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Abstract: The authors investigate the performance of multiple-input–multiple-output multicarrier direct sequence code division
multiple access system operating over arbitrarily and equally correlated η–µ fading channels in terms of average bit error
probability and average symbol error probability. Closed form expressions for average error probability using moment
generating function-based approach are derived and expressed in terms of Lauricella’s multivariate hypergeometric functions.
Furthermore, based on numerical results, they observe that the performance of the system improves when the number of
multipath clusters increases as well as the number of subcarriers (frequency diversity). Similarly, substantial enhancement in
system performance is observed due to the effect of spatial diversity. Finally, they verify the results via Monte Carlo
simulation-based method to support the accuracy of the analytical approach and also compare with already published ones.

1 Introduction

In wireless communication systems, deployment of multiple
antennas at both the transmitter and receiver side improves
the channel capacity and decreases the average error
probability of the received signal as well. Furthermore, the
system performance is enhanced if the spacing between two
adjacent antennas is not too close to yield correlation
between the spectra of the received signals. In practice, the
effect of correlation on the spectra of the received signal
exist but can only be minimised by setting an appropriate
spacing between the adjacent antennas of the wireless
communication system.
The incorporation of multiple antennas into the broadband

wireless communication systems such as multicarrier direct
sequence code division multiple access (MC DS CDMA)
system will increase the channel capacity and reduce the
effect of multipath fading [1]. MC DS CDMA system is a
wireless communication system that is formed out of the
combination of direct sequence code division multiple
access (DS CDMA) and orthogonal frequency division
multiplexing [2]. This system inherits the advantages and
disadvantages of its constituents. The operation of MC DS
CDMA system in this particular case is based on time
domain but in other situations it can use both time domain
and frequency domain, respectively. In addition, the
transmitted data is first serial to parallel converted, each
data is assigned a spreading code and mapped to a number
of subcarriers. Therefore the signals are combined and then

transmitted. Furthermore, the signal modulation and
demodulation is carried out with the aid of inverse fast
Fourier transform (IFFT) and fast Fourier transform (FFT)
and DS CDMA assigns code to each signal [1]. Owing to
the application of multiple-input–multiple-output (MIMO)
systems to both sides of MC DS CDMA systems,
specifically at the receiving terminal, the envelopes of the
transmitted signals are likely to become correlated if the
spacing between adjacent antennas is not placed well to
avoid correlation. In this case, extensive research has been
done on this as supported by the publications outlined below.
In [3], the operation of an interleaved MC CDMA system

with MRC receiver over correlated Nakagami-m fading
channels was investigated in terms of bit error rate. The
authors employed probability density function (PDF)-based
approach to obtain the average bit error probability (ABEP).
Feng and Qin [4] explored the performance of MC CDMA
system with MRC diversity operating over correlated
Nakagami-m fading channels in terms of ABEP. The closed
form expressions for average error probability were
determined using moment generating function (MGF)-based
approach. The authors in [5] examined the performance of
MC CDMA system with equal gain combining diversity
technique working over correlated Nakagami-m fading
channels in terms of ABEP. They utilised expansion in
central difference method to calculate the ABEP of the
system. The operation of space-time block code (STBC)
MC CDMA system over independent and correlated fading
channels in likelihood receiver and linear receiver was

www.ietdl.org

IET Commun., 2014, Vol. 8, Iss. 17, pp. 2971–2983
doi: 10.1049/iet-com.2014.0046

2971
& The Institution of Engineering and Technology 2014



investigated [6]. The authors employed bit error rate as a
metric for performance evaluation. Xu and Milstein [7]
proposed a wireless communication system (multicarrier)
that reduces the effect of correlation among the subcarriers,
suppresses partial band interference and operates over
frequency selective Rayleigh fading channels. They used
ABEP to measure the performance of the system. In [8],
Elnoubi and Hashem explored the performance of MC DS
CDMA MIMO system with radio activated key entry
(RAKE) receiver operating over correlated Nakagami-m
fading channels in terms of ABEP. The authors used
numerical technique to evaluate the ABEP performance of
the system. The performance of cyclic diversity and STBC
MC CDMA system working over correlated Nakagami-m
fading channels in terms of average symbol error
probability (ASEP) was investigated in [9]. In this case, the
subcarriers of the system are considered to be correlated.
The closed form expressions for ASEP were obtained using
MGF-based approach and expressed in Gauss
hypergeometric and Appell’s hypergeometric functions,
respectively. Yang [10] studied the bit error rate
performance of the multiantenna MC DS CDMA system
over correlated time selective Rayleigh fading channels.
The space-time spreading technique based on the family of
orthogonal variable spreading factor code was proposed in
order to attain time diversity. He examined the performance
of multiantenna MC DS CDMA system operating over
correlated time selective Rayleigh fading channels in terms
of ABEP. The investigation and analysis of the performance
of MRC MC CDMA system based on minimum shift
keying modulation technique over independent and
correlated Nakagami-m and Rician fading channels in terms
of ABEP was carried out in [11]. In addition, the effect of
frequency offset was also considered. Asghari et al. [12]
explored the performance of the system based on
rectangular quadrature amplitude modulation (QAM)
modulation scheme over correlated η–μ fading channels in
terms of ASEP. The exact closed form expressions for
ASEP were determined using MGF-based approach and
expressed in Lauricella’s multivariate hypergeometric
functions. In [13], Subadar and Shu examined the operation
of an L-branch maximum ratio combining receiver system
over equally correlated η–μ fading channels in terms of
ABEP and outage probability. The effect of MIMO systems
on the performance of MC DS CDMA system operating
over independent identically distributed (i.i.d) η–µ flat
fading channels in terms of average channel capacity and
average error probability was investigated in [14].
As we observe from the samples of the empirical literature

review outlined above, the fading distributions utilised to
study the performance of MC DS CDMA systems working
over correlated fading channels are Rayleigh, Rician,
Nakagami-m and so forth but not including η–μ fading
distribution. In this paper, we examine the performance of
MC DS CDMA MIMO system operating over arbitrarily
and equally correlated η–μ fading channels in terms of
ABEP and ASEP, respectively. Closed form expressions for
average error probability are determined using MGF-based
approach. These expressions are expressed in Lauricella’s
multivariate hypergeometric functions. The derived
formulas are new.
The organisation of the remaining parts of this paper is as

follows. Section 2 describes the system and channel models,
respectively. In Section 3, derivation of MGF of the
instantaneous signal-plus-interference-noise ratio (SINR) is
carried out. In Section 4, the ABEP and ASEP for the

system operating over arbitrarily and equally correlated η–µ
fading channels are developed. Numerical examples
illustrating graphically the performance of the system and
discussions are presented in Section 5. Section 6 concludes
the paper.

2 System and channel model description

In this section, we assume that MC DS CDMAMIMO system
has Mt number of transmit antennas and Nr number of receive
antennas, respectively. Then, the channel between the
transmit antenna and the receive antenna pair is assumed to
be quasi-static with flat fading conditions. Similarly, we
presume the system operation depends on channel state
information available at the receiver, meanwhile the
transmitter employs STBC for the receiver to gain transmit
diversity. In this case, orthogonal MC DS CDMA system is
utilised to represent the class of MC DS CDMA system we
are examining in this work [1]. Thus, the input data is first
serial to parallel converted to substreams. Therefore the
symbol in each substream is spread in time domain and
then mapped to each subcarrier and Mt transmit antennas,
respectively. Hence, in each subcarrier, each signal is
modulated by invoking IFFT. In this way, the modulated
signals are all added together and transmitted. In addition,
we assume that the subcarriers are correlated if the
separation between two adjacent subcarriers is less that 1/Tc,
where Tc is the chip duration of the orthogonal spreading
code. Consequently, the envelopes of the received signals
will experience correlation which reduces the quality of the
signal at the receiving end. In this situation, we presume
that the transmitter has two antennas while the receiver has
Nr antennas. We also consider two symbols Sk1(t) and Sk1(t)
to be transmitted simultaneously using Alamouti-based
approach. Thus, Sk1(t) symbol is transmitted from antenna 1
and Sk2(t) symbol is also transmitted from antenna 2
simultaneously at the first time slot. Meanwhile, the
complex conjugate of −Sk2(t) is transmitted from antenna 1
and also the complex conjugate of Sk1(t) is transmitted from
antenna 2 simultaneously at the second time slot. Hence,
the condition of the channel between the transmitter and
receiver antennas pair is assumed to be frequency
non-selective fading. Therefore the transmitted signals by
user k can be expressed as [1]

Sk1(t) =
∑q
i=1

∑U
j=1

������
2P

MtU

√
ck1(t)b

k
1,i,j(t)cos 2pfijt + w1

ij

( )

Sk2(t) =
∑q
i=1

∑U
j=1

������
2P

MtU

√
ck2(t)b

k
2,i,j(t)cos 2pfijt + w2

ij

( ) (1)

where bk1,i,j(t) and bk2,i,j(t) are described as odd and even data
stream transmitted by user k and represented by the
expression

bk(t) =
∑1
n=−1

bk [n]PTs
(t − nTs) (2)

where bk[n]∈ (+1, −1) represents binary data sequence
modulating uth subcarriers, Ts is the symbol duration, PTs

(t)
is a rectangular pulse uniformly distributed in interval
[0, Ts). ck1(t) and ck2(t) denote spreading codes in time
domain for transmitter 1 and 2, respectively. The spreading
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code is expressed as

ck (t) =
∑1
n=−1

ck[n]c t − nTc
( )

(3)

where Tc is the chip duration, ck[n]∈ (+1, −1) with equal
probability and c(t) is a rectangular chip waveform in time
domain over the interval [0, Tc). U is the number of
subcarriers, q is the number of bits in the data stream, then
this data stream is converted from serial to parallel to the q
number of lower rate substreams where each is assigned a
time domain spreading code c(t) and is then transmitted by
a number of subcarriers to attain frequency diversity. P is
the transmitted power, fij is the subcarrier frequency of the
ith bit at jth subcarrier and fij is the phase introduced by
the multicarrier modulation. Specifically, the characteristics
of the channel do not change during one time slot or
symbol frame but can change after another interval of time
or another symbol frame. Since we are considering two
symbols to be transmitted using two transmit antennas
using Alamouti-based approach, the code rate for STBC is
one. Therefore the extension of the number of transmit
antennas from 2 upwards may also lead to the consideration
of the effects of other code rates for STBC such as 0.5 and
0.75, respectively.
In case of the channel existing between Mt transmit

antennas and Nr receive antennas, we assume that it is
frequency non-selective fading and the subcarriers of the
system are correlated. So the received signal envelope is
modelled as η–μ fading distribution [15]. Furthermore, the
impulse response for user k transmitting data over jth
subcarriers is given by

hkj (t) = ak
j d(t − tk) exp (−ick

j ) (4)

where α is an attenuation factor, t is the delay, δ(.) is the
Kronecker delta function and c is the phase shift.
Generally, α, t and c are assumed to be constant over two
symbols interval. Furthermore, tk for kth data is presumed
to be uniformly distributed over [0, Ts) interval. Now we
can revisit η–μ fading distribution. The η–μ fading
distribution is a generalised distribution that models short
term signal envelope variation in a non-line of sight
condition [15]. It includes Nakagami-q and Nakagami-m
distribution as particular cases. In this case, the received
signal comprises of cluster of multipath waves propagating
in a non-homogeneous environment. Hence, the in-phase
and quadrature components of the fading signal envelope
within each cluster are assumed to be independent of each
other and have different powers (format 1). Then, η is the
scattered power ratio between the in-phase and quadrature
components of each cluster of the multipath. Therefore, the
parameters h and H are expressed as a function of η,
h = (2 + η + η−1)/4 and H = (η−1− η)/4, 0 < η <∞ for format
1 [16]. On the other hand, the in-phase and quadrature

components within each cluster are assumed to have the
same powers and correlated with each other. Then, the
parameters h and H are expressed in terms of η fading
parameter as h = 1/(1− η2) and H = η/(1− η2), − 1 < η < 1
for format 2. Therefore the PDF of η–μ fading distribution
for both formats (1 and 2) in terms of envelope power is
given by [15]

f (g)= 2
��
p

√
mm+0.5hm

G(m)Hm−0.5gm+0.5g
m−0.5exp −2mhg

g

( )
Im−0.5

2mHg

g

( )
(5)

where μ = (E2(α2)/2Var(α2))(1 + (H/h)2), μ > 0 is the number
of multipath clusters, Γ(.) is the Gamma function defined as�1
0 tx−1e−t dt, Ix(.) is the modified Bessel function of the
first kind and order x, g is the average signal-to-noise ratio
(SNR), E(.) and Var(.) represent expectation and variance
operators and α is the signal envelope. In case of details
regarding η–μ distribution see [15].
The orthogonal MC DS CDMA MIMO system is

considered to support K asynchronous active users
communicating with the base station within a single cell.
Here, the number of subcarriers is the same as that of the
spreading factor (Ne = Ts/Tc), with the subcarriers being
correlated. Thus, the average power received from each user
at the base station is assumed to be the same. Therefore the
received signal is demodulated using FFT-based
multicarrier demodulation so as to obtain U number of
parallel stream similar to that transmitted [1]. So each data
stream is dispread to form a decision variable for each data
bit transmitted. For that reason, combining and detection of
the received data is performed and then parallel to serial
conversion is carried out to produce the original data at the
output. Hence, the received signal in the first time slot
interval is as in [17] (see (6))

Similarly, the received signal in the second time slot is (see (7))

where K represents the number of active users, n is the nth
number of the Nr receive antennas, hj1 and hj2 are channel
impulse response for transmitter 1 and 2 respectively,
f1
ij and f2

ij are the phases that are introduced during
modulation with respect to transmitter 1 and 2 and *
denotes complex conjugate. Then, nn1 and nn2 denote
additive white Gaussian noise (AWGN) modelled as i.i.d
complex Gaussian random variables with zero mean and
double sided power spectral density of N0/2.

3 Derivation of MGF of instantaneous SINR
at the receiver output

The MGF of the instantaneous SINR at the output of the
receiver is derived in this section. Basically, we employ (6)
and (7) to obtain SINR at the receiver output. The complex
conjugate of (7) is first obtained and expresses the results

rn1(t) =
∑K
k=1

∑q
i=1

∑U
j=1

Re

������
2P

MtU

√
ck1(t − tk)b

k
1,i,j(t − tk)h j1e

j(2pfij t+w1ij) + ck2(t − tk)b
k
2,i,j(t − tk)h j2e

j(2pfij t+w1ij)
( )( )

+ nn1 (6)

rn2(t) =
∑K
k=1

∑q
i=1

∑U
j=1

Re

������
2P

MtU

√
−ck∗1 (t − tk)b

k∗
2,i,j(t − tk)h j1e

−j(2pfij t+w2ij) + ck∗2 (t − tk )b
k∗
1,i,j(t − tk )h j2e

−j(2pfij t+w1ij)
( )( )

+ nn2 (7)
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with (6) in matrix form. In this case, expressions for the user
of interest, multiuser interference because of the same
subcarrier frequencies, multiuser interference because of
different subcarrier frequencies and noise engendered by
AWGN can be determined. Hence, multiuser interference
and noise are assumed as Gaussian random variables with
zero mean and can be approximated using standard
Gaussian approximation method. The detail analysis of the
derivation is in [14] and we note the final results as

g = gc
∑U
j=1

∑Mt

m=1

∑Nr

n=1

h jmn

∣∣∣ ∣∣∣2 (8)

where hjmn is the channel gain from jth subcarrier, mth
transmit antenna to nth receive antenna, γc is the total
variance, then, γjmn = γc|hjmn|

2, g jmn = gcE(|h jmn|2) is the
average SNR. Therefore we can further expressed the
instantaneous SINR as

g =
∑Nr

n=1

gn =
∑Nr

n=1

∑Mt

m=1

gmn =
∑Nr

n=1

∑Mt

m=1

∑U
j=1

g jmn (9)

where (9) is a simplified version of (8) in order to be easy to
determine the MGF of instantaneous SINR, γn, γnm and γnmj
represent instantaneous SINR on nth receive antenna, mth
transmit antenna and jth subcarrier, respectively. Hence,
γnmj models η–µ fading distribution. In this case, we
consider the system operating over Nr correlated receive

antennas. Suppose Xi

{ }NrMtU

i=1
is a set of NrMtU correlated

not necessarily identically distributed η–µ elements of the
in-phase components of the fading signal envelope with
parameters η and µ, respectively. Then, the correlation
coefficient between Xi and Xi′ in-phase components is [18]

rii′ = ri′i =
cov(Xi, Xi′ )�����������������
Var(Xi)Var(Xi′)

√ , 0 ≤ r ≤ 1 (10)

Similarly, {Yi}
NrMtU
i=1 is another set of correlated not

necessarily identically distributed η–µ elements of the
quadrature components of the fading signal envelope with
parameters η and µ, respectively. Thus, the correlation
coefficient between Yi and Yi′ is the same as in (10) but in
terms of Yi and Yi′. Furthermore, the envelope at the output
of the receiver is [12] RTR = XTX + YTY. The MGF of the
instantaneous SINR at the output of the receiver is as in
Appendix 1 (see (11))

In this case, we consider constant correlation model as a
special case, all channels are assumed to have the same
average SINR and same fading parameters η and µ [19],
that is, constant correlation across all the channels.
Consequently, the eigenvalues of the matrices F1 = Bjmn

Cxx
jmn and F2 = BjmnD

yy
jmn are given by Alouini et al. [18]

lx1 = s2
x (1− r), lx2 = s2

x 1+ (NrMtU − 1)r
( )

, that is, for

NrMtU− 1 fold zero, and for single zero, respectively, for
F1 and similarly for F2 as ly1 = s2

y (1− r), ly2 =
s2
y 1+ (NrMtU − 1)r
( )

.
In addition, we can now express the MGF of the SINR in

terms of eigenvalues expressions [19] (see (12))

On the other hand, in practice, the average SNR in each
receiver branches are different, therefore, using the
eigenvalues of F1 and F2, (11) can be written as

Fx+y(s) =
∏U
j=1

∏Mt

m=1

∏Nr

n=1

1

(1+ 2slxjmn)
mimn (1+ 2slyjmn)

m jmn
(13)

Therefore (13) represents a general form of the MGF of
instantaneous SINR at the receiver output with arbitrary
eigenvalues. Hence, suppose Mt = 1, U = 1, K = 1 and Nr = V
in [12], the multiplicities jxv and jyv each equal to 2 µ, then,
(13) diminishes to [12, Eq. (12)].

4 Average error probability analysis

In this section, we derive the average bit and ASEP of the
system using MGF-based approach in order to investigate
the system performance. The digital modulation format
employed is binary phase shift keying (BPSK), M-ary PSK
and square M-ary QAM (MQAM), respectively.

4.1 ABEP of BPSK modulation scheme

Here, we evaluate the ABEP of BPSK digital modulation
technique for the system operating over arbitrarily and
constant correlated η–µ fading channels. The conditional
error probability of coherent BPSK digital modulation
technique is given by [20]

Pb(g) = Q(
���
2g

√
) (14)

where Q(x) is the Gaussian Q-function. Then, the alternative
representation of Q(x) is expressed as [21]

Q(x) = p−1
∫0.5p
0

exp − x2

2sin2u

( )
du (15)

The ABEP of BPSK is given by

Pb =
1

p

∫0.5p
0

Fx+y s = 1

sin2u

( )
du (16)

Therefore, from (12) and (16), using substitution t = cos2θ and
further manipulation, we have the ABEP of BPSK for the
system working over equally correlated η–µ fading channels
as in Appendix 2 (see (17) on the bottom of the next page)

Furthermore, from (13) and (16), putting t = cos2θ and further
manipulation, the ABEP of BPSK for the system operating

Fx+y(s) =
∏Nr

n=1

∏Mt

m=1

∏U
j=1

1

det (I jmn + 2sB jmnC
xx
jmn)

m jmn det (I jmn + 2sB jmnD
yy
jmn)

m jmn

( ) (11)

Fx+y(s) = (1+ 2slx1)−(NrMtU−1)m(1+ 2sly1)−(NrMtU−1)m(1+ 2slx2)−m(1+ 2sly2)−m (12)
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over arbitrarily correlated η–µ fading channels is (see (18))

Suppose U = 1, K = 1, Mt = 1 and Nr = V, then, (18) reduces to
[12, Eq. (19)].

4.2 ASEP of MPSK digital modulation technique

In this subsection, we determine the ASEP of M-ary PSK
modulation scheme for the system working over arbitrarily
and equally correlated η–µ fading channels. The conditional
error probability of the coherent M-ary PSK digital
modulation format is expressed (accurate and approximate)
as in [20] and its alternative representation is [21]

PMPSK = 1

p

∫p(1−M−1)

0
exp − gMPSKg

sin2u

( )
du (19)

where gMPSK = sin2(π/M ). Then, the ASEP is

Ps,MPSK = 1

p

∫0.5p
0

Fx+y
gMPSK

sin2u

( )
du

+ 1

p

∫p−pM−1

Fx+y
gMPSK

sin2u

( )
du (20)

Using (12) and (20), then putting t = cos2θ and simplify
further, the first integral becomes (see (21))

Analogously, we use the substitution t = cos2θ/cos2(π/M ) and

manipulate further, the second integral becomes [22] (see (22))

Therefore the sum of the results of I1 and I2 yields that of the
ASEP of MPSK digital modulation format for the system
operating over equally correlated η–µ fading environment.
In case of arbitrarily correlated η–µ fading channels, we

can obtain the ASEP of M-ary PSK digital modulation
technique using (13) and (20) yielding (see (23) at the
bottom of the next page)

Use substitution t = cos2θ in first integral, employ basic
concepts of Algebra and Calculus, we have (see (24) at the
bottom of the next page)

Similarly, putting t = cos2θ/cos(π/M ) in the second integral,
and simplify further, we have (see (25) at the bottom of the
next page)

Therefore the summation of I1 and I2 yields the ASEP of
M-ary PSK scheme for MIMO MC DS CDMA system
operating over arbitrarily correlated η–µ fading channels.
Since Nakagami-q (m = 0.5, b = (1− h)/(1+ h), q = ��

h
√

)
is a particular case of η–µ fading distribution, then, suppose
U = 1, K = 1 and the system operates over i.i.d (correlation
coefficient r = 0) fading environment the summation of I1
and I2 reduces to [23, Eq. (10)]. Similarly, when Mt = 1,
U = 1, K = 1 and Nr = L, that is, to say in case of i.i.d
(correlation coefficient r = 0) fading channels, (24) lessen to
[24, Eq. (7)] and (25) diminishes to [24, Eq. (5)]. In
addition, since Nakagami-m (η→ 0, η→∞, η→ ± 1)

Pb =
G(2NrMtUm+ 0.5)

2
��
p

√
G(2NrMtUm+ 1)

(1+ 2lx1)
−m(NrMtU−1)(1+ 2ly1)

−m(NrMtU−1)(1+ 2lx2)
−m(1+ 2ly2)

−m

× F4
D 0.5, m NrMtU − 1

( )
, m NrMtU − 1

( )
, m, m; 2NrMtUm+ 1;

1

1+ 2lx1
,

1

1+ 2ly1
,

1

1+ 2lx2
,

1

1+ 2ly2

( )
(17)

Pb =
G 2

∑U
j=1

∑Mt
m=1

∑Nr
n=1 m jmn + 0.5

( )
2

��
p

√
G 2

∑U
j=1

∑Mt
m=1

∑Nr
n=1 m jmn + 1

( ) ∏U
j=1

∏Mt

m=1

∏Nr

n=1

(1+ 2lxjmn)
−m jmn (1+ 2lyjmn)

−m jmn

( )

× F (2UMrNr )
D 0.5, m111, m112, . . . , mUMrNr

, m111, m112, . . . , mUMtNr

(
; 2

∑U
j=1

∑Mt

m=1

∑Nr

n=1

m jmn + 1;

1

1+ 2lx111
,

1

1+ 2lx112
, . . . ,

1

1+ 2lxUMtNr

,
1

1+ 2ly111
,

1

1+ 2ly112
, . . . ,

1

1+ 2lyUMtNr

)
(18)

I1 =
G(2NrMtUm+ 0.5)

2
��
p

√
G(2NrMtUm+ 1) (1+ 2gMPSKl

x
1)−m(NrMtU−1)(1+ 2gMPSKl

y
1)−m(NrMtU−1)(1+ 2gMPSKl

x
2)−m

× (1+ 2gMPSKl
y
2)−mF4

D 0.5,m(NrMtU − 1),m(NrMtU − 1),m,m; 2NrMtUm+ 1;
(

1

1+ 2gMPSKl
x
1
,

1

1+ 2gMPSKl
y
1

,
1

1+ 2gMPSKl
x
2
,

1

1+ 2gMPSKl
y
2

)
(21)

I2 = (1+ 2gMPSKl
x
1)

−m(NrMtU−1)(1+ 2gMPSKl
y
1)

−m(NrMtU−1)(1+ 2gMPSKl
x
2)
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distribution is another special case of η–µ fading distribution
then, putting U = 1, K = 1, Mt = 1 and Nr = L, (24) and (25)
collapse to [25, Eq. (7)].

4.3 ASEP of square MQAM digital modulation
technique

In this case, we compute the ASEP of square MQAM digital
modulation for MIMO MC DS CDMA system functioning
over arbitrarily and equally correlated η–µ fading channels.
The conditional error probability of the MQAM is as given
in [20] and its alternative representation is given by [21]

PMQAM = 4q

p

∫0.5p
0

exp − ggMQAM

sin2 u

( )
du

− 4q2

p

∫0.25p
0

exp − ggMQAM

sin2u

( )
du

(26)

where q = 1−M−0.5 and gMQAM = 1.5(M − 1)−1. Therefore
the ASEP of square MQAM digital modulation format

using (12) is

Ps,MQAM = 4q

p

∫0.5p
0

Fx+y

gMQAM

sin2 u

( )
du

− 4q2

p

∫0.25p
0

Fx+y

gMQAM

sin2u

( )
du

(27)

Hence, employing the substitution t = cos2θ to the first
integral and simplify, we have (see (28))

The second integral can be obtained by utilising the
substitution t = 1–tan2θ, then simplifying further, we have
(see (29) on the bottom of the next page)

Finally, the difference between I1 and I2 produces the ASEP
of square MQAM digital modulation scheme for the system
operating over equally correlated η–µ fading channels.
In addition, we can derive the ASEP of square MQAM

digital modulation technique for MIMO MC DS CDMA
system working over arbitrarily correlated η–µ fading
channels using (13) and (26), hence (see (30) on the bottom
of the next page)
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Considering the first integral, put t = cos2θ, use basic ideas of
calculus and algebra, we have (see (31))

Similarly, put t = 1–tan2θ in the second part of (30) and then
making necessary manipulations, we have (see (32))

Therefore the difference between I1 and I2 yields the ASEP of
square MQAM modulation scheme for MIMO MC DS
CDMA system over arbitrarily correlated η–µ fading
channels. Since η–µ fading distribution can diminish to
Nakagami-q (m = 0.5, b = (1− h)/(1+ h), q = ��

h
√

)
distribution as a special case, then, suppose U = 1, K = 1
and the system operates in an i.i.d (correlation coefficient
r = 0) η–µ fading environment, the difference between I1
and I2 collapses to [23, Eq. (13)]. Similarly, since
Nakagami-m (η→ 0, η→∞, η→ ± 1) distribution is a
particular case of η–µ fading distribution, then (31) and (32)
drop to [25, Eq. (12)].

5 Numerical examples and discussions

In this section, we present numerical results to illustrate the
performance of the MC DS CDMA MIMO system

operating over correlated η–µ fading channels in terms of
average error probability. We investigate the effects of
correlation coefficient and the number of multipath clusters
on the system performance numerically. The parameters
used for the analysis of the system are indicated in each
graph. We employ infinite series representation of
Lauricella’s multivariate hypergeometric functions for
average error probability of the system to write a code in
MATLAB software package in order to generate the graphs
presented below. In this case, the number of terms used for
computation is 20. On the other hand, Monte Carlo
simulation technique is used to validate the results obtained
via analytical solution. Hence, the number of random
variables generated is 105.
Fig. 1 shows graphically the effect of correlation on

average bit error rate performance of multiple-input–
single-output MC DS CDMA (MISO MC DS CDMA)
system over correlated η–µ frequency non-selective fading
channels. As expected, the ABEP of the system increase as
the correlation coefficient (r = 0.1, 0.3, 0.5) increases.
Similarly, it is confirmed that the performance of SISO MC
DS CDMA system is inferior to that of MISO MC DS
CDMA system. In Fig. 2, we illustrate graphically the
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influence of correlation coefficient on average bit error rate
performance for single-input–multiple-output MC DS
CDMA (SIMO MC DS CDMA) system operating over
correlated η–µ flat fading channels. Hence, as the
correlation coefficient (r = 0.1, 0.3, 0.5) increases, the
ABEP increases as well. Therefore the system performance
deteriorates. On the other hand, it is observed that the
performance of SIMO MC DS CDMA system operating
over correlated η–µ frequency non-selective fading channels
outperforms that of MISO MC DS CDMA system
transmitting over the same channels. Since it is assumed
that the transmit power employed for both cases
(single-input–multiple-output, SIMO and multiple-input–
single-output, MISO) is the same, say P, then in case of Mt

transmit antennas, each antenna will radiate P/Mt power for
transmission in order to confirm the same total radiated
power as with one transmit antenna. In this case, fading is

severe. However, for the case of single transmit antenna
with P transmit power and many receive antennas, the
prospect of receiving signals not all in deep fade is
possible. Therefore the performance of MISO system is
lower than that of SIMO system over the same fading
channel. Fig. 3 exemplifies the influence of η parameter on
ABEP in format 1 scenario. In this case, as η increases, the
ABEP decreases and the system performance improves.
This is because of the increase in power ratio between the
in-phase signal component and the quadrature signal
component of each cluster of multipath. Suppose K (user) = 1,
U (subcarrier) = 1, Mt = 1, Nr = 1 and the correlation
coefficient is zero, the results reduced to that in [16, 26]. In
Fig. 4, the effect of η fading parameter on ABER system
performance is depicted graphically. Hence, as η increases,
the ABEP of BPSK modulation technique for the system
increases as well. The main reason behind this is that the

Fig. 2 ABEP against average SNR of BPSK modulation scheme
for SISO and SIMO MC DS CDMA system transmitting over
correlated η–µ flat fading channels (η= 1.5, and µ = 0.5: format 1
scenario)

Fig. 1 ABEP against average SNR of BPSK modulation technique
for SISO and MISO MC DS CDMA system over correlated η–µ
frequency non-selective fading channels (η= 1.5, and µ = 0.5:
format 1 scenario)

Fig. 3 Effect of η on ABEP of BPSK modulation technique for
MIMO MC DS CDMA system operating over correlated η–µ
frequency non-selective fading channels (µ = 0.5, ρ= 0.3, Mt = 2
and Nr = 2: format 1 scenario)

Fig. 4 Impact of η fading parameter on ABEP of BPSK modulation
scheme for MIMO MC DS CDMA system operating over correlated
η–µ frequency non-selective fading channels (µ= 0.5, ρ= 0.3, Mt = 2
and Nr = 2: format 2 scenario)
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in-phase component and quadrature component of the
transmitted signal are correlated. So if K = 1, U = 1, Mt = 1,
Nr = 1 and the correlation coefficient is zero, these results
drop to that in [26]. Generally, the physical phenomenon
represented by the fading parameter η in format 1 scenario
is absolutely distinct from that represented in format 2
scenario as shown in Figs. 3 and 4. Thus, Figs. 1–4 are
derived from (17).
Based on (17), we generate the graph depicted in Fig. 5

with the parameters indicated. In this case, the values of the
parameters employed are K = 50, Mt = 2, Nr = 2, U = 2, η =
1.5 and µ = 3, respectively. The type of format used is
format 1. Thus, the figure shows the results of the system
operating over correlated η–µ fading channel in terms of
ABEP of BPSK digital modulation technique against SNR
per bit. The curves for the ABEP against SNR per bit vary
because of the variation in correlation coefficients (r = 0.1,
0.3, 0.5, 0.7, 0.9), respectively. We observe as expected, the
ABEP decreases as SNR per bit increases and increases

because of the effect of correlation coefficient. Fig. 6 is also
obtained from (17) and the parameters utilised are all
shown. As a numerical example, the operation of the
system over correlated η–µ fading channels is based on the
following parameters Mt = 2, Nr = 2, U = 2, η = 2, µ = 1.5
and K = 50 users and are specified at the top of the graph.
Here, the plots for ABEP vary (increasingly) because of the
following correlation coefficients r = 0.1, 0.3, 0.5, 0.7 and
0.9, respectively. It is obvious that, the ABEP increases in
value compared with that in Fig. 5 owing to small number of
multipath clusters employed in the environment. In addition,
the system operation is simulated via Monte Carlo simulation
method, as shown, the results agree well with that obtain
using analytical method. Fig. 7 depicts the performance of
the system over correlated η–µ fading environment in terms
of ABEP. So the parameters used are as follows Mt = 2, Nr =
2, U = 2, η = 2 and µ = 1 and are indicated at the top of the
graph and inside. We observe that, the system performance
deteriorates because of the small number of the multipath

Fig. 5 ABEP of BPSK modulation for MC DS CDMA MIMO
system working over correlated η–µ fading channels (Mt = 2, Nr = 2,
U = 2, η= 1.5 and µ = 3: format 1 scenario)

Fig. 6 ABEP of BPSK for MC DS CDMA MIMO system
functioning over correlated η–µ fading channels (Mt = 2, Nr = 2,
U = 2, η= 2 and µ = 1.5: format 1 scenario)

Fig. 7 ABEP of BPSK for MC DS CDMA MIMO system operating
over correlated η–µ fading channels (Mt = 2, Nr = 2, U = 2, η= 2
and µ = 1: format 1 scenario)

Fig. 8 ASEP of 2, 4, 8 PSK for MC DS CDMA MIMO system
working over correlated η–µ fading channels (Mt = 2, Nr = 2, U = 2,
K = 30, η= 2 and µ = 1: format 1 situation)
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clusters and the effect of correlation. We confirm the analytical
technique usingMonte Carlo simulation method and the results
are in good agreement.
Fig. 8 exemplifies the ASEP of MPSK modulation scheme

for MC DS CDMA MIMO system working over correlated
η–µ fading channels using the following parameters M = 2,
4, 8, Mt = 2, Nt = 2, U = 2, K = 30 users, η = 2 and µ = 1 for
format 1. As shown, we note that the system performance
degrades when the signal constellation size increases and
also when the value of correlation coefficient between the
signals spectra increases as the space between the receiving
antennas decreases. Similarly, Fig. 9 demonstrates the
results of the system operating over correlated η–µ fading
environment based on the following parameters: Mt = 2,
Nr = 2, U = 2, K = 30 users, η = 1 and µ = 1.5 for format 1. In
this case, we notice that the ASEP of the system decreases
because of the increase in parameter µ. This, however,
enhances the performance of the system over correlated η–µ
fading channels. We verify the analytical method via Monte

Carlo simulation technique. Hence, suppose U = 1, K = 1 and
correlation coefficient (r = 0) is zero (i.i.d), then, the results
in Figs. 8 and 9 reduce to that in [23].
Fig. 10 elucidates the operation of the system over

correlated η–µ fading channels in terms of ASEP of square
MQAM digital modulation scheme. Hence, the fading
parameters employed are η = 1.5 and µ = 1.5 for format 1
scenario. Analogously, the values of the correlation
coefficient are indicated in the graph. The size of the signal
constellation is M = 4. Therefore the value of the ASEP
increases because of the effect of correlation coefficient. In
this case, we authenticate the analytical solution via Monte
Carlo simulation method. The performance of the system in
correlated η–µ fading environment in terms of ASEP of
square MQAM with variable signal constellation size (M = 4,
16, 64) is depicted in Fig. 11. The fading parameters utilised
are as follows η = 1.5 and µ = 1.5 for format 1 situation. As
expected, we observe that the ASEP of the system increases
because of the increase in signal constellation size as well as
correlation coefficient. As illustrated in Fig. 11, we
substantiate the analytical method through Monte Carlo
simulation technique. In case of special cases, suppose U =
1, K = 1 and the correlation coefficient is zero (r = 0), the
results in Figs. 10 and 11 drop to that in [23].

6 Conclusion

In this paper, the performance of MIMO MC DS CDMA
system operating over correlated η–µ fading channels in
terms of average error probability have been investigated.
We derived exact closed form expressions for average error
probability of coherent binary and M-ary digital modulation
techniques for the system working over arbitrarily and
equally correlated η–µ fading environment. The average
error probability expressions are expressed in terms of
Lauricella’s multivariate hypergeometric functions which
are easily manageable using software packages such as
MATLAB. We observed that, deterioration in system
performance was because of the effect of correlation and
increase in size of the signal constellations. In case of
signal constellation size, the performance of the system
degrades because of the decreasing Euclidean distance

Fig. 9 ASEP of 2, 4, 8 PSK for MC DS CDMA MIMO system
operating over η–µ fading channels (Mt = 2, Nr = 2, U = 2, K = 30,
η= 1 and µ = 1.5: format 1 scenario)

Fig. 10 ASEP of 4QAM for MC DS CDMA MIMO system
functioning over correlated η–µ fading channels (Mt = 2, Nr = 2,
U = 2, η= 1.5 and µ = 1.5: format 1 scenario)

Fig. 11 ASEP of 4, 16, 64 QAM for MC DS CDMA MIMO system
operating over correlated η–µ fading channels (Mt = 2, Nr = 2, U = 2,
K = 5 users, η= 1.5 and µ = 1.5: format 1 scenario)
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between the symbols for constant average signal energy (Es).
However, an acceptable space separation between two
adjacent subcarriers and also increasing the number of
subcarriers (frequency diversity) will improve the system
performance. On the other hand, the influence of η fading
parameter on average error probability of the system
operating over correlated η–µ flat fading channels in format
1 scenario causes improvement in system performance as η
increases and deterioration in system performance in format
2 as η increases. This is because in format 1 situation the
increase in power ratio between the in-phase and quadrature
components of the received signal of each cluster of the
multipath contributes to the system performance
enhancement while in format 2 scenario the in-phase and
quadrature components are correlated. Furthermore, we
noticed that increasing the number of multipath clusters (µ)
reduces the detrimental effect of fading and enhances the
performance of the system. We validated our results via
Monte Carlo simulation-based approach and found to agree
well. In addition, we simplified η–µ fading distribution to
its particular cases such as Nakagami-q and Nakagami-m
distributions, respectively. Generally, as expected, we
observed that the performance of MIMO MC DS CDMA
system over correlated η–µ frequency non-selective fading
channels is superior to that of SISO, MISO and SIMO MC
DS CDMA systems transmitting over the same channels.
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9 Appendix

9.1 Appendix 1

In this appendix, we derive the MGF of the instantaneous
SINR at the output of the receiver. The envelope (Rnm) of
the fading signal models η–µ fading distribution. Then, the
random variable g = R2

nm

∥∥ ∥∥ has the PDF of η–µ
distribution. Hence, a set of NMU variates of η–µ random
variables is equivalent to a set of 2 µ independent Gaussian
random variable vectors with NMU dimensions. Since the
instantaneous SINR is given as [27]

gs = gc
∑Nt

n=1

∑Mt

m=1

∑U
j=1

∑2m
l=1

R2
nmjl (33)
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where R2
nmjl = RT

nmjlRnmjl = XT
nmjlXnmjl + YT

nmjlYnmjl, Xi = nmj =
[Xi1, Xi2, …, Xi2µ]

T where i = nmj = 1, 2, …, NrMtU
represents dependent in-phase random variables. Hence, Xik

are independent and identically distributed Gaussian
random variables with zero mean and variance E[X 2

ik], k = 1,
2, …, 2 µ. Similarly, Yi=nmj = [Yi1, Yi2, …, Yi2µ]

T denote
dependent quadrature random variables. Therefore, Yik are i.
i.d Gaussian random variables with zero mean and variance
E[Y 2

ik] [28]. Both are mutually independent Gaussian
variables with E[Xnmjl] = E[Ynmjl] = 0, E[X 2

nmjl] = r2x ,
E[Y 2

nmjl] = r2y , µ is the number of clusters of multipath.
Therefore the instantaneous SINR can be rewritten as

gs = gc
∑Nr

n=1

∑Mt

m=1

∑U
j=1

∑2m
l=1

X 2
nmjl + gc

∑Nr

n=1

∑Mt

m=1

∑U
j=1

∑2m
l=1

Y 2
nmjl

(34)

Considering the in-phase random variates XT
ik Xik , similarly,

for quadrature random variates YT
ik Yik . For the case of

in-phase random variates, we assume the arbitrary covariance
matrix as Cxx, then we can form a scalar quadratic function
of vector X, that is, suppose Z = XT

nmlBnmlX nml , where Bnml

is a 2 µ by 2 µ matrix. Hence, the joint PDF of

X 2
nml1 + X 2

nml2 + · · · + X 2
nml2m

[ ]
is [29]

f (Xnml) =
1�����������������

(2p)2m det (Cxx)
√ exp − 1

2
XT
nmlC

−1
nmlXnml

( )
(35)

Then, the MGF of Z is [29, 30] (see (36))

where det denotes determinant. Therefore, for NMU diversity

branches, we have

Fx(s) =
∏Nr

n=1

∏Mt

m=1

∏U
l=1

1

det (Inml + 2sBnmlC
nml
xx )mnml

(37)

Similarly, for Ynml (quadrature Gaussian variates), we have

Fy(s) =
∏Nr

n=1

∏Mt

m=1

∏U
l=1

1

det (Inml + s2BnmlD
nml
yy )mnml

(38)

where Dyy is the matrix. Therefore overall MGF of the
instantaneous SINR at receiver output is (see (39))

9.2 Appendix 2

In this appendix, we employ Lauricella’s multivariate
hypergeometric function Fn

D(.) to represent expressions for
the average error probabilities of the system operating over
η–µ fading channels. The Lauricella multivariate
hypergeometric function is defined as [25, 31] (see (40))

where Γ(a + i)/Γ(a) is a pochhammer symbol.
From (12) and (16), we have (see (41))

Use substitution t = cos2θ in (41), we have (see (42) at the
bottom of the next page)

Hence, comparing (42) with (40), we have a = 0.5, c =
2MtNrUµ + 1, b1 = µ(MtNrU− 1), b2 = µ(MtNrU− 1), b3 = µ
and b4 = µ, x1 = 1/(1+ 2lx1), x2 = 1/(1+ 2ly1), x3 =
1/(1+ 2lx2), x4 = 1/(1+ 2ly2). Therefore (17) is obtained.
Furthermore, the subsequent equations can be derived in a
similar approach.

Fx(s) = E e−sXT
nmlBnmlXnml

[ ]
=

∫1
0

1�����������������
(2p)2m det (Cxx)

√ e−(1/2) XT
nml(C

−1
xx +2sBnml )Xnml

( )
dXnml

=
������������
det (F−1)
( )√
������������
det (Cxx)
( )√ ∫1

0

1�����������������
(2p)2m det (F)

( )√ e−(1/2)XTF−1X dX = 1

det (Inml + 2sBnmlCxx)
m (36)

Fx+y(s) =
∏Nr

n=1

∏Mt

m=1

∏U
l=1

1

det (Inml + 2sAnmlC
nml
xx )mnml det (Inml + 2sBnmlD

nml
yy )mnml

( )
(39)

Fn
D(a, b1, b2, . . . , bn; c; x1, x2, . . . , xn) =

G(c)

G(a)G(c− a)

∫1
0
ta−1(1− t)c−a−1

∏n
i=1

(1− xit)
−bi dt, Re(c− a) . 0, Re(a) . 0

=
∑1

i1,i2,i3,...,in.=0

(a)i1+i2+···+in
(b1)i1 (b2)i2 · · · (bn)in

(c)i1+i2+···+in
i1!i2!...in!

xi11 x
i2
2 ...x

in
n (40)

Pb =
1

p

∫0.5p
0

1+ 2lx1
sin2 u

( )−m(MtNrU−1)

1+ 2ly1
sin2 u

( )−m(MtNrU−1)

1+ 2lx2
sin2 u

( )−m

1+ 2ly2
sin2 u

( )−m

du (41)
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Pb =
1

2p
(1+ 2lx1)

−m(MtNrU−1)(1+ 2ly1)
−m(MtNrU−1)(1+ 2lx2)

−m(1+ 2ly2)
−m

×
∫1
0
t−0.5(1− t)2MtNrUm−0.5 1− 1

1+ 2lx1
t

( )−m(MtNrU−1)

1− 1

1+ 2ly1
t

( )−m(MtNrU−1)

1− 1

1+ 2lx2
t

( )−m

1− 1

1+ 2ly2
t

( )−m

dt

(42)
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