoS

balancing of per cell sum rate. For a given fairness coefficient
γ, Uγ(A) is the system level QoS balance metric which is
broken down to cell-based QoS balance metric in (4).
Mathematically

Ug(A) =
1

N

∑Q
q=1

∑
n[N q

ug Rn,q(A)
( )

∀b = 1, . . . , B; ∀n = 1, . . . , N (4)

Here uγ(Rn, q(A)) is the QoS balancing metric for users in nth
cell within the qth cluster. Here for a given A, (Rn, q(A)) is the
sum rate because of transmission over bands specified by A
from the nth cell within the qth cluster. Our objective is to

max Ug(A)

s.t. Rn,q(A) [ R+ (5)

subject to the power constraints as embodied in A. Combining
(4) and (5), the optimisation problem is to maximise network
wide QoS balancing function. Hence

maxA
1

N

∑Q
q=1

∑
n[N q

ug Rn,q(A)
( )[ ]︷����������︸︸����������︷cell-based-QoS-balancing-qth-cluster⎛⎜⎝

⎞⎟⎠
︷����������������������︸︸����������������������︷System-wide-cell-based-QoS-balancing

(6)

s.t. Rn,q(A) [ R+ (7)

∑B
b=1

Pn,b ≤ P

∀n = 1, ..., N ; ∀b = 1, ..., B

where P is the maximum per user transmit power over all the
allocated bins. The value of Pn,b varies across bins and across
different cell users within a cluster. This is because QoS
balancing needs to account for two forms of interference,
that is inter cluster and intra cluster interferences. This has
implications for considering such a formulation for
macro-cells in conjunction with pico cells and femto cells.
Since our formulation considers fixed cluster and is not a
hierarchical-based clustering, further topics likes HetNet can
be modelled but are not explored in detail for in this paper.
The bin-based CC-CMAC formulation has been discussed
in [11] and performance detailed in [12]. In this paper, the
authors build on the material from their previous work.
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3.2 Complexity and simulation-based sum rate
for CC-CMAC

The concept of joint processing of signals to evaluate sum rate
was introduced in Wyner’s Gaussian CMAC (GCMAC)
model [1]. Letzepis extended classical work of Wyner, to
produce a log det formulation for measuring capacity of
jointly processed cellular networks with free space path
loss. The sum rate representation for transmission received
in qth geographical fixed cluster of APs as in [11] was
represented using the expectation of per cell sum rate
formulation: Rq = logdet(Sq/Snq). The useful signal is
represented in numerator (Sq) and interference as well as
noise is shown in denominator (Snq).
Recalling Rq as the sum rate generated because of signal

transmission from users across all clusters but received at
APs in the qth cluster [11] can be represented as

Rq(A) =
1

B

∑B
b=1

E

× log det
s2
z I +

∑
n[N b(A)

Pn(A)H
q
n Hq

n

( )†
s2
z I +

∑
n[N b(A)>N q

Pn(A)H
q
n Hq

n

( )†
⎛⎝ ⎞⎠⎡⎣ ⎤⎦ (8)

This formulation was used to generate random snapshots for
channel conditions and simulated using Monte Carlo-based
iterations. In order to reduce complexity, a closed-form

representation of per cell sum rate for qth cluster E Rq(A)
[ ]

accommodated in our proposed architecture (Fig. 10 is now

considered. As per simulation results of E Rq(A)
[ ]

against Pn(A); ∀n, Rq(A) is proved to be a concave function
[12]. Recall that inter cluster coordination requires exchange
of CSI over the backhaul. This coordination can be strong
provided a large set of users per cell (multiuser diversity)
coexist in the system. The effect of Jensen’s inequality can
be approximated by identifying K→∞. The Jensen’s
inequality [20] can hence be applied. As per law of large
numbers, E[X/Y ] = E[X ]/E[Y ], since large K implies a
deterministic X and Y. This gives the following

E Rq(A)
[ ]

≤ 1

B

∑B
b=1

log

E
det s2

z IN/Q +∑
n[N b(A)

Pn(A)H
q
n Hq

n

( )†( )
det s2

z IN/Q +∑
n[N b(A)>N q

Pn(A)H
q
n Hq

n

( )†( )
⎛⎜⎝

⎞⎟⎠
⎡⎢⎣

⎤⎥⎦ (9)

Further, using log(AB − 1) = log(A)− log(B) the following can
be deduced: (see (10))
Consider a fast fading scenario. For transmission from kth

user in nth cell to AP in cell nq located within cluster q, each
fading coefficient is represented by g

nq
n,k and pathloss is

identified by s
nq
n,k , respectively. The channel coefficient is

represented by h
nq
n,k = g

nq
n,k ⊙ s

nq
n,k where ⊙ represents the

Hadamard product. The transmission is modelled as a
time-varying ergodic process. Assuming a large number of
users per cell, that is K→∞, as per ‘law of large numbers’,
1/K

∑K
k=1 |g

nq
n,k |2 � 1 for ∀n, ∀q. Using complex matrices

for fading, product of complex fading coefficients with its
complex conjugate is equal to power which is normalised to
unity. Hence

E g
nq
n,kg

nq
n,k

†[ ]
= E g

nq
n,k

( )2
[ ]

= 1 (11)

Moreover, the expectation of the product of a complex fading
coefficient with the complex conjugate of a different fading
coefficient but following the same PDF is the square of the
expected value of an individual fading coefficient. Hence

E g
nq
n,kg

nq
n′ ,k ′

†[ ]
= mg

[ ]2
(12)

here k′≠ k and n′≠ n. μg is the expected value of an
individual fading coefficient. In the case of the
Rayleigh-based flat fading, μg = 0 as in [2].
Further, define g

nq
n = g

nq
n,1, g

nq
n,2, . . . , g

nq
n,K

[ ]
and

s
nq
n = s

nq
n,1, s

nq
n,2, . . . , s

nq
n,K

[ ]
as 1 × K complex fading vector

and 1 ×K deterministic pathloss vector for transmission
from users in nth cell and received at the AP in the nthq cell
within the qth cluster.
Considering only the diagonal entries of the estimation for

covariance of Hq
n, the following can be deduced

diag E Hq
nH

q†
n

[ ]( )
= E s1n ⊙ g1n

( )
s1n ⊙ g1n

( )†
, . . . , s

|N q|
n ⊙ g

|N q|
n

( )[
× s

|N q|
n ⊙ g

|N q|
n

( )†]
(13)

= E s1ns
1†
n

( )⊙ g1ng
1†
n

( )
, . . . , s

|N q|
n s

|N q|†
n

( )
⊙ g

|N q|
n g

|N q|†
n

( )[ ]
(14)

= E s1ns
1†
n

[ ]
, . . . , E s

|N q|
n s

|N q|†
n

[ ][ ]
(15)

= 61n, . . . , 6
|N q|
n

[ ]
(16)

Here diag(·) is the diagonal entry of the matrix in the
argument. Equation (15) is derived from (14) after

combining with (11). Further, 6qn = 61n, . . . , 6
|N q|
n

[ ]
is the

1× |N q| deterministic vector representing average pathloss

coefficient, 6
nq
n experienced by users in nth cell transmitting

E[Rq(A)] ≤
1

B

∑B
b=1

log E det s2
z IN/Q +

∑
n[N b(A)

Pn(A)H
q
n Hq

n

( )†⎛⎝ ⎞⎠⎡⎣ ⎤⎦⎧⎨⎩
⎫⎬⎭

⎡⎣
− log E det s2

z IN/Q +
∑

n[N b(A)>N q

Pn(A)H
q
n Hq

n

( )†⎛⎜⎝
⎞⎟⎠

⎡⎢⎣
⎤⎥⎦

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭

⎤⎥⎦ (10)
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to all APs in qth cluster. Hence, 6
nq
n W 1/K

∑K
k=1 s

nq
n,k

( )2

∀nq = 1, . . . , |N q|. Extending the above to the formulation
for power and bin allocation, the following can be deduced
for asymptotically large number of users

diag E Pn(A)H
q
n Hq

n

( )†[ ]( )
= Pn(A)6

q
n (17)

Recalling (10) and decomposing the RHS log argument, it is
known that

W1 = E det s2
z IN/Q +

∑
n[N b(A)

Pn(A)H
q
n Hq

n

( )†⎛⎝ ⎞⎠⎡⎣ ⎤⎦ (18)

W2 = E det s2
z IN/Q +

∑
n[N b(A)>N q

Pn(A)H
q
n Hq

n

( )†⎛⎜⎝
⎞⎟⎠

⎡⎢⎣
⎤⎥⎦
(19)

Plugging (17) in (19) (see (20))
Applying similar concept to argument of second log on

RHS of (10), and summing up for all Q clusters, the
closed-form sum rate formulation for CC-CMAC, is as
follows

�R(A) ≤
∑Q
q=1

1

B

∑B
b=1

log
∏

nq[N q

s2
z +

∑
n[N b(A)

Pn(A)6
nq
n

⎡⎣ ⎤⎦⎛⎝ ⎞⎠⎡⎣⎧⎨⎩
−log

∏
nq[N q

s2
z +

∑
n[N b(A)>N q

Pn(A)6
nq
n

⎡⎢⎣
⎤⎥⎦

⎛⎜⎝
⎞⎟⎠

⎤⎥⎦
⎫⎪⎬⎪⎭

(21)

This concludes the derivation. (see (22))

3.3 Time complexity analysis: simulation against
closed form

Algorithmic efficiency is computed using complexity
analysis. Fig. 2 shows that the average Monte Carlo-based
simulation matches closely to the closed-form

representation for the CC-CMAC. This justifies use of
closed-form representation in subsequent analysis.

3.4 Cell-based QoS balancing function

Uγ from (4) depends on uγ, which is a function of cell-based
sum rate, Rn,q(A). The allocation matrix is a function of N
cells and total of B bins. We first derive a closed-form
representation of per cluster sum rate from the iterative
simulation-based formula. The closed-form expression has
the advantage of reduced complexity and signaling cost as
compared with the averaged simulation-based sum rate
expression. The jointly processed sum rate for qth cluster is
then decoded to analyse the sum rate contribution by users
in every cell located within qth cluster. This is implemented
using minimum mean square estimation based soft
interference cancellation (MMSE SIC) framework [21]. It is
implemented for CC-CMAC in the following section.

3.4.1 Derivation of closed-form cell-based QoS
balancing function: We further perform SIC [21] on the
cells within each cluster such that the sum rate of users
within a cluster can be evaluated. In order to decode the

Fig. 2 Time complexity comparison between E Rq(A)
[ ]

∀q & �R
(21) as implemented using GA for uplink transmission undergoing
flat fading and pathloss in bin-based cellular MAC design. Here
B = 5, K = 60. For log det simulation, D is averaged over 1000
runs. For comparison the time complexity of NC-CMAC (Q = 49)
and FC-CMAC (Q = 1) are also shown

W1 = det

s2
z +

∑
n[N b(A)

Pn(A)61n 0 0

..

. . .
. ..

.

0 0 s2
z +

∑
n[N b(A)

Pn(A)6
|N q|
n

⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦ (20)

�Rp(o),q(A) = �̃Rp(o),q(A)−
∑o−1

i=1

�Rp(i),q(A)

where

�̃Rp(o),q(A) = log
∏

m[N q

s2
z +

∑
n[N b(A)

Pn,b(A)6mn

[ ]( )
− log

∏
m[N q

s2
z +

∑
n[N+

p(o),b

o[N q

Pn,b(A)6mn

⎡⎢⎢⎣
⎤⎥⎥⎦

⎛⎜⎜⎝
⎞⎟⎟⎠

⎡⎢⎢⎣
⎤⎥⎥⎦

(22)
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cell-based ordering from the cluster-based sum rate, we need
to first consider closed-form of system wide sum rate of all
cells represented by �R(A) (21) from [13].
We consider MMSE-SIC detection [21] on the received

signal at qth cluster (i.e. Rq(A)) with decoding ordered as
follows: 1, 2, 3, …, N/Q. For a given bin allocation, b, we
first detect the signal from cell 1 treating the signals from
all the other cells within the cluster as interference, and
then subtract the contribution of this interference from this
signal. The detection process is then repeated for cell with
index 2 up till index N/Q. Here it is assumed that |N/Q| = 7.
Defining π(n) as the permutation of cells in set N q with
π(1) being the first decoded cell and π(7) as the last
decoded cell. Generalising for cell decoding order π we
have per cell sum rate for oth cell transmitting over bth bin
in qth cluster defined as in (22).
Formulating (22), �Rp(o),q(A) defines the signal from all

cluster users transmitting over bin, b. �̃Rp(o),q(A) defines the
interference from users transmitting in cluster different from
the reference cluster as well as signals from users in cells
within the same cluster but not decoded. We further decode
the per cell sum rate for qth cluster by deriving (23) from
(22), where s2

z is defined previously and N+
p(o),b =

N b(A)>N q <N+
p(o). Here the non-decoded cells within

the cluster, are represented by the set, N+
p(o) =

{p(o+ 1), . . . , p(N/Q)}.

Lemma 1: For CC-CMAC using MMSE-SIC, the sum rate for
oth cell in the qth cluster, has an ergodic sum rate given by

�Rp(o),q(A) =
f (N b(A))− f N+

p(1),b

( )
if o = p(1)

f N+
p(o−1),b

( )
− f N+

p(o),b

( )
otherwise

∀o [ N q

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(23)

where, for simplicity it is assumed that

f (N b(A)) = log
∏

m[N q

s2
z +

∑
n[N b

Pn,b(A)6mn

⎡⎣ ⎤⎦⎛⎝ ⎞⎠ and

f N+
p(o),b

( )

= log
∏

m[N q

s2
z +

∑
n[N+

p(o),b

o[N q

Pn,b(A)6mn

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

and that 1/B
∑B

b=1 (.) can be ignored from RHS of (23) for
simplicity.

Proof: Here we attempt to derive (23) from (22). For o = 1,
and from (22), it is easy to show the sum rate for first
decoded cell as

�Rp(1),q(A) = �̃Rp(1),q(A) = f N b(A)
( )− f N+

p(1),b

( )

Similarly, for o = 2

�Rp(2),q(A) = �̃Rp(2),q(A)− �Rp(1),q(A)

= f (N b(A))− f N+
p(2),b

( )
− f (N b(A))− f N+

p(1),b

( )[ ]

= log
∏

m[N q

s2
z +

∑
n[N+

p(1),b

o[N q

Pn,b(A)6mn

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

− log
∏

m[N q

s2
z +

∑
n[N+

p(2),b

o[N q

Pn,b(A)6mn

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

..

.

(24)

Similarly for o = N/Q

Rp(N/Q),q(A)

= �̃Rp([N/Q]),q(A)− �Rp([N/Q]−1),q(A)

= log
∏

m[N q

s2
z +

∑
n[N+

p([N/Q]−1),b

o[N q

Pn,b(A)6mn

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

− log
∏

m[N q

s2
z +

∑
n[N+

p([N/Q]),b

o[N q

Pn,b(A)6
m
n

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

Generalising the above results by replacing cell indices with
global variable o, one can get second part of (23). This
sums up the proof. □

4 NP Hardness for BAP in CC-CMAC

The aim of the BAP in fixed CC-CMAC is to assign bin
resources to multiple cells such as to maximise QoS
balancing function. In order to select a solution for BAP, it
is imperative to determine complexity of the problem. In
this section BAP is proven to be NP hard. This hence
requires a selection of heuristic technique to solve the
problem. In this section, it is assumed that QoS balancing
function maximises sum rate of all users. The sum rate
maximisation problem is a subset of the general QoS
balancing function (which is a function of cell-based sum
rate). The well-studied MI-FAP is mapped from literature
[22] to the BAP problem as per following definition.

Definition 1: (BAP using multiple bin for CC-CMAC): The
achievable sum rate because of transmissions from users in
the Q clusters using B bins, and received by the APs in the
Q clusters is defined as in (21).
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Theorem 1: Solution to the BAP using multiplebBin for
CC-CMAC with Q ≫ 2 is NP hard.

Proof: This section will highlight important steps which are
detailed in [12]. Consider the clustering problem as the
communication theoretic analogy of graph partitioning
problem. This is defined as the division of total vertices, V
into disjoint sets represented by Vq such that the number of
edges whose end points are in Q–1 different vertices
subsets are minimised.

Vertices of graph play role of transmitters in CC-CMAC
and edges model point to point link between nodes. Define
a cut across sets within and without cluster q and define the
conductance of cut as a measure of cluster quality. This is
considered analogous to system efficiency of CC-CMAC.
Uq is the set of transmitters in qth cluster. Since users are

colocated with receivers, |Uq| = |Vq|. These terms are used
interchangeably denoting transmission and reception nodes
in graph theoretic framework. Sum rate contribution
because of transmission from users within qth cluster is
denoted by, Ra which is as follows

Ra = log
∏
v[Vq

s2
z +

∑
u[Uq

Pu6
v
u

⎡⎣ ⎤⎦⎛⎝ ⎞⎠ (25)

where s2
z is the noise variance and Pu is the maximum

transmit power for users in u. Similarly, sum rate
contribution because of transmission from users outside qth
cluster is denoted by, Rb. Hence

Rb = log
∏
v[Vq

s2
z +

∑
u�Uq

Pu6
v
u

⎡⎣ ⎤⎦⎛⎝ ⎞⎠ (26)

Both Ra and Rb can be regarded as specific instances of �R(A)
(21). These can be evaluated from (21) using MMSE-SIC
techniques [21].

4.1 Active receivers in single cluster (|Vq| = |N q|)
ConsiderW as the set of all edges. |W| increases linearly with
|Û|. Further denote Wintra

q and as the set of graph edges with
both endpoints lie within qth cluster. Similarly. Winter

q is the
set of edges with one endpoint in and one out of qth
cluster. Further, Wq = Wintra

q <Winter
q . Hence, the

following mapping function can be formulated

Ra(Û) 7! |Wintra
q |

Rb(Û) 7! |Winter
q |

(27)

where 7! refers to the mapping between number of interfering
edges to the sum rate contribution because of transmission
from users within Ra(Û) and outside Rb(Û) the cluster.

4.2 Active receivers in multiple clusters
(|Vq| . |N q|)
Assuming identical clusters, and using

min (|Wintra
q |, |Wq|) = |Wq|.

Also as in [23], take subset S of V and define a cut
(S, V/S). Here, for BAP in CC-CMAC, the cut is

represented by (N q, N q) where N q # N and N is the set
of all cells within the system. Applying concept of graph
clustering from [23], the following can be deduced

f(N q) =
|Winter

q |
min(|Wintra

q |, |Wq|)

= |Winter
q |

|Wq|
(28)

From [23], it is known that conductance of graph cluster, q,
that is f N q

( )
will be smallest conductance within that

cluster. Further the conductance of graph is minimum
conductance over all possible clusters, q. Applying to
CC-CMAC this would imply a spectral efficiency measure
over all clusters Q. Hence

f(G) = min
N q#N ;∀q

f N q

( )
(29)

= max
N q#N ;∀q

1

f N q

( )
⎛⎝ ⎞⎠ (30)

= max
∀q

Ra + Rb

Rb

( )

= max
∀q[{1,2}

log
∏

v1[Vq

s2
z +

∑
n[N

Pn6
v1
n

[ ]( )

log
∏

v1[Vq

s2
z +

∑
n[N>N q

Pn6
v1
n

⎡⎣ ⎤⎦⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠ (31)

Equation (30) follows from (29). In terms of rate contribution
as a measure of conductance, (30) can be expanded to
represent (31).

4.3 Multiple bin allocation for reception at
receivers within multiple clusters

In a multiple cluster multiple bin BAP, (31) can be extended
from single bin to multiple bins formation, that is from B = 1
to B ≫ 1 and average over a bin. The number of receivers
|Vq| increases for Q ≫ 2. This suits the requirement of
seven clusters and seven cells per cluster formation as
implemented for Definition 1. Being a subset of BAP
general problem, if (29) is proved NP hard, then the
generalised BAP for CC-CMAC is also NP hard. From [22,
23], solving (29) is proved to be NP hard. The proof
assumes that given (a− e) clustering, maximising α or
graph conductance for no inter cluster conductance (e) is
proven to be NP hard. This is equivalent to saying that
given interference from across the cluster is 0, what is the
maximum value of |Winter

q |/|Wq|. Since numerator and
denominator are both dependent on the weighted edge of
inter cluster subgraph, the solution to (29) is hence proved
to be NP hard. Here, (31) is equivalent to (29). Hence, (31)
is also proven as NP hard.
Since BAP for multiple bin allocation in CC-CMAC is a

more general case of (31), Definition 1 is also NP hard.
QoS balancing function is a function of sum rate, that is
depends on (21) and therefore Definition 1. Optimising the
network QoS balancing function problem as defined in
Section 3.1 is therefore an NP hard problem. □
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5 GA-based implementation of QoS
balancing function in CC-CMAC

GA is a powerful optimisation tool widely used in solving
channel allocation problems including dynamic channel
allocation [14, 24] and bin allocation in CMAC [13].
To optimise efficiency of allocation for CC-CMAC users,

(6) is used as an objective function to a modified GA. The
allocation is optimised over a number of generations. In
each generation, the allocation matrix encoded onto a
number of chromosome strings is evaluated. The crossover
technique is selected such that the crossover point separates
allocation for different users. Mutation is implemented by
flipping the alleles [25] to any of the 2V–1 alternate power
states. The termination criteria is determined by the number
of generations over which the efficiency is near constant.
These are summarised in Fig. 3 and detailed as in [12].
In the following section, we introduce the different steps in

optimising GA to solve frequency planning for CC-CMAC.

5.1 GA Framework for resource allocation in
CC-CMAC

The modification of GA with respect to generic string
encoding, using fitness function, crossover technique and
mutation takes place as shown in Fig. 3. It is explained in

terms of the different stages as well as through the
pseudocode as follows.

5.1.1 Fitness function-cell-based QoS balancing
function: To optimise efficiency of resource allocation for
CC-CMAC users, we consider network utility based on per
cell sum rate QoS balancing function as fitness function.
Since GA is optimised over a number of generations we
consider the least complex form of fitness function to
optimise our algorithm.
Using the analytical derivation from Section 3.2, the

closed-form representation of E[Rq(A)] over all q is given
by (21). Average of per cell sum rate is evaluated using
1000 Monte Carlo-based iterations. These represent random
fading and user distribution snaps. A for loop is
conventionally used to average over these states. Fig. 2
shows that simulation-based analysis has complexity to the
order of n2. This explains the increasing gradient with
increasing cells per cluster, |N q| for simulated sum rate in
Fig. 2. For the closed-form representation, these loops are
no longer needed as the fading states are approximated
using the law of large numbers. Further, Fig. 2 shows that
the order of complexity increases logarithmically in the
order non-cooperative (NC-CMAC), CC-CMAC and
full-cooperative (FC-CMAC) cellular MAC. This can be
explained because of the reduced search space from

Fig. 3 GA Flowchart for optimising bin-based allocation in CC-CMAC. POP(t0) represents the population at reference time, t0. MAXSNAPS
is the maximum number of time snaps
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FC-CMAC(2BN) to CC-CMAC(2B|N q|). This gives another
motivation for choosing CC-CMAC which can be
implemented for a range of practically realisable receivers
in an AP cooperation-based cellular system framework.
Here (23) is considered as the fitness function as per our

analysis.

5.1.2 Encoding of bin allocation matrix: The method
of representation (encoding) for a chromosome has a major
impact on GAs performance. Binary string encoding is
selected since it helps to select from a large number of
possibilities using few trials. Compared with a binary string
of 5 a binary string of 10 has 32 times larger schemata. The
string length (B × N ) represents total number of genes. Each
gene represents allocation of a specific bin to a specific cell
for CC-CMAC. Further, binary strings were chosen for
simplicity of operation [25]. In this work a 0 signifies no
allocation whereas a non-zero allele indicates an allocation.
Fig. 4 shows the effect of evolutionary frequency allocation

scheme for cell-based QoS balancing function. An initial
group of individuals consisting of M chromosomes is first
created by mapping the QoS balancing function optimised
bin allocation to a chromosome structure.

5.1.3 Block sized crossover: This type of crossover puts
restriction on the location of the plane of crossover. This is
required since the allocation on either side of the plane
should belong to different cells. GA would otherwise
descend to premature convergence [12]. This scheme is
depicted in Fig. 5. Here Parent 1 and Parent 2 pass their
characteristics to Child 1 and Child 2. This is shown by a
direct mapping from Parent 1 to Child 1 and Parent 2 to
Child 2. Beyond the plane of crossover, genes are swapped
for the remaining chromosome such that Child 1 receives
Parent 2s genes and vice versa. The above is verified after
creating test points in the Matlab simulation. Secondly,
content of the chromosome is verified before and after the
crossover operation. Moreover, the bins allocated to each
user are summed up. This should be the same before and
after the crossover operation.

5.1.4 Elitism: Fitness function is a non-negative figure of
merit [26] used to quantify the ‘best fit’ amongst the
population. Survival of the fittest translates to discarding the
chromosomes which are unfit. In the bin allocation problem
(BAP), bins are allocated such that they maximise sum rate.
This is done by reshaping encoded matrix from the
chromosome string to a bin allocation table. This allocation
matrix denotes the input matrix for (21). After GA has
reached maximum generations, the encoded matrix is
converted back to chromosome strings. As can be observed,
the fitness function (9) is a summation of user rates in all Q
clusters. In each cluster, the sum rate is of the form
Rq(A) = 1/B

∑B
b=1 log det{I/J}. Here B is constant over a

given run and depends on allocation A dimensions. I
represents the received signal strength as observed by the
receivers in qth cluster, from all transmitters in the system
(i.e. inside and outside the qth cluster) and J is received
signal strength of the transmissions from outside the cluster
q. The set of conditions under which J is minimised and I
is maximised, hence determines the ‘best fit’ solution to the
GA under study.

5.1.5 Selection: The concept of elitism was implemented
with a modified version of De Jong’s elitist model [27]; the
best member of current population is forced to become
member of the next population. This helps maximise sum

rate over all generations. The fitter the parents, the higher
the chances that they are selected.

5.1.6 Crossover: Crossover is the main genetic operator
which preserves inherit characteristics from each parent
using a ‘cut-catenate’ technique. Single point crossover is
the simplest of all crossover techniques [24]; hence it is
adopted in this analysis. However, Fig. 5 shows that point
of crossover cannot bisect bins allocated to a single user
(shaded group of 3 bins). If that is the case, it will result in
the algorithm converging prematurely.
The sort of single point crossover used depends on

restriction on the location of the plane of crossover. This is
required since the allocation on either side of the plane
should belong to different cells. GA would otherwise
descend to premature convergence [12]. This scheme is
depicted in Fig. 5. Here Parent 1 and Parent 2 pass their
characteristics to Child 1 and Child 2. This is shown by a
direct mapping from Parent 1 to Child 1 and Parent 2 to
Child 2. Beyond the plane of crossover, genes are swapped
for the remaining chromosome such that Child 1 receives
Parent 2s genes and vice versa. The above is verified after
creating test points in the Matlab simulation. Secondly,
content of the chromosome is verified before and after the
crossover operation. Moreover, the bins allocated to each

Fig. 4 Effect of evolutionary frequency allocation scheme for
cell-based QoS balancing function

a Chromosome representation of bins allocated to the nth cell as per our GA
optimisation
b Bin allocation table, A for all cells and its corresponding bin value, b
is shown. an,b = 1 means that the bth bin has been assigned to the nth cell.
an,b = 0 implies that no such allocation takes place
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user are summed up. This should be the same before and after
the crossover operation. Crossover takes place with a set
probability, Pc. If Pc = 0, then the new chromosome
population is a copy of the old. If Pc = 1.0 all the
offspring are made by crossover. In our analysis, Pc is in
the range of 0.75–0.90.

5.1.7 Variable mutation: Mutation is a genetic operator
which transforms individual chromosomes by randomly
changing allele (inverting bit positions) of some genes. The
operation is carried out on the allocated bins and varied as
per sum rate gradient in order to respond the random nature
of user positioning. Mutation takes place with a very low
bit probability, to prevent the GA from becoming a random
search operation. Probability of mutation on a bit, Pm is
hence in the range 0.0001–0.01.

5.1.8 Termination condition: The termination condition
specifies whether the algorithm needs to continue searching
or stop. When no further bin allocation maximises sum rate
and the population has converged, the GA terminates. In
this implementation, similar fitness values over consecutive
generation indices satisfies termination condition. The GA
will terminate if the fitness value is consistent for the last
ten consecutive generations (see Fig. 6).

5.2 Effect of fairness on QoS balancing function

The max–min fairness is a tractable and flexible fairness
model that helps to compare a range of fairness conditions.
It is known that rate region for (23) is not convex in
general. Since class of utilities depending on per cell sum
rate should have a convex formulation as their input, further
conditions are required to optimise the fairness formulation
using cell-based sum rate.
Using function h(x) of the form (ex–1) − 1 satisfies the

conditions for maximising minimum sum rate contribution
of users in a cell such that any further increase will likely to
decrease sum rate allocated to higher rate cell users [12].

Lemma: If h(x) is differentiable increasing negative &

concave function than given x≥ 0, the solution of Uγ(h(x))
approaches max–min fair vector for γ→ 10.

From definition of log-concave, we know that a function is
log-concave if log f is concave. We know that cumulative
Gaussian probability function is log-concave. Applying the
same to the fairness formulation introduced, it can be
shown that [12]

ug Rm,q(A)
( )

=
− h Rm,q(A)

( )[ ]−g

g
max−minF (32)

Here, uγ(Rm, q(A)) is the service balancing function for users
in mth cell in qth cluster using fairness coefficient of γ.
Simplifying, the following can be deduced

ug Rm,q(A)
( )

= 1

g

−1

(e(Rm,q(A)) − 1)

[ ]g

max−minF (33)

Based on the above, it is imperative to compare fairness with
the system efficiency. Having a fair distribution of resources
will reduce the numerator for R. However, the sum rate
contribution of edge cells will increase since they now have
more resources allocated to them. Since the number of edge
cells (6) is far greater than the non-edge cells (1), there is
an increase in interference to receivers in adjacent clusters.
This reduces the over all sum rate further. However, the
CDF determines in two stages the effect of fairness and
improvement of group performance (cell users) within a
cluster.

† The 10th percentile is used to gauge performance of users
in cell edge.
† The 90th percentile is used to gauge performance of users
in cell centre.

Since the fairness described is strict and effects the edge
cell users most, 10th percentile is generally regarded as the
determining metric for qualifying edge cell users since their
sum rate contribution is the least [12].

Fig. 5 Modified GA: block size crossover operation for a
CC-CMAC

Fig. 6 GA-based bin allocation for CC-CMAC
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5.3 GA simulation

A total of 16 simulations were carried out. The total number
of users K, transmitting in each cell was modified such that:

† Four sets of experiment were carried out using varying
population size, M for K > 100
† Four sets of experiment with different crossovers
(M−1 ≤ Pc ≤ M ), K > 100
† Four sets of experiment were carried out with varying M,
K < 100
† Four sets of experiment with different crossovers
(M−1 ≤ Pc ≤ M ), K < 100

The above parameters were optimised by tuning to gain
stability within the experiment (consistency in values over
the last ten generations), and the efficiency achieved
(difference in sum rates between first and last completed

generation cycle). A further set of eight experiments over
similar sets as above but reduced iteration. These
experiments were carried out to compare two forms of
fairness constraints as available in literature including Jains
fairness index (JFI) and max–min fairness index (MMF).
The results are discussed in Section 6.
To sum up, the bin allocation is optimised over a number of

generations. 100 chromosomes are randomly generated. For
each set of ten non-consistent generation blocks, in each
generation, the allocation matrix is encoded onto a number
of chromosome strings and each string is evaluated against
an objective criteria (optimisation of cell-based QoS
balancing function). The crossover technique is selected
such that the crossover point separates allocation for
different users. Mutation is implemented by flipping the
alleles [25] to any of the 2V–1 alternate power states. Here
V is the total number of bits encoded for bin allocation to
every user. The termination criteria is determined by the
number of generations over which the efficiency is near
constant. The process is summarised in Algorithm 1.

6 Results and discussion

Fig. 7 shows the effect of ISD gain on V and B using sum rate
as metric GC-CMAC. For high density APs, the efficiency of
GA optimised allocation in CC-CMAC approaches the upper
bound. For less dense systems, the difference between GA
optimised and full reuse allocation schemes reduces to nearly
0. The given parameters make GA suitable for dense urban
centres. GA option is compared with fairness based metric
(min-max algorithm). This is explored in the next section.

6.1 Impact of fairness on QoS: max–min fairness

For D = 1000 m, sum rate contribution because of hard fairness
optimised QoS balancing function is shown in Fig. 7.
Corresponding CDF plot is shown in Fig. 9. For nominally
dense APs, the sum rate is reduced by about 20%. However,
the minimum rate of disadvantaged users is increased by
10%. At the 10th-percentile reference, sum rate for MMF
optimised allocation is 5.1 as compared with 4.7 for
maximised sum rate. Hence, 10% users have rates which are
at least 0.5 bps/Hz/cell higher than that due to QoS balancing
function without fairness. This gap is further increased if the
cross over points are varied along with the population size.

Fig. 7 Effect of ISD on per cell sum rate because of GA optimised
partial bin reuse (PBR) and max–min fairness via joint power and
bin allocation. Here V = 5, B = 10, AP density is varied from ISD
= 200 to 9000 m, N = 49, Q = 7, η= 3.5, Lo = 31.5 dB, and
s2
o = 16.9 dBm/Hz over 5 MHz bandwidth. For comparison, full

reuse as implemented on NC-CMAC (Q = 49) and FC-CMAC
(Q = 1) are also shown

Fig. 8 Comparison between JFI and MMF. The per cell sum rate degrades for JFI’s lower fairness coefficient and smaller number of bins. The
MMF is said to exhibit better performance as its slope about median is simply a function of per cell sum rate when bin granularity is increased.
Here for B≥ 2 MMF fares better than JFI which is a common metric for measuring fairness
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That is the cross over points are not predetermined. This effect
is shown in Fig. 9 and discussed in next paragraph.
In lower percentile CDFs, lower sum rate contributors are less

prone to interference from other low sum rate contributing cells
in alternate clusters. This is not the same for higher cell sum rate
contributors which are more prone to interference. Using
variable crossover points, the resource allocation becomes
more flexible and scant resources are allocated to the very few
users. This improves the situation as depicted for 10th
percentile users. The increasing sum rate contribution leads to
interference which overshadows the advantage in flexible bin
allocation because of variable crossover points. Hence, the
CDFs converge for percentiles greater than the median.
A similar set of experiments were run as described earlier

to compare fairness indices and granularity. Fig. 8 shows
that at ISD of 1000 m and for limited value of B
implementing MMF for higher coefficient results in greater
contribution of per cell sum rate from 10th percentile users
than JFI using the same fairness coefficient (Fig. 8). The
median for MMF is also more in line with the average
per cell sum rate which is not affected by changing the
degree of fairness (η = 2–10). This explains the choice of

Fig. 9 Effect of γ on CDF of joint power and bin allocation. Here
V = 5, B = 10, ISD = 1000, N = 49, Q = 7, η= 3.5, Lo = 31.5 dB, and
s2
o = 16.9 dBm/Hz over 5 MHz bandwidth. For comparison the

effect of block sized crosssover (both predetermined and variable)
are shown

Fig. 10 GA architecture as implemented for QoS balancing formulation for a CC-CMAC
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MMF as fairness metric in the final evaluation of QoS
balancing function Fig. 8.

7 Analysis of GA optimised allocation design

As shown in Fig. 10, GA-based network QoS balancing
function is represented by g(·). Here for first run, Â consists
of randomly generated bin allocation matrix, A.
Subsequently, once the termination condition is met, the
GA optimisation entity assigns Â with GA optimised partial
bin reuse type allocation. The cell path loss information is
in the form of 6q1 for the transmission from cell indexed by
1 and whose signal is received at the AP in the qth cell.
This information can be represented with minimum
algorithmic complexity with the help of closed-form
framework of bin-based allocation in CC-CMAC. This is
explored in Section 5.1.1. The filtering function is
represented by g(·) which takes Â and 6qn as inputs. It
assigns the updated bin allocation Â to the network.
Further, the updated 6qn is sent to central frequency planner
(CFP). Here for the first run, CFP processes Â which
consists of randomly generated bin allocation matrix, A.
Subsequently, the network entity assigns the fittest solution
to Â fedback to the cell users. These entries are the result of
heuristic solution framework which are discussed in Section
5. In this context, 6qn is collected every hour so as to
represent the changing dynamics of user profiles. This has
applications in Collingwood circle design, and random
non-homogeneous user traffic profile as described in [12].

7.1 Signalling analysis

Dimensions of channel matrices reveal complexity
requirement for cell path loss feedback. This is used to
measure the signalling overhead for different cellular MAC.
For FC-CMAC, average cell-based path loss information
from each of N user groups to the N APs in system are
represented by the N2 bits for transferring 1 bit per cell.
Owing to power granularity each cell information now
requires V bits for transmission. Hence, the total signalling
requirement is VN2 bits for FC-CMAC. It is worth noting
that N = Q|N q| for any cellular MAC. For CC-CMAC, the
signalling requirement is for VQ|N q|2 bits per snapshot.
CC-CMAC requires Q times less signalling overhead. This
is one of the motivations for choosing CC-CMAC.

7.2 Complexity

The search space for joint power and bin allocation depends
on B, V, and N as per the following relationship 2NVB.
Hence, for fixed N and V, the complexity rises to the order
of 2B. The complexity is hence a function of the
chromosome length (total bins allocated). As a motivation
to reduced chromosome length, it is possible to reduce B
whereas at the same time increase V such as not to affect
the increase in sum rate. This approach makes the algorithm
less computationally intensive and GA becomes feasible for
modern OMC-Rs and centralised frequency planners as in
Fig. 10.

8 Conclusions

A novel QoS balancing framework for CC-CMAC is
proposed in this work. The aim is to increase spectral
efficiency as well as achieve cell-based fairness for given

per user power constraint. This is implemented by deriving
cell-based QoS balancing function. Using analogy with
graph conductance, QoS balancing problem is proved to be
NP hard. Using joint frequency and power granularity, this
problem is formulated as an objective function input to a
GA and compared for a range of ISDs and bin and power
quantisation states. Results show that maximising sum rate
CC-CMAC can help achieve the upper bound of the
capacity region in highly dense AP scenario. Using max–
min fairness in moderately dense AP scenarios, reduced
sum rate (improvement over full reuse), can effect a slight
increase in fairness. A practical centralised frequency
planner for implementing modified GA is proposed. This
framework has application for both high priority (HP) and
best effort (BE) customers [28] alike. Current research work
under way looks into tapered cellular architectures and
extension to comply with further restriction as per a
multi-objective optimisation design.
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