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Abstract: In this study, monomials with odd integer powers are proposed for blind multiuser detection of code-division multiple
access signals with long spreading codes, in the near–far situation. The performance of the new non-linear detectors are
substantiated asymptotically and confirmed via simulations. It is demonstrated that the proposed non-linear detectors
significantly outperform the matched filter detector in the block fading and Ricean fading channels, at the cost of a small
increase in computational complexity. The optimum integer power value for the block fading channel with a limited interferer
level, the Ricean channel with a given K factor and asynchronous channel is determined. The proposed multiuser detectors
are blind in the sense that they require neither training nor the spreading code of the interferers. The detectors also do not
require long convergence time for decision making in contrast to conventional blind multiuser detectors.

1 Introduction

In a multiuser code-division multiple access (CDMA) system,
the bit error rate performance of the conventional matched
filter (MF) degrades severely in the near–far situation.
Consequently, various multiuser detection schemes have
been developed in the last two decades which are near–far
resistant [1–5]. The optimal multiuser detector is developed
in [6], which is a maximum-likelihood sequence detector. It
is well known that the computational complexity of this
detector grows exponentially with the number of active
users [7]. Hence, the optimal multiuser detector is too
complex for practical systems with even a moderate number
of users. To address the complexity problem, a variety of
suboptimal multiuser detectors have been proposed [1].
Linear multiuser detectors, such as decorrelator and
minimum-mean-square error (MMSE) detector, are two
important suboptimal methods that are investigated
precisely in the literature [1, 8]. Decorrelating detector is
near–far resistant [1]; however, it causes noise enhancement
when the correlation matrix of codes is badly conditioned
[3]. MMSE detector takes the background noise as well as
the correlation between users into account to resolve the
noise enhancement problem of the decorrelating detector
[8]. Furthermore, MMSE multiuser detector can be
implemented using adaptive algorithms to avoid matrix
inversion which can be prohibitively complex when the
number of users is large [9]. Non-blind adaptive multiuser
detectors require fresh training sequences every time that a

strong interferer enters into the system. This causes low
bandwidth efficiency of the system [5], and consequently, a
lot of blind multiuser detection methods are proposed; see
[3, 4] for a comprehensive study of these methods.
However, the blind implementation of the previously
proposed adaptive methods has become ineffective [10],
because practical systems such as IS-95 use long spreading
codes and long spreading codes degrade the bit-interval
cyclostationarity property of the CDMA signals [10].
Consequently, in all practical CDMA systems such as
IS-95, the conventional MF detector is employed [11]. The
use of long codes guarantees that all the users achieve the
same performance, thus avoiding the unpleasant situation
that there exist some preferred users [12]. For these reasons,
signal processing techniques for long-code CDMA systems
have received considerable attention [9–13]. In [9], a
multiuser detection technique based on parallel interference
cancellation (PIC) is proposed which acts on the long-code
CDMA signals transmitted over an additive white Gaussian
channel. The complexity of this technique is linear with the
number of users and is independent of the system
processing gain (PG) [9]. The channel estimation and
multiuser detection schemes for long-code CDMA systems
operating over a frequency-selective fading channel are
designed in [11, 12]. The multiuser detection method in
[12] has a computational complexity quadratic in PG,
whereas the complexity of the algorithm in [11] is quadratic
with the number of users. Both methods in [11, 12] rely on
the transmission of a known training sequence [12]. A
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low-complexity blind channel estimation and symbol
detection for long-code CDMA systems is proposed in [13],
which acts on a slot of received symbols. It is demonstrated
that for a large slot length, the complexity of the iteration of
this algorithm is linear in the PG and linear in the number
of active users in the CDMA system [13]. The scheme in
[13] requires the knowledge of the codes of all active users
which does not exist in the recently proposed decentralised
CDMA systems [14].
In this paper, we propose low-complexity non-linear

multiuser detectors for long-code CDMA systems which are
blind in the sense that they require neither training nor the
signatures of the interferers [5]. In fact, these detectors
require only the desired user’s signature and its timing, that
is, the required knowledge in conventional MF [1, 5]. The
computational complexity of the proposed multiuser
detection method is a little more than that of the MF in a
frequency-flat fading channel. Another advantage of the
proposed scheme is that it does not require long
convergence time and makes acceptable decisions from the
first bit of the received signal, in contrast to the typical
blind multiuser detectors which require long convergence
time to yield appropriate performance [5].
The outline of the paper is as follows: After problem

formulation in Section 2, we derive the maximum
likelihood (ML) detector in a frequency-flat block fading
[15–17] channel to compare the performance of the
proposed detectors with that of the ML detector.
Frequency-flat block fading channel [15, 16], also known as
quasi-static fading channel [17, 18], is the first-order
approximation to a continuously time-varying channel [16],
which is a typical model for wireless communication
systems with high speed data transmission or with slowly
moving terminals [17]. In this model, the channel is
assumed to stay constant over N samples and independently
changes to a new value for the next block of samples
[15–18]. In Section 3, we derive the new detectors with
ad-hoc non-linearities [19] which outperform the
conventional MF detector and are robust to the
time-varying parameters of the channel [19]. Then, we
investigate the performance of the obtained non-linear
detectors through asymptotic relative efficiency (ARE) [19–
23] calculation of the proposed detectors. In Section 4, it is
shown that probability of error evaluation of the proposed
non-linear scheme is a cumbersome task that justifies the
ARE calculation instead of probability of error evaluation.
Section 5 presents the computational complexity of the
proposed detectors. In Section 6, we prove that the
proposed scheme also works in the Ricean fading and
asynchronous channels and we obtain the optimal degree of
the monomials for these cases. We present numerical results
in Section 7. Finally, concluding remarks are presented in
Section 8.

2 Problem formulation and ML detector
design for block fading synchronous channel

We consider the output of the desired spread spectrum (SS)
signal demodulator [2, p. 768] for one-bit duration, in the
presence of a synchronous interferer. As in [10], we assume
that the receiver knows the chip timing and signature of the
desired signal. After the chip matched filtering of the
received SS signal and sampling at the chip rate [2, p. 768,
10], the demodulator output for one-bit duration can be

expressed as

yk = sk + ik + nk , k = 1, 2, . . . , N (1)

where sk, ik and vk denote samples of the desired SS signal,
co-channel interference and the zero mean white Gaussian
noise at the output of the demodulator, respectively. N
denotes the number of chips per every information bit, that
is, the processing gain (PG) of the SS system. We assume
that both the desired signal and interferer have binary phase
shift keying (BPSK) modulation. In a frequency-flat block
fading channel, channel gains remain constant for N
samples, and independently changes for the next block of N
samples [15–18]. Hence, we have sk = ±A and ik = ± I for a
block of length N.
Since the long pseudo noise (PN) sequences of the users

are truly random [10], iks are independent and identically
distributed (IID) [10]. The sequences sk, vk and ik are
assumed to be mutually independent. Hence, the binary
detection of the desired SS signal in the presence of a
cochannel interference leads to the following binary
hypothesis testing problem

H1: yk = A+ wk

H0: yk = −A+ wk , k = 1, 2, . . . , N
(2)

where the conglomerate effect of additive noise and
interference, that is, vk and ik, is modelled in the
observation noise W with the definition wk = ik + vk. Since
iks and vks are independent from each other, the probability
density function (PDF) of their sum is the convolution of
their PDFs. Since the PDF of ik is 0.5[δ(ik− I ) + δ(ik + I )],
the PDF of W is

f
W
(wk ) = 1

2 N s2 (wk − I)+N s2 (wk + I )
[ ]

(3)

where N s2 (x) is defined as exp (−x2/2s2)/
������
2ps2

√
and σ2 is

the variance of the Gaussian component.
When the PDF of observation noise is known, it is possible

to obtain ML detector for the problem in (2). Since the noise
samples are IID variates, the test statistics for ML detector is

TML(y) =
∑N
k=1

log
f
Y
(yk |H1)

f
Y
(yk |H0)

=
∑N
k=1

log
f
W
(yk − A)

f
W
(yk + A)

(4)

where y = (y1,…,yN) and log(·) denotes the natural logarithm
function. We define gML(y) = log[ fw(y− A)/fw(y + A)] which
expresses the required non-linearity for the ML detector.
Using (4) and after some simplifications, we obtain the ML
decision rule as follows

TML(y)

=
∑N
k=1

2A

s2
yk + log

cosh I(yk − A)/s2( )
cosh I(yk + A)/s2

( )
[ ]( )

_
H1

H0

0 (5)

where the threshold for decision making is determined by
using the minimum probability of error criterion [24, p. 77].
In fact, since H0 and H1 are equally probable, the threshold
is γ = log[P(H0)/P(H1)] = 0 [24, p. 77].
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3 Suboptimal detection scheme with ad-hoc
non-linearity and performance analysis

It has been shown that reasonably configured ad-hoc
non-linearities can be used to obtain suboptimal detectors in
the presence of non-Gaussian noises [19]. These detectors
have very low complexity and are robust to time-varying
parameters of the channel [19]. We obtain such a
non-linearity for the detection problem (2) in the presence
of the noise with PDF in (3). The degree of
non-Gaussianity of a random variable (RV) is measured by
its Kurtosis relative to Gaussian variate, which is defined as
g = E w4

k

( )
/E2 w2

k

( )− 3, [24, p. 382], where E(·) denotes
the expectation operation. This parameter for the noise in
(3) is γ =−2I4/(σ2 + I2)2, which is always negative, and
consequently, the PDF for the noise in (3) has tails that fall
off more quickly than the Gaussian PDF [24, p. 382].
Hence, the ad-hoc limiters in [19], which are proposed for
heavy tail noises, are not applicable for detection in the
noise with PDF in (3). To obtain our ad-hoc non-linear
detectors, we consider that the noise PDF in (3) is even
symmetric, and consequently, the non-linearity is an odd
function. This is because

gML(−y) = log
f
W
(−y− A)

f
W
(−y+ A)

= log
f
W
(y+ A)

f
W
(y− A)

= −gML(y)

(6)

Hence, we propose the simplest odd hyperactive polynomial
(that acts opposite to limiters), that is, g(y) = ym with odd m
values, as the suboptimal ad-hoc detector [25, 26]. Hence,
the test statistics for the proposed detection scheme is

TSuboptimal(y) =
∑N
k=1

ymk _
H1

H0

0 (7)

where the threshold for decision making is as in (5).
Now, we calculate the performance of this detector. We use

ARE with respect to some reference detector as in [19–23].
ARE calculation is a succinct approach to compare the
performance of two detectors and it is defined as
ARE2,1 = limA�0

N1(Pe, A)
N2(Pe, A)

, when N1→∞, N2→∞. Ni(Pe,

A) denotes the number of samples detector i requires to
achieve a given probability of error (Pe) with signal strength
A. The expression for the ARE of a non-linear detector for
a constant signal with respect to the linear detectors is
obtained in [22], which is

AREnd,ld =
�1
−1 x2f

W
(x)dx

�1
−1 g′(x)fW(x)dx

[ ]2
�1
−1 g2(x)f

W
(x)dx− �1

−1 g(x)fW(x)dx
[ ]2 (8)

For the above proposed non-linearity, g(y) = ym where m is
odd, we obtain a simple expression for ARE using (8) as

AREnd, ld(m, s, I) =
m2E w2

k

( )
E wm−1

k

( )[ ]2
E w2m

k

( ) (9)

The detector with non-linearity g(y) = ym has better
performance than conventional MF when AREnd,ld(m, σ, I )
> 1. Hence, for any noise whose PDF exhibits the even

symmetry property and satisfies the inequality

m2E w2
k

( )
E wm−1

k

( )[ ]2
. E w2m

k

( )
(10)

among its moments, the proposed detector in (7) has better
performance with respect to the MF. Computation of (9) to
determine ARE for observation noise in (3) is accomplished
by computing the moments of wk. For this purpose, we use
the characteristic function of the observation noise PDF in
(3), which is

FW(jv) = cos (Iv) exp (−s2v2/2) (11)

Using Taylor series expansions of cos(u) and exp(u) in
ΦW( jω), we have

F
W
(jv) =

∑1
k=0

∑1
n=0

(−1)k
(Iv)2k

(2k)!
(−1)n

(sv)2n

2nn!
(12)

Letting m = k + n leads to

F
W
(jv)

=
∑1
k=0

∑1
m=0

(−1)k (−1)(m−k) Iv( )2k
(2 k)!

sv( )2(m−k)

2(m−k)(m− k)!
, k ≤ m

=
∑1
m=0

(− 1)ms2m

2m
∑m
m=0

I2k2k

(2 k)!s2k(m− k)!
v2m

(13)

By expressing the uniformly convergent series for the
characteristic function as F

W
(jv) = ∑1

m=0 cmv
2m, the

moments of W are obtained by substituting (13) in
mm = E(wm) = (−j)mF(m)

W (0). Hence, we obtain μ2m−1 = 0
and

m2m = (2 m)!
s2

2

( )m ∑m
k=0

I2k2k

(2 k)!s2k(m− k)!
(14)

By expanding (14), it is straightforward to show that the
largest degree of I is 2m, which is obtained for k =m.
Similarly, the largest degree of σ is 2m, which is obtained
for k = 0. Hence, by substituting (14) in (9) and factoring
out σ2m in the numerator and denominator of (9), we have

lim
I/s�1,N�1,A�0

AREnd,ld(m, s, I ) = m2 (15)

This establishes that the proposed non-linear detector
outperforms the MF detector with a factor of m2 in the limit
case. Hence, we deduce that by increasing the degree of the
non-linearity g(y) = ym, the performance of the proposed
suboptimal detector will be enhanced, for a strong interferer
and weak signal, that is, near–far situation, when Gaussian
noise power is fixed. To compute ARE for limited values of
I/σ, we substitute (14) in (9) when I and σ are known. The
ARE performance against m is shown in Fig. 1 for I = 13, I
= 30 and σ2 = 1. As we see for I = 13 by increasing m, the
value of ARE increases until reaching m = 15 and after that,
ARE decreases. Hence, there is a maximum in ARE curve
for limited values of I/σ, which corresponds to the optimal
degree of the non-linearity. Meanwhile, we see in Fig. 1 for
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I = 30 and σ2 = 1, which mimics the case I/σ→∞, the ARE
monotonically increases by increasing m with a curve near
to m2 curve as shown in (15).

4 Remarks on probability of error calculation

It is worth to investigate the difficulties in Pe performance
evaluation of the MF, that is, detector in (7) with m = 1, and
also our proposed non-linear detector. Assuming that the
desired signal information bits are equally probable, and by
considering the symmetry of observation noise PDF (3), Pe

is obtained from Pe = P(sk = A|sk =−A) as follows

Pe =
∫1
0
f
TMF y( )(y|sk = −A)dy

= 1

2p

∫1
0

∫1
−1

FTMF(y)

(jv|sk = −A) exp (−jvy)dvdy

(16)

where TMF(y) =
∑N

k=1 yk . We calculate (16) using saddle
point approximation [27, p. 125]. Since the samples of yk
are IID RVs, we have FTMF (y)

(jv|sk = −A) = FN
Y(jv|sk =

−A). Furthermore, considering (2), it is easy to show that
ΦY( jω|sk =− A) = exp(−jAω)ΦW( jω). Hence, ΦY( jω|sk =
− A) = exp(−jAω)cos(Iω)exp(−σ2ω2/2) and we obtain
FN

Y
(u|sk = −A) as follows

FN
Y
(u|sk = −A)

= (1/2)N exp (− Au)]N [ exp (Iu)+ exp (−Iu)
[ ]N

× exp (Ns2u2/2) (17)

Using (17) in (16),Pe is obtained; however, it is readily seen that
this is not a viable approach for large values ofN, for this reason,
in order to estimate Pe, an approximation should be appealed.
In fact binomial expansion of [ exp (Iu)+ exp (−Iu)]N

requires large number of terms for large values of N.
Saddle-point approximation is a numerically powerful tool
for error probability calculation [27, p. 125]. The
saddle-point approximation yields an approximation for

(16) as follows [27, p. 125]

Pe ≃
exp (C(u0))�����������
2pC′′(u0)

√ (18)

where C(u) = log FN
Y (u|sk = −A)

( )− log (u) and u0 is the
positive root of Ψ’(u) = 0. The expression of Ψ(u) is as
follows

C(u) = N log 0.5− ANu+ N log

× exp (Iu)+ exp (− Iu)
[ ]+ Ns2u2

2
− log (u)

and consequently, Ψ’(u) is

C′(u) = −AN + IN
e2Iu − 1

e2Iu + 1
+ Ns2u− 1

u
(19)

The positive root of Ψ′(u) can be evaluated numerically. For
using (18), it is necessary to calculate Ψ″(s), which is as
follows

C′′(u) = 4I2N
e2Iu

(e2Iu + 1)2
+ Ns2 + 1

u2
(20)

The approximate Pe using saddle-point method in comparison
to the simulated Pe is shown in Fig. 2. As can be seen, the
saddle-point approximation yields acceptable accuracy for
Pe calculation. For the proposed suboptimal detectors in (7),
the Pe calculation is a more protracted task because one has
to evaluate the characteristic function of the non-linearity
output, that is, g(y) = ym, given sk =−A. This calculation is
necessary for using the saddle-point method to approximate
the Pe of the suboptimal detectors. Using the equation in
[28, p. 161], the characteristic function evaluation of the
non-linearity output leads to a mathematically intractable
integral, which makes the use of saddle point approximation
impossible. This discussion shows the benefits of the ARE
calculation using (9) to compare the performance of the
non-linear detectors with respect to linear detectors in a
succinct and accurate manner.

Fig. 2 Approximate Pe using saddle point method in comparison
to the simulated Pe for I = 13, σ2 = 1 and N = 63

Fig. 1 AREnd,ld(m, σ, I) against m of the proposed detector in (7)
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5 Computational complexity

In this section, we evaluate the computational complexity of
the proposed detectors. The suboptimal detectors in (7)
require (m− 1)N multiplications and N− 1 additions for
decision making about one bit. Since the MF requires N− 1
additions for one bit decision making, the proposed detector
requires only (m− 1)N more multiplications with respect to
the conventional MF.
Now, we have to calculate the number of computations for

evaluating ARE for a given m, using (9). First, we note that
we can estimate the expected value of a RV from its
received samples using an iterative method. In fact, we can
estimate the expected value of the RV Z from its samples,
that is, zn, as follows [29, p. 192]

Ên(Z) =
n− 1

n

( )
Ên−1(Z)+

1

n

( )
zn

where Ên(Z) denotes the estimate of expected value in the nth
iteration. As we see, every iteration of the expected value
estimator requires six floating point operations (FLOPS).
Secondly, the evaluation of ARE in every iteration requires

m + 5 FLOPS for calculation of E wm−1
k

( )[ ]2
, 7 FLOPS for

calculation of E w2
k

( )
, 2m + 5 FLOPS for calculation of

E w2m
k

( )
and 4 FLOPS to obtain the final result for the ARE

value. Consequently, the overall FLOPS required for ARE
evaluation is 3m + 21 per iteration, for a given m.
It is worth noting that one has access to the samples of the

observation noise wk during the natural silent periods in the
voice and data signals of the desired user [30, p. 474]. In
these silence periods, the transmitter is kept inactive to
reduce the overall interference in the system and also to
increase the battery lifetime in a mobile station.

6 Performance evaluation in Ricean fading
and asynchronous channels

For the Ricean fading channel, A and I are Ricean RVs with
parameters (μ, σs) [2, 31]. The Rice factor is defined by
K = m2/2s2

s and measures the fading severity of the
channel. μ2 is the mean power of the LOS component and
2s2

s the mean power of the scattering components [31]. As
we saw in Section 3, we have to calculate (9) to find out
whether the performance of the proposed detectors is better
than conventional MF or not. For this purpose, we can use
(14) which corresponds to E[w2m|I] in the Ricean fading
scenario. To obtain E[w2m], we use the equation E[E(y|x)]
= E[y] which leads to

E[w2m] = (2 m)!
s2

2

( )m

×
∑m
k=0

2k

(2 k)!s2k(m− k)!

∫1
0
I2k f (I)dI (21)

where f (I ) is the Ricean RV. Using the equation for the
moments of Ricean PDF in [2, p. 51], we obtain

∫1
0
I2k f (I)dI = 2s2

s

( )k
G(1+ k)1F1 −k, 1; − m2

2s2
s

( )
(22)

where 1F1(a,b;x) is the confluent hypergeometric function

defined in [2, pp. 49–51]. Substituting (22) in (21) and
using (9), we calculate the ARE performance of the
proposed suboptimal detectors versus m for different K
factor values, which is shown in Fig. 3. As we observe
from this figure, for larger K factor values more
improvement is possible using the proposed detectors. We
also note that for a given K factor value, each ARE curve
has a maximum that determines the best value for m in the
non-linearity, g(y) = ym. K factor estimation can be achieved
using the method in [31].
For the asynchronous case, that is, when the chips of the

different users are not aligned [2, p. 1039] [1, 10], there is a
time-varying delay for the interferer chips with respect to
the desired signal which can be modelled as a uniform RV
in the interval [0, Tc) [1, 10], where Tc is the chip duration.
In this case, there are exactly two consecutive chips from
interferer that overlap a chip duration of the desired signal.
When the consecutive chips of the interferer are similar at
the desired signal chip MF integrator, the interferer
component at the output of the chip MF has its maximum
and minimum values +Imax and −Imax, respectively. Since
the PN sequence of the users are assumed truly random, we
have P(ik = Imax) = P(ik =− Imax) = 0.25. Otherwise, when
the consecutive chips of the interferer are different, it is
reasonable to model the interferer component as a uniform
RV in the interval [−Imax, Imax], because the delay of the
interferer is uniformly distributed. Since the different
consecutive chips case happens with probability 0.5, the
PDF of interferer at the output of the desired signal chip
MF is

f (x) = 1

4
d(x− Imax)+

1

4Imax

× u(x+ Imax)− u(x− Imax)
[ ]+ 1

4
d(x+ Imax) (23)

where u(·) is the unit step function and δ(·) is the Dirac delta.
Since the interferer is not phase synchronised for the carrier
modulated signals, the interferer term must be multiplied to
a random factor cosf, where f is a uniformly distributed
RV in the interval [0, 2π) [1, 32]. Hence, the observation
noise wk in (2) can be written as Xcosf + νk for the

Fig. 3 AREnd,ld(m, σ, I) for noise in (3) with σ2 = 1, when I is
Ricean with different K factor values and also asynchronous
channel with Imax = 15
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asynchronous case, where the PDF of X is given in (23). ARE
curve for an asynchronous interferer with Imax = 15, σ2 = 1 is
obtained based on 105 samples of wk, which is shown in
Fig. 3. This curve predicts that the best value for m is m = 13.

7 Numerical results

In this section, we perform some simulations to investigate
the Pe performance of the proposed detectors. We compare
the performance of the proposed detectors with that of the
ML detector which knows the parameters A, I and σ2. We
depict Pe performance of the different detectors in Fig. 4,
for I = 13 and σ2 = 1, when PG of the SS system is N = 63
and signal-to-noise ratio (SNR) is defined as SNR = NA2/
2σ2. As we observe, the detector with non-linearity g(y) =
ym outperforms the MF, and by increasing m its
performance improves until reaching m = 15 which agrees
with the ARE curves in Fig. 1. In Fig. 5, we depict the Pe

performance of different detectors for I = 30, σ2 = 1 and N
= 63. As we expected from Fig. 1, for I = 30, by increasing
m, the Pe performance of the proposed detectors is
enhanced. Notice that for limited values of N, this
enhancement stops in an m value because (15) is obtained
for N→∞. Now, we present another scenario, where
another interferer with unknown level I enters into the
system with model in (1). The observation noise PDF can
be obtained as

fU (wk) =
1

4

× N s2 (wk − 2I )+ 2N s2 (wk)+N s2 (wk + 2I)
[ ]

(24)

As we see the even property of the observation noise is still
maintained for the PDF in (24), hence, it is plausible to use
the proposed scheme for this case, too. We depict the Pe

performance of the proposed detectors in Fig. 6, which
shows the capability of the proposed detectors in
suppressing unknown interferers. As we observe, the
performance of the proposed detectors for the observation
noise with PDF in (24) monotonically increases by
increasing m. This can be easily justified by calculating ARE via (9) and using 105 samples of the observation noise

with PDF in (24). This is depicted in Fig. 1 for observation
noise in (24) and I = 13 which agrees with Pe curves in
Fig. 6. Figs. 1 and 6 also show the capability of the
proposed detectors in rejecting 7 interferers, two with level
I1 = I2 = 13 and the others with unity power. Finally, we
evaluate Pe performance of the proposed detectors in a
Ricean fading scenario with K = 9 and s2

s = 1 and
asynchronous channel with Imax = 15. We depicted Pe

curves in Fig. 7. As we expected from Fig. 3, the
non-linearities with degrees m = 5 and around m = 13 yield
the best performance for the Ricean and asynchronous
channels, respectively. It is worth noting that the definition
of the ARE before (8) is for the cases with N→∞ and
A→ 0. Consequently, when N has limited value and A is
large, some small mismatches may happen in the ARE and
Pe curves.

8 Conclusions

In this paper, we have proposed monomials with odd integer
powers for blind multiuser detection of CDMA signals with

Fig. 4 Pe against SNR for I = 13, σ2 = 1, N = 63 and observation
noise in (3)

Fig. 5 Pe against SNR for I = 30, σ2 = 1, N = 63 and observation
noise in (3)

Fig. 6 Pe against SNR for I = 13, σ2 = 1, N = 63 and observation
noise in (24) and also 7 interferers case
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long spreading codes. These non-linearities make the
detectors robust against the strong interferer. The proposed
non-linear detectors do not require neither training nor the
spreading code of the interferers. Furthermore, the detectors
do not require long convergence time for decision making.
We have demonstrated analytically that the proposed
detectors significantly outperform the MF detector at the
cost of a small increase in computational complexity. We
have also determined the optimum integer power values for
some important communication channels.
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