
Published in IET Software
Received on 25th June 2012
Revised on 22nd December 2012
Accepted on 27th February 2013
doi: 10.1049/iet-sen.2012.0101

ISSN 1751-8806

Automated testing of eXtensible Access Control
Markup Language-based access control systems
Antonia Bertolino1, Said Daoudagh1, Francesca Lonetti1, Eda Marchetti1, Louis Schilders2

1Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR via G. Moruzzi 1, 56124 Pisa, Italy
2CEO, Custodix NV, 9830 Sint-Martens-Latem, Belgium

E-mail: francesca.lonetti@isti.cnr.it

Abstract: The trustworthiness of sensitive data needs to be guaranteed and testing is a common activity among privacy protection
solutions, even if quite expensive. Accesses to data and resources are ruled by the policy decision point (PDP), which relies on
the eXtensible Access Control Markup Language (XACML) standard language for specifying access rights. In this study, the
authors propose a testing strategy for automatically deriving test requests from a XACML policy and describe their pilot
experience in test automation using this strategy. Considering a real two-level PDP implemented for health data security, the
authors compare the effectiveness of the test plan automatically derived with the one derived by a standard manual testing process.

1 Introduction

Nowadays assuring that detailed information can be securely
exchanged between different platforms is a real and pressing
need. In this regard, the European Project Trusted
Architecture for Securely Shared Services (TAS3) [1] is
developing a trusted architecture for the delivery of adaptive
security services that preserve personal privacy and
confidentiality in dynamic environments. One of the TAS3
pilot applications focuses on the interactions between
patients and healthcare professionals, who should be able to
access the repositories containing the relevant medical
history of a patient at any time.
The trustworthiness of the TAS3 framework is strongly

dependent on correct data protection and access control
management, and consequently on an accurate testing phase
of the implementation of the access control policies. In
TAS3 the policies for access control decision are specified
in eXtensible Access Control Markup Language (XACML)
[2]. Therefore a good methodology for the derivation of test
inputs (XACML requests) is needed. This could be used for
probing the XACML policy implementation engine, called
the policy decision point (PDP), and checking the PDPs
responses against the expected ones. However, the
generation of a good set of XACML requests revealed to be
a difficult process and its manual management required a
quite big effort. Owing to its past experience in using and
developing XACML-based test strategies [3–5], the national
research council (CNR) group to which the paper
co-authors belong, collaborated with the Custodix [6]
private company, specialised in data protection solutions for
eHealth, for an effective improvement of the testing process.
Therefore a joint effort between Custodix and a CNR

research group, both TAS3 partners, was launched for
introducing automated tool support in the validation of

XACML policy implementation engines. We report in this
paper the experience gained during this joint work and the
developed strategy.
The rest of this paper is structured as follows. Sections 2

and 3 provide the context in which the experience has been
gained and a brief description of the XACML language,
respectively. Section 4 presents the standard test process
adopted by Custodix. We then introduce a new test strategy
and its comparison with an existing one in Section 5. The
application of the proposed strategy within Custodix testing
scenario is shown in Section 6. Further considerations about
manual and automated testing are discussed in Section 7,
whereas experience feedbacks are provided in Section 8.
Finally, Section 9 puts our work in context of related work
and Section 10 draws conclusions.

2 Testing scenario

One of the main aims of the TAS3 project is around the
secure management of patients data inside the healthcare
applications.
In particular, Custodix [6] has developed patient

information location service (PILS), an engine supporting
the distributed search and recovery of patient information
from different sources. PILS users need to authenticate
themselves using their electronic identity card (the Belgian
eID) and PILS access policies are used to rule access to
data. By the provided graphical user interface (GUI), the
users can themselves set the policies indicating which
information they want to share with which healthcare
professionals.
Fig. 1 shows a simplified version of the testing scenario,

considered inside the TAS3 project, where a generic web
user access to the portal is exemplified. In particular, the

www.ietdl.org

IET Softw., 2013, Vol. 7, Iss. 4, pp. 203–212 203
doi: 10.1049/iet-sen.2012.0101 & The Institution of Engineering and Technology 2013

mailto:
mailto:
mailto:
mailto:
mailto:


PILS portal creates an identification request for the identity
provider (IdP), that contains the authentication method
chosen by the user. The IdP intercepts this request, inspects
it to check the user credentials and creates a response. At
this point the user can either create the necessary access
policy for a defined type of healthcare professional
(pharmacist, general practitioner, specialist) or control/
modify his/her personal preferences regarding data
protection or check the audit logs of who accessed his/her
data. In TAS3 the access management has been
implemented by a distributed access control framework. In
the pilot application in which Custodix was involved, two
levels of PDP are implemented: the central (domain) policy
decision point (Central PDP) and the application policy
decision point (Application PDP).
The Central PDP checks the creation or modification of a

policy by the patient. This policy rules the reading, creation
or deletion of the patient record or information for a defined
type of healthcare professional and is processed on the
Application PDP that checks the access of the healthcare
professional to the patient data. As evidenced by Fig. 1, the
objective of testing was the Application PDP and the test
plan was obtained by an automatic support tool, called
XaCml REquests derivAtion for TEsting (X-CREATE).

3 XACML

XACML [2] is a platform-independent extensible markup
language (XML)-based language for the specification of
access control policies. A policy consists of a target, a set
of rules and a rule-combining algorithm. The target

specifies the subjects, resources, actions and environments
on which a policy can be applied. Each subject, resource,
action and environment contains two main attributes
that are <ATTRIBUTEID> and <DATATYPE> and an
<ATTRIBUTEVALUE> element that specifies the
associated value. If a request satisfies the target of the
policy, then the set of rules of the policy is checked, else
the policy is skipped. The rule is composed by a target,
which specifies the constraints of the requests to which the
rule is applicable. The rule has a condition which is a
boolean function evaluated when the rule is applicable to a
request. If the condition is evaluated to true, the result of
the rule evaluation is the rule effect (‘Permit’ or ‘Deny’),
otherwise a ‘NotApplicable’ result is given. If an error
occurs during the application of a policy to the request,
‘Indeterminate’ is returned. The rule-combining-algorithm
specifies the approach to be adopted to compute the
decision result of a policy when more than one rule may
be applicable to a given request. For instance, the
‘permit-overrides’ algorithm specifies that ‘Permit’ takes the
precedence regardless of the result of evaluating any of
the other rules in the policy, then it returns ‘Permit’ if there
is a rule, that is evaluated to ‘Permit’, otherwise it returns
‘Deny’ if there is at least a rule, that is evaluated to ‘Deny’
and all other rules are evaluated to ‘NotApplicable’. If there
is an error in the evaluation of a rule with ‘Permit’ effect
and the other policy rules with ‘Permit’ effect are not
applicable, the ‘Indeterminate’ result is given.
The access decision is given by considering all attribute

and element values describing the subject, resource, action
and environment of an access request and comparing them
with the attribute and element values of a policy.

Fig. 1 Testing scenario

www.ietdl.org

204 IET Softw., 2013, Vol. 7, Iss. 4, pp. 203–212
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0101



4 Manual testing of healthcare policies

Notwithstanding Custodix experience, the testing of the
XACML PDP remained an error-prone and effort
consuming activity, because XACML is not conceived for
human manipulation. This implies the necessity of
automation, so to drastically decrease the testing time and
effort. For testing the two-levels PDP presented in
Section 2, Custodix policies were: ‘create-document’,
‘read-document’, ‘delete-document’, ‘read-information-unit’,
‘read-patient, dashboard’, that specify the creation of a
document in a patient record, the reading of a document,
the deletion of a document from a patient record, the
reading of a document content, the verification whether the
patient has documents in the repository, the access for
setting and changing a policy, respectively. Table 1
provides the number of rules, conditions, subjects,
resources, actions and functions (columns 1, 2, 3, 4, 5, 6,
respectively) characterising the considered policies.
For each of these policies, a test suite was manually derived

and executed on the Application PDP and results were
collected. For this activity Custodix did not follow a
systematic approach; test requests were ad-hoc derived
either exploiting the domain knowledge and the expertise of
the involved personnel, or randomly generated using the
values of the policy itself. Approximately, for each policy
of Table 1 a test plan of around ten test requests was
derived with the only exception of the ‘dashboard’ for
which 30 test requests were considered. Each test request
was then processed on the Application PDP. The overall
testing process, from the test derivation to the test
execution, took three working days.
Test results evidenced that all requests manually derived

were successfully executed, which led Custodix to the
consideration that the Application PDP correctly managed
the users access.

5 X-CREATE test strategies

In the previous works [3–5] we addressed the automatic
derivation of XACML requests proposing three main testing
strategies based on a combinatorial approach of the values
taken from the policy. Specifically, we defined: the ‘Simple
Combinatorial’ testing strategy [4] that derives a request
for each simple combination of the policy values; the
‘XPT-based’ testing strategy [3] that generates requests
using the structures obtained applying the ‘XPT’ strategy
[7] to the XACML Context Schema [2], and finally an
improvement of the ‘XPT-based’ strategy, called
‘Incremental XPT’ [4], able to reduce the number of
generated requests.
Analysing the previous proposed strategies [4, 5], we

noticed an impact of the policy specification on the
effectiveness of the derived test suites. In particular, the

‘Simple Combinatorial’ was not able to detect situations
where the satisfiability of the policy rules depends
simultaneously on the values of more than one subject,
resource, action or environment. The ‘XPT-based’ strategy
and the ‘Incremental XPT’ have a limited variability in the
request structures used for test case derivation, this not
always satisfies the complexity of the policy structure.
In this section we present a new test strategy for the

automatic derivation of XACML requests, called ‘Multiple
Combinatorial’, which overcomes the limitations of the
already presented strategies.
We compare the fault-detection effectiveness of the

‘Multiple Combinatorial’ with that of ‘Incremental XPT’
strategy, which is currently the one that has been proved to
be more effective and performing with respect to the
different proposals [3–5, 8]. Both the strategies have been
implemented into the X-CREATE tool [http://labse.isti.cnr.
it/tools/xcreate] [4, 5]. Details about the two test strategies
and their comparison are summarised in the next sections.

5.1 Multiple combinatorial

The ‘Multiple Combinatorial’ strategy relies on a
combinatorial approach [9]. In particular, for each policy,
four sets are generated, the ‘SubjectSet’, ‘ResourceSet’,
‘ActionSet’ and ‘EnvironmentSet’, containing the values of
elements and attributes of the subjects, resources, actions
and environments, respectively. Specifically, a subject
entity is a combination of the values of <ATTRIBUTEID>
and <DATATYPE> attributes and the value of the
<ATTRIBUTEVALUE> element of the ‘SubjectSet’ set.
Resource, action, and environment entities are similarly
derived considering the ‘ResourceSet’, ‘ActionSet’ and
‘EnvironmentSet’ values. Random entities are also included
in each set so that the resulting test plan could also be used
for robustness and negative testing purposes. For instance,
in the ‘ResourceSet’ a random entity for the resource is one
having a random value (not specified in the policy) for the
<ATTRIBUTEVALUE> element. An example of random
value is R:[B@1af7c57:3 of line 5 in Table 4.
We define for each set S ∈ {SubjectSet, ResourceSet,

ActionSet, EnvironmentSet}:

† The power set of S, called P(S), as the set of all possible
subsets of S.
† The cardinality of P(S) as #P(S) = 2n, where n is the
cardinality of S.
† The ‘subset entity’ as each element in P(S). For instance,
the element is called ‘subject subset’ if S = SubjectSet.

The possible exponential cardinality of P(S) is reduced by
fixing the number of its subset entities. Indeed the necessary
condition for a XACML request to be applicable on a field of
the XACML policy (rule, target, condition) is that this request

Table 1 Healtcare policies data and test sets

#Rule #Cond. #Sub. #Res. #Act #Funct. Policy #Req. by X-CREATE #Req. additional #Reduced test suite

3 2 1 2 1 3 create-document 24 2 14
4 3 2 4 1 3 read-document 90 4 22
3 2 1 3 1 3 delete-document 40 3 14
2 1 0 2 1 2 read-information-unit 12 1 10
4 3 2 4 1 3 read-patient 90 4 21
6 5 3 3 0 4 dashboard 300 6 37

www.ietdl.org

IET Softw., 2013, Vol. 7, Iss. 4, pp. 203–212 205
doi: 10.1049/iet-sen.2012.0101 & The Institution of Engineering and Technology 2013

http://labse.isti.cnr.it/tools/xcreate
http://labse.isti.cnr.it/tools/xcreate
http://labse.isti.cnr.it/tools/xcreate
http://labse.isti.cnr.it/tools/xcreate
http://labse.isti.cnr.it/tools/xcreate
http://labse.isti.cnr.it/tools/xcreate
http://labse.isti.cnr.it/tools/xcreate


simultaneously includes all the entities that are specified in
that policy field. Thus the XACML policy provides the
minimum and maximum number of entities of the same
type that have to be included in a request. For instance, if
in a XACML policy there is never a condition or a target
in which not less than two and not more than three
subject entities are required for its evaluation, the minimum
and maximum number of subject entities is 2 and 3,
respectively. We use these numbers to (optionally) decrease
the subject subsets.
The test requests are then generated by combining the

subject, resource, action and environment subsets as in the
following:

† apply the pairwise combination to cover all pairs (a, b)
where a∈ A, b∈ B such that A, B∈ {P(SubjectSet),
P(ResourceSet), P(ActionSet), P(EnvironmentSet)} and
A≠ B, we obtain the PW set;
† similarly apply the threewise, to cover all triples (a, b, c)
where a∈ A, b∈ B and c ∈C, such that A, B, C ∈
{P(SubjectSet), P(ResourceSet), P(ActionSet),
P(EnvironmentSet)} and A≠ B≠C, we obtain the TW set;
† apply the fourwise, that is all possible combinations of the
subject subsets, resource subsets, action subsets and
environment subsets, we obtain the FW set.

Because the inclusion property is PW⊆ TW⊆ FW,
duplicated combinations have been eliminated considering
the following sets: PW called ‘Pairwise’, TW\PW called
‘Threewise’ and FW\(TW ∪ PW) called ‘Fourwise’.
Considering first Pairwise set, then Threewise set and

finally Fourwise set, for each combination a XACML
request containing the subset entities is generated. The
maximum number of requests derived by this strategy is
equal to the cardinality of FW set.

5.2 Incremental XPT

For aim of completeness, we shortly summarise the steps of
the ‘Incremental XPT’ strategy referring [4] for further
details. The strategy consists of three main steps:

1. Intermediate-request generation: Given the XACML
Context Schema [2], a set of XML instances (729
structurally different intermediate requests) is generated by
applying a variant of the Category Partition (CP) method
[10] and traditional boundary conditions;
2. Policy-under-test analysis: As for ‘Multiple Combinatorial’
the sets ‘SubjectSet’, ‘ResourceSet’, ‘ActionSet’,
‘EnvironmentSet’ are defined from the analysis of the policy;
3. Request values assignment: The combinations of subject,
resource, action and environment entities (for entities
definition see Section 5.1) are taken one by one so to
completely fill the set of the generated intermediate requests.

5.3 Comparison of test strategies

We compare ‘Multiple Combinatorial’ and ‘Incremental
XPT’ strategies in terms of fault-detection capability. For
the comparison we used (see Table 3) eight XACML
policies (specifically demo-5, demo-11, demo-26 taken
from the Open Source repository software Fedora [11], one
of the repositories used within the TAS3 project, and five
policies released for another pilot application of the TAS3
project).
To measure fault-detection, we applied mutation analysis

[12], that is a standard technique to assess the effectiveness
of a testing approach. The program under test is modified in
order to produce a set of mutants, each containing one
fault. Each test case is executed on the original program
and its mutants, then outputs are collected: if the mutant’s
output is different from the original program’s one, the fault
is detected and the mutant is said to be killed.
We generated for each policy a set of mutants (see second

column of Table 3) by considering the mutation operators for
XACML policies defined in [13]. These operators, listed in
Table 2, introduce syntactic faults, by mutating the
predicates for the target and condition elements, and also
emulate semantic faults, by modifying the logical constructs
of the policies. We refer to [13] for their detailed description.
The requests obtained by the ‘Multiple Combinatorial’ and

those obtained by ‘Incremental XPT’ have been executed on
each policy and its mutants. The percentage of mutants killed
by a set of test requests is taken as a measure of fault-detection
effectiveness of the two strategies.

Table 2 Mutation operators [13]

ID Description

PSTT policy set target true
PSTF policy set target false
PTT policy target true
PTF policy target false
RTT rule target true
RTF rule target false
RCT rule condition true
RCF rule condition false
CPC change policy combining algorithm
CRC change rule-combining-algorithm
CRE change rule effect

Table 3 Mutant-kill ratios achieved by test suites of ‘Multiple Combinatorial’ and ‘Incremental XPT’

Multiple Combinatorial Incremental XPT

TSEff TSDecr TSEff TSDecr

Policy # Mut. # Req. Mut. Kill, % # Req. Mut. Kill, % # Req. Mut. Kill, % # Req. Mut. Kill, %

demo-5 23 210 100 210 100 729 100 210 100
demo-11 22 100 100 100 100 729 100 100 100
demo-26 17 40 94.12 40 94.12 729 94.12 40 88.23
student-application-1 15 40 93.75 40 93.75 729 93.75 40 93.75
student-application-2 15 368 93.75 368 93.75 729 93.75 368 93.75
university-admin-1 20 5400 95.24 729 76.19 729 95.24 729 95.24
university-admin-2 20 5400 95.24 729 76.19 729 95.24 729 95.24
university-admin-3 20 4636 95.24 729 76.19 729 95.24 729 95.24

www.ietdl.org

206 IET Softw., 2013, Vol. 7, Iss. 4, pp. 203–212
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0101



In the first experiment, we generated for ‘Multiple
Combinatorial’ and ‘Incremental XPT’ the maximum
number of derivable requests. The third and fourth columns
of Table 3 report the number of requests executed and the
percentage of mutants detected using ‘Multiple
Combinatorial’, whereas the seventh and eighth show the
same data for the test suites derived with ‘Incremental
XPT’. From the obtained results we can conclude that the
effectiveness of ‘Multiple Combinatorial’ strategy is
generally equal to that of ‘Incremental XPT’.
In the second experiment we considered the possibility of

reducing the test suites evaluating the obtained fault
detection. If the number of derivable requests of ‘Multiple
Combinatorial’ is higher than 729, we limited this number
to 729; otherwise if the number of requests of ‘Multiple
Combinatorial’ is below 729 we adopt this number as a
bound for ‘Incremental XPT’. The fifth and sixth columns
of Table 3 report the number of requests executed and the
percentage of mutants detected using ‘Multiple
Combinatorial’ whereas the ninth and tenth show the same
data for the test suites derived with ‘Incremental XPT’.
From the observed results we can draw the following

conclusions:

† Limiting the ‘Incremental XPT’ to the ‘Multiple
Combinatorial’ in general does not compromise the
performance (Table 3 from the second to the sixth row).
Only in case of ‘demo-26’ there is a loss in fault-detection
effectiveness of the ‘Incremental XPT’: ‘Multiple
Combinatorial’ reached 94.12 against 88.23 of the
‘Incremental XPT’. In particular, the cardinality of the
‘Multiple Combinatorial’ test set could be considered as a
good bound (stopping criterion) for the ‘Incremental XPT’.
† Limiting the ‘Multiple Combinatorial’ to the ‘Incremental
XPT’ in general compromises the performance (Table 3 from
the seventh to the ninth row).

As general guideline the ‘Multiple Combinatorial’ strategy
can be selected for test case generation without an evident
loss in terms of fault-detection effectiveness when the
cardinality of the derived test plan is lower than the
maximum cardinality of the ‘Incremental XPT’ (i.e. 729).
For aim of completeness we point out that the X-CREATE

tool, implementing the presented testing strategies, checks
the correctness of the XACML policy file with respect to
the XACML Policy Schema [2]. It is out of scope of the
presented testing strategies dealing with the syntactic
correctness of the values expressed in the policy. Thus we
assume that the policy values have not syntactic errors.

6 Fully automated testing

In this section we describe the automatic test plan derivation
for the Application PDP adopted by Custodix. In particular,
CNR group finalised the definition of the automated testing
process to be adopted inside Custodix in two rounds as
described below.

6.1 First round: Test suites execution and results
analysis

By means of X-CREATE, the selection guideline defined in
Section 5.3 was applied to each policy of Table 1. For all
policies, the ‘Multiple Combinatorial’ was the selected
strategy and it was used for the derivation of the test set
(Table 1 (eighth column) reports the cardinality of the test
set for each policy). Custodix then executed each test set on
the Application PDP and provided CNR group with the
obtained results. The analysis of these data evidenced that:

† The X-CREATE test plan contained specific test requests
useful for negative testing. These requests were derived
by considering the subset entities including random values

Table 4 Test suite for ‘create-document’ policy and its PDP results

Row Action Resource-type Central-pdp-decision hcp-type Application PDP result

1 create documententry Permit physician Permit
2 create documententry Permit R:[B@1c634b9:2 Permit
3 create documententry physician Permit
4 create documententry R:[B@1c634b9:2 Indeterminate
5 create R:[B@1af7c57:3 Permit physician NotApplicable
6 create R:[B@1af7c57:3 Permit R:[B@1c634b9:2 NotApplicable
7 create R:[B@1af7c57:3 physician NotApplicable
8 create R:[B@1af7c57:3 R:[B@1c634b9:2 NotApplicable
9 create R:[B@1af7c57:3 documententry physician Permit
10 create R:[B@1af7c57:3 documententry R:[B@1c634b9:2 Indeterminate
11 create Permit physician NotApplicable
12 create Permit R:[B@1c634b9:2 NotApplicable
13 R:[B@c5da6:2 documententry Permit physician NotApplicable
14 R:[B@c5da6:2 documententry Permit R:[B@1c634b9:2 NotApplicable
15 R:[B@c5da6:2 documententry physician NotApplicable
16 R:[B@c5da6:2 documententry R:[B@1c634b9:2 NotApplicable
17 R:[B@c5da6:2 documententry R:[B@1af7c57:3 physician NotApplicable
18 R:[B@c5da6:2 R:[B@1af7c57:3 Permit physician NotApplicable
19 R:[B@c5da6:2 R:[B@1af7c57:3 Permit R:[B@1c634b9:2 NotApplicable
20 R:[B@c5da6:2 R:[B@1af7c57:3 physician NotApplicable
21 R:[B@c5da6:2 R:[B@1af7c57:3 R:[B@1c634b9:2 NotApplicable
22 R:[B@c5da6:2 R:[B@1af7c57:3 documententry R:[B@1c634b9:2 NotApplicable
23 R:[B@c5da6:2 Permit physician NotApplicable
24 R:[B@c5da6:2 Permit R:[B@1c634b9:2 NotApplicable
additional test cases
25 create documententry Deny
26 create documententry Permit Permit

www.ietdl.org

IET Softw., 2013, Vol. 7, Iss. 4, pp. 203–212 207
doi: 10.1049/iet-sen.2012.0101 & The Institution of Engineering and Technology 2013



(see Section 5). This kind of requests were only partially
included in the manual test derivation and resulted useful
for forcing the Application PDP to deal with not
conventional/partially wrong access.
† Because the ‘Multiple Combinatorial’ test strategy took in
consideration the combinations of all subset entities of the
policy, the derived test requests provided a more specific
and accurate test plan. Even when the execution of the
requests did not reveal errors in the Application PDP, an
increase in the confidence on the correct performance of
this engine was experienced.

As an example, we show in Table 4 the results obtained
by the execution of the test plan for the ‘create-document’
policy (see Listing 1). Specifically, the second column
represents the <ATTRIBUTEVALUE> values associated
to each <ATTRIBUTEID> contained in the ‘ActionSet’,
the third and fourth those of the ‘ResourceSet’
(associated to ‘resource-type’ and ‘central-pdp-decision’
<ATTRIBUTEID>, respectively) and the fifth those of the
‘SubjectSet’. The random values are those specified with
the prefix ‘R:[B@’. The last column contains the evaluation
of the requests on the Application PDP.

Listing 1 Create-document policy

www.ietdl.org

208 IET Softw., 2013, Vol. 7, Iss. 4, pp. 203–212
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0101



Once executed the test plan of each policy, the CNR group
further investigated if the generated XACML requests could
cover all the policy verdicts so to guarantee a complete
testing of all the possible behaviours of the Application
PDP. This analysis evidenced that for ‘create-document’,
‘read-document’, ‘delete-document’, ‘read-information-unit’
and ‘read-patient policies’ the ‘Deny’ verdict was never
covered. In addition, some of the test requests executions
provided an ‘Indeterminate’ result. In particular, for the
‘create-document’ policy (in Listing 1), executing the 24
test cases derived by the ‘Multiple Combinatorial’ strategy,
the obtained results were: ‘four Permit’, ‘two Indeterminate’
and ‘18 NotApplicable’ as shown in Table 4. However, in
Listing 1 the ‘DenyByDefault’ rule (line 28) has a ‘Deny’
effect that was not covered by the test suite.
Moreover, the PDP result associated to the request of

Listing 2 (see tenth row of Table 4) is associated with an
‘Indeterminate’ result [The given error message is ‘urn:
oasis:names:tc:xacml:1.0:function:string-one-and-only expects
a bag that contains a single element, got a bag with 0
elements’.]. This is because the evaluation of the condition
function (line 33 of Listing 1) of the ‘pdpDecision’ rule
requires that in the request there is a resource with an
<ATTRIBUTEID> equal to ‘central-pdp-decision’ and that
the associated <ATTRIBUTEVALUE> must be unique.
However, the request of Listing 2 does not satisfy this
constraint. The ‘Indeterminate’ result in this case is because
of the semantics of the ‘permit-overrides’ rule-combining-
algorithm (see details about the rule-combining-algorithms
in Section 3).
The combinatorial approach implemented in ‘Multiple

Combinatorial’ does not take into account the semantics of
the rule-combining-algorithm and that of the XACML
condition functions. Moreover, the ‘Multiple Combinatorial’
strategy includes only one random entity where the
random value is associated to a randomly chosen
<ATTRIBUTEID> (details about entities definition are
specified in Section 5). For instance, for the

‘create-document’ policy the R:[B@1af7c57:3 random
value has been associated to the ‘resource-type’
<ATTRIBUTEID> and not to the ‘central-pdp-decision’
<ATTRIBUTEID>. Then, the only entity containing the
‘central-pdp-decision’ <ATTRIBUTEID> has the ‘Permit’
value (see column fourth of Table 4). For this, the obtained
test suite does not contain a request that makes false
the condition of the ‘pdpDecision’ rule and then gives the
possibility to obtain the ‘Deny’ result according to the
semantics of the ‘permit-overrides’ rule-combining-algorithm
and the result of the evaluation of the other policy rules.

6.2 Second round: Increasing test suites

To guarantee the coverage of all possible policy verdicts
we increased the test suites derived by the ‘Multiple
Combinatorial’ strategy with additional test cases. These
test cases are able to guarantee decision coverage for the
policy conditions. Specifically, following the Category
Partition approach [10] we add the test cases that return a
TRUE and FALSE evaluation of each rule condition, if
they are not already included into the test set. In ninth
column of Table 1 we report the number of additional test
cases for each policy.
We executed the improved test suites derived from all

policies of Table 1 on the Application PDP and verified that
for each policy the ‘Deny’ verdict was covered. For
instance, for the ‘create-document’ policy we added two
requests (25th and 26th rows of Table 4), the one that gives
a ‘Deny’ result is shown in Listings 3.

7 Manual against automated testing

The comparison between the manual and the automated test
plan has been carried out considering the following aspects:

† The time necessary for test plan derivation and execution.
† The cardinality of the test suite.

Listing 2 A request for create-document policy

www.ietdl.org

IET Softw., 2013, Vol. 7, Iss. 4, pp. 203–212 209
doi: 10.1049/iet-sen.2012.0101 & The Institution of Engineering and Technology 2013



† The effectiveness in finding problems or errors in the
Application PDP.
† The coverage in terms of PDP verdicts.

The adoption of a tool as X-CREATE provided important
savings in terms of effort and time for Custodix: manual
test plan took three working days whereas the automated
derivation of test suites took less than 20 min (for test cases
derivation and execution). This is even more evident
considering the cardinality of the test requests in each test
plan. The manual test plan included around 80 test cases
whereas X-CREATE around 570, thus a test plan seven
times bigger in number is executed in negligible time. Note
that the test plan analysis revealed that all test cases
manually generated by Custodix personnel were included in
the requests generated by X-CREATE. However, the
manual test plan revealed strong expertise of the developers
and their profound knowledge of the application.
Considering the test effectiveness, the X-CREATE test

plan revealed to be an extremely important contribution.
Thanks to the execution of some of the X-CREATE
requests, Custodix discovered some errors in the
management of the access decision from the Application
PDP. In particular, the Application PDP decision resulted in
contrast with that provided by the Central PDP and the
verdict of the Application PDP overwrote that of the
Central PDP. This problem, which never emerged before
with the manual test execution, represented a vulnerability
of the two-levels PDP and has been promptly corrected by
Custodix.
Finally, we analysed the coverage of the verdicts of the two

test plans. The manual test suites did not guarantee the
coverage of all policy verdicts because the ‘Deny’ and
‘Indeterminate’ results were never experienced. With the
improvements described in Section 6.2 of the X-CREATE
test strategy, the coverage of all policy verdicts is assured.
This increased the confidence in the goodness of the
X-CREATE test plan.

8 Experience feedback and X-CREATE
improvement

The weakest point in the manual and automated test process
remained the analysis of the verdicts provided by the
Application PDP. Since Custodix did not have an
automated facility (usually called oracle), this analysis has
been performed manually. The estimation provided for this
activity was an average of 2 min for each verdict. Thus,
even if the test effectiveness was improved by the automatic
test plan, the advantage in effort reduction was reduced: the
complete test plan execution, from the test case generation
to the verdicts analysis, took three and half days for the
manual test plan and two and half days for the automatic one.
Custodix and the CNR group worked together to define a

new testing approach, specifically conceived for reducing
the X-CREATE test suites guaranteeing their effectiveness
in terms of verdicts coverage. The approach has been
developed exploiting the peculiarities of the healthcare
testing scenario presented in Fig. 1. As evidenced in this
figure, the test cases derived by X-CREATE are executed
only on the Application PDP; the Central PDP behaviour is
simulated with the value of the <ATTRIBUTEVALUE>
associated to the ‘central-pdp-decision’ <ATTRIBUTEID>
contained in the policies of Table 1. Specifically, if a
request executed on the Application PDP is applicable to
the policy target, this simulates that the same request
has been executed also on the Central PDP and the
corresponding result has been returned [This result is
specified as the value associated to the ‘central-
pdp-decision’ <ATTRIBUTEID> contained in the
‘pdpDecision’ rule of the healthcare policies.]. For instance,
in the ‘pdpDecision’ rule of the policy in Listing 1, the
value ‘Permit’ of the <ATTRIBUTEVALUE> represents the
result of the Central PDP execution. If a request executed
on the Application PDP is not applicable to the policy
target, this simulates either that the execution of the Central
PDP has been bypassed (for instance for an intrusion

Listing 3 An additional request for create-document policy

www.ietdl.org

210 IET Softw., 2013, Vol. 7, Iss. 4, pp. 203–212
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0101



attack) or that an error occurred in the Central PDP execution.
For instance, the requests containing values specified in rows
from fifth to eighth in Table 4 give NotApplicable because all
include values of ‘resource-type’ that do not satisfy the policy
target. Considering this specific situation, the following
reduction criteria have been identified:

† A set of requests is useful if it contains the only values of
the policy target that make it Applicable combined with the
values of the attributes of the policy rules. These requests
allow for the testing of the Application PDP in all cases in
which the Central PDP decision has been given and
depending on the combination of the values of the attributes
of the policy rules, the Central PDP decision could be
overridden by that of the Application PDP.
† A set of requests is useful if it contains all the possible
combinations of the policy target attributes that make the
target NotApplicable. These requests allow for the testing
of the Application PDP in all cases in which the Central
PDP decision is wrong or has been bypassed.

Referring to the test suite of Table 4 we mark with grey
colour the rows corresponding to the requests included in
the reduced test suite. Thus all requests making the target
Applicable are included in the reduced test suite (for
instance the first four grey rows). Moreover, only one
request containing each of the four possible combinations
of values of ‘resource-type’ and ‘action’ attributes is
included to make the policy target NotApplicable.
Considering for instance, the requests in the rows from fifth
to eighth, which have the same values for ‘action’ and
‘resource-type’ and the same Application PDP result, only
the fifth is included in the reduced test suite.
The possibility of creating a reduced test suite has been

added to X-CREATE to better satisfy the Custodix
exigences. We show in the last column of Table 1 the
cardinality of the reduced test suites.
After executing the reduced test suites we analysed the

obtained results and we observed that:

† The effectiveness of the reduced test suites in terms of
coverage verdicts is preserved.
† The cardinality of the reduced test suites for some policies
(for instance the ‘dashboard’ policy in the last row of Table 1)
is greatly decreased.
† The analysis time of the verdicts of all reduced test suites
took around 3 h.

This positive result has persuaded Custodix to introduce
X-CREATE in the two-levels PDP testing process reducing
considerably the time required for providing access control
management, and improving the competitiveness of
Custodix in developing data protection solutions for
eHealth domain.
For the CNR researchers, this experience highlighted

several weaknesses of the tool when dealing with the
semantics of the rule-combining-algorithms and that of the
XACML functions contained in the policy conditions. Test
cases generation strategies focused on purely combinatorial
approaches miss the semantics of these functions and that
of the combining-algorithms making not accurate the testing
results. We improved X-CREATE with a functionality
taking into account the semantics of the functions and the
combining-algorithms defined in the healthcare policies.

9 Related work

Testing of PDP is a critical issue and the complexity of the
XACML language specification prevents the manual
specification of a set of test cases capable of covering all
the possible interesting critical situations or faults. This
implies the need of automated test cases generation.
Some existing approaches consider the policy values in the

test cases derivation. In particular, [8] presents the Targen tool
that derives the set of requests satisfying all the possible
combinations of truth values of the attribute id-value pairs
found in the subject, resource and action sections of each
target included in the policy under test. A different approach
is provided by Cirg [14] that is able to exploit
change-impact analysis for test cases generation starting
from policies specification. In particular, it integrates the
Margrave tool [15] which performs change-impact analysis
so to reach high policy structural coverage. The X-CREATE
tool [3–5] exploits the potentiality of the XACML Context
Schema defining the format of the test inputs, and also
applies combinatorial approaches to the policy values. In [3]
a comparison between X-CREATE and the tool Targen [8]
has been performed in terms of fault-detection capability,
and the obtained results showed that X-CREATE has a
similar or superior fault-detection effectiveness, and yields a
higher expressiveness, as it can generate requests showing
higher structural variability. In [4, 5] we present the
advantages in terms of fault-detection effectiveness of the
testing strategies implemented into X-CREATE tool. Our
proposal here consists of a new testing strategy and its
application for testing the XACML PDP used by a
real-world Trusted Service Provider in the healthcare domain.
The authors of [16] address testing of the XACML PDP by

running different XACML implementations for the same test
inputs and detecting not correctly implemented XACML
functionalities when different outputs are observed. Different
from our proposal, this approach randomly generates requests
for a given policy and requires more PDP implementations
for providing an oracle facility by means of a voting
mechanism. Our focus is on test cases derivation for PDP
testing and not on oracle definition. A different solution for
testing a PDP is presented in [17] where the authors provide a
fault model and a test strategy able to highlight the problems,
vulnerabilities and faults that could occur during the PDP
implementation. The authors also provide a testing framework
for the automatic generation of a test suite that covers the
fault model. This approach deals with a specific authorisation
system supporting usage control and history-based control
and is specifically designed for PolPA language.
Other approaches target the testing of XACML policy and

are based on the representation of policy implied behaviour
by means of models [18–21]. Usually, these approaches
provide methodologies or tools for automatically generating
abstract test cases that have to be then refined into concrete
requests for being executed.

10 Conclusions

We have proposed a testing strategy implemented into the
X-CREATE tool to automatically derive a set of requests
starting from a XACML policy. The proposed strategy
guarantees the derivation of a set of requests meaningfully
distributed over the input domain. In the reported
experience X-CREATE has been used for deriving test sets
from Custodix health policies and for providing an

www.ietdl.org

IET Softw., 2013, Vol. 7, Iss. 4, pp. 203–212 211
doi: 10.1049/iet-sen.2012.0101 & The Institution of Engineering and Technology 2013



automated test plan for the two-levels PDP. This experience
has been a win–win endeavor for both the involved
industrials and the researchers. The noticeable
improvements in terms of time and effectiveness of the
testing phase have convinced Custodix of the opportunity to
introduce the X-CREATE tool into their deployment
workflow. On the other side, for the CNR researchers the
experimentation of the tool with the Custodix health
policies paved the way for many improvements of the tool.
Based on the results, we intend to improve X-CREATE
with more effective XACML test derivation strategies
focused on the application scenario constraints.

11 References

1 TAS3 Project. Trusted Architecture for Securely Shared Services. http://
www.tas3.eu/

2 OASIS: ‘eXtensible Access Control Markup Language (XACML)
Version 2.0, February 2005. https://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=xacml#XACML20

3 Bertolino, A., Lonetti, F., Marchetti, E.: ‘Systematic XACML request
generation for testing purposes’. Proc. SEAA, September 2010, pp. 3–11

4 Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.: ‘Automatic
XACML requests generation for policy testing’. Proc. ICST, April
2012, pp. 842–849

5 Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.: ‘The X-CREATE
framework: a comparison of XACML policy testing strategies’. Proc.
WEBIST, April 2012, pp. 155–160

6 Custodix. https://www.custodix.com/
7 Bertolino, A., Gao, J., Marchetti, E., Polini, A.: ‘Automatic test data

generation for XML schema-based partition testing’. Proc. AST, May
2007, pp. 10–16

8 Martin, E.: ‘Automated test generation for access control policies’. Proc.
OOPSLA, October 2006, pp. 752–753

9 Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: ‘The AETG
system: an approach to testing based on combinatiorial design’, IEEE
Trans. Softw. Eng., 1997, 23, (7), pp. 437–444

10 Ostrand, T.J., Balcer, M.J.: ‘The category-partition method for
specifying and generating functional tests’, Commun. ACM, 1988, 31,
(6), pp. 676–686

11 FedoraCommons. Fedora Commons Repository Software. http://www.
fedora-commons.org/

12 DeMillo, R.A., Lipton, R.J., Sayward, F.G.: ‘Hints on test data selection:
help for the practicing programmer’, Computer, 1978, 11, (4), pp.
34–41

13 Martin, E., Xie, T.: ‘A fault model and mutation testing of access control
policies’. Proc. WWW, May 2007, pp. 667–676

14 Martin, E., Xie, T.: ‘Automated test generation for access control
policies via change-impact analysis’. Proc. SESS, May 2007, pp. 5–12

15 Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.:
‘Verification and change-impact analysis of access-control policies’.
Proc. ICSE, May 2005, pp. 196–205

16 Li, N., Hwang, J., Xie, T.: ‘Multiple-implementation testing for
XACML implementations’. Proc. TAV-WEB, July 2008, pp. 27–33

17 Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Martinelli, F.,
Mori, P.: ‘Testing of PolPA authorization systems’. Proc. AST, June
2012, pp. 8–14

18 Le Traon, Y., Mouelhi, T., Baudry, B.: ‘Testing security policies: going
beyond functional testing’. Proc. ISSRE, November 2007, pp. 93–102

19 Mallouli, W., Orset, J.-M., Cavalli, A., Cuppens, N., Cuppens, F.: ‘A
formal approach for testing security rules’. Proc. SACMAT, June
2007, pp. 127–132

20 Li, K., Mounier, L., Groz, R.: ‘Test generation from security policies
specified in or-BAC’. Proc. COMPSAC, July 2007, pp. 255–260

21 Pretschner, A., Mouelhi, T., Le Traon, Y.: ‘Model-based tests for access
control policies’. Proc. ICST, April 2008, pp. 338–347

www.ietdl.org

212 IET Softw., 2013, Vol. 7, Iss. 4, pp. 203–212
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0101

http://www.tas3.eu/
http://www.tas3.eu/
http://www.tas3.eu/
http://www.tas3.eu/
http://www.tas3.eu/
http://www.tas3.eu/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml#XACML20
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml#XACML20
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml#XACML20
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml#XACML20
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml#XACML20
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml#XACML20
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml#XACML20
https://www.custodix.com/
https://www.custodix.com/
https://www.custodix.com/
https://www.custodix.com/
https://www.custodix.com/
http://www.fedora-commons.org/
http://www.fedora-commons.org/
http://www.fedora-commons.org/
http://www.fedora-commons.org/
http://www.fedora-commons.org/
http://www.fedora-commons.org/


Copyright of IET Software is the property of Institution of Engineering & Technology and its
content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individual use.


	1 Introduction
	2 Testing scenario
	3 XACML
	4 Manual testing of healthcare policies
	5 X-CREATE test strategies
	6 Fully automated testing
	7 Manual against automated testing
	8 Experience feedback and X-CREATE improvement
	9 Related work
	10 Conclusions
	11 References

