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Abstract: One of the major concerns in wireless communications is multipath fading that causes some adverse effects and
significantly limits the performance of a system. To overcome these effects in orthogonal frequency division multiplexing,
system channel estimation must be performed. Pilot arrangement is very crucial in pilot aided channel estimation. There is
an inevitable trade-off between the number of pilot symbols used in channel estimation, the accuracy of such estimation,
and spectral efficiency. In this study, the analytical formulation of the channel estimation mean squared error based on a
channel’s sampled power density is presented. A novel mathematical rule for the optimum pilot symbol interval and a
novel adaptive pilot placement are proposed to improve channel estimation quality and bandwidth efficiency. The
optimum pilot symbol intervals which are related to channels’ coherence times and coherence bandwidths can be
calculated easily with the use of the proposed method. As the proposed method effectively reduces the number of
searches for the optimum pilot symbol interval, it gives rise to simply constructing adaptive pilot placement in real-
time systems. Compared with fixed pilot placement, the proposed adaptive placement shows obvious improvement up
to 6% in bandwidth efficiency while maintaining the bit error rate performance.

1 Introduction

Orthogonal frequency division multiplexing (OFDM), a form of
multicarrier modulation, has recently become highly appealing for
wireless communication systems for major advantages such as
efficient use of available spectrum, increased robustness to
frequency selective fading, higher data rate transmission capability,
and enhanced capability to combat intersymbol interference (ISI)
and intercarrier interference (ICI).

In wireless systems, transmitted information reaches receivers
after passing through a radio channel. In OFDM systems, to adapt
the system to radio channel variations, to lower bit error rate
(BER), and hence to increase the system performance, an
appropriate channel estimation method must be applied depending
on the type of fading. Channel estimation methods can be
grouped into two categories: non-pilot aided and pilot aided. Due
to the limitations of non-pilot aided algorithms such as the
requirement of statistical knowledge of received signal, the pilot
aided channel estimation is more effectual, hence have become
more popular [1].

One-dimensional pilot aided channel estimation can be performed
by either inserting pilot symbols into all of the subcarriers of OFDM
symbols with a specific period (block type) or inserting pilot tones
into each OFDM symbol (comb type), which requires an efficient
interpolation technique [2]. It is shown in [2] that low-pass
interpolation yields the minimum BER. Since radio channel is
frequency selective and time varying, pilots can be scattered as
two dimensional (2D) in both time and frequency, which allows
better tracking of channels. Therefore, designing an effective 2D
pilot pattern is very crucial and addressed in many works [3–5].

The channel estimation accuracy can be improved by choosing
proper pilot pattern according to a channel’s type of selectivity
and/or increasing the pilot density. There is an inevitable trade-off
between the channel estimation accuracy and the spectral
efficiency of the system. Using more pilot symbols reduces the
spectral efficiency while increasing the system performance and
vice versa. Therefore, determining the pilot pattern that yields

higher spectral efficiency, higher estimation accuracy, and lower
computational complexity is very crucial.

The frequency selective channel estimation problem in OFDM is
investigated from the perspective of compressed sensing (CS), two
criteria for optimising the pilot pattern for CS-based channel
estimation is proposed in [5], and better channel estimation mean
squared error (MSE) and BER performance is obtained by the use
of the optimised pilot pattern without computational complexity.
In [6] a new tight bound for the number of used pilots in channel
estimation for OFDM systems is driven, and system performance
is improved compared with the conventional schemes by using
this bound. To estimate fading channel, a new method based on
wavelet decomposition is presented in [7]. By using this method,
noise effect is reduced, and the system becomes more robust to
changes in modulation parameters and pilot spacing; thus, better
channel estimation is obtained. To optimise the placement of the
pilot tones in SISO and MIMO, a transmitter algorithm is
proposed in [8]. The optimiser that is based on differential
evolution adapts the time frequency pilot spaces according to the
changes in the channel’s delay spread and Doppler spread as well
as pilot power allocation, resulting in optimal pilot designs with
affordable computational costs. In [9], a novel low complexity
channel estimator for OFDM systems with irregular pilot
arrangement is proposed and the impact of pilot arrangement on
channel estimation MSE is analysed. The analytical formulation of
the channel estimation MSE as a function of the pilot density for a
given power efficiency is presented in [10], and it is confirmed
that the optimum density is the one that closely fulfils the 2D
sampling theorem via simulations and analytical results. In [11],
optimal pilot symbol design for time invariant scenarios is
investigated, analytical expressions for the optimal distance
between adjacent pilot symbols and the optimal power distribution
between pilot symbols and data symbols are obtained, and with
the use of this system, approximately 30% capacity gain is
achieved. In [12], the effect of pilot arrangement on OFDM
system performance for different time and frequency selective
fading channels is evaluated in terms of BER and the relationship
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between the optimum pilot intervals, channels’ coherence time (Tc),
and coherence bandwidth (Bc) is determined.

In this study, the design of the optimal 2D rectangular pilot pattern
so as to minimise the MSE of the estimated channel impulse
response (CIR) is proposed. First, the optimum pilot symbols in
frequency and time direction are analytically derived based on
channels’ sampled power spectral density. Then, a novel
mathematical method is proposed that relates the optimum pilot
symbol intervals to a channel’s coherence bandwidth and
coherence time. Based on the proposed method, a new adaptively
changing pilot placement is suggested and verified by computer
simulations. Compared with fixed pilot placement, with the use of
the adaptive placement, higher bandwidth efficiency is achieved
without performance loss.

2 OFDM system and wireless channel
characteristics

In a pilot aided channel estimation based system, the input data is
divided into blocks called OFDM symbols. A cyclic prefix (CP)
during guard interval is added to each symbol to prevent ISI and
ICI. Discrete Fourier transform is performed on the guard interval
removed symbol at the receiver. The received symbol is as follows

Y (n, k) = H(n, k)X (n, k)+W (n, k),

n = 0, . . . , Ns − 1, k = 0, . . . , Nc − 1
(1)

where H(n, k) is complex channel coefficients for nth symbol and kth
subcarrier, X(n, k) is modulated input data, W(n, k) is additive white
Gaussian noise, Nc is the number of subcarriers per OFDM symbol,
and Ns is the number of OFDM symbols per OFDM frame.

Then, the pilots are extracted, complete channel coefficients are
estimated, and the binary information data is obtained.

In mobile communications, the transmitted signal arrives at the
receiver through multiple paths due to reflections, scattering, and
diffraction that causes delay, attenuation, and phase shift. This
phenomenon is known as multipath channel. Another characteristic
of the multipath channel is time variation that arises due to the
movement of either transmitter or receiver. The time varying
multipath channel can be characterised in frequency domain by Bc

and in time domain by Tc.
The Bc can be obtained from a frequency correlation function

(FCF) that describes the time varying channels’ dispersion in
frequency [13]. The FCF, R(Ω), for a wide sense stationary
uncorrelated scattering (WSSUS) channel is given in (2),

R(V) =
∫+1

−1
Ph(t) e

−j2pVt dt (2)

where Ω is difference frequency variable, and Ph(t) is power delay
profile. Bc is defined as the bandwidth over which the normalised
FCF function is above 0.5, 0.75, or 0.9 (Bc,0.5, Bc,0.75, Bc,0.9).

The Tc can be obtained from time correlation function (TCF) [13].
TCF, R(j), for a WSSUS channel is given by

R(j) =
∫+1

−1
Sh(f ) e

j2pjf df (3)

where j difference time variable and Sh( f ) is Doppler power
spectrum. Tc is defined as the time over which the normalised TCF
is above 0.5, 0.75, 0.9 (Tc,0.5, Tc,0.75, Tc,0.9).

3 MSE analytical formulation

In pilot aided channel estimation, selection of pilot pattern is
important. The pilot symbols should be placed close enough to
each other enable the system to follow the time and frequency

variations of the channel, and far enough to increase the
bandwidth efficiency. The lower bound for the pilot interval is
determined according to the Nyquist sampling theorem in (4),

Nt ≤
1

2 fd,maxTs
, Nf ≤

1

2tmaxDf
(4)

where Nt and Nf are spacing between pilot symbols in time and
frequency direction respectively, Ts is OFDM symbol duration, Δf
is subcarrier spacing, fd,max is the maximum Doppler shift, and
tmax is the maximum delay spread [14].

The estimation of the channel at the pilot frequencies can be based
on least square (LS), and the LS estimate of channel at the pilot
positions is given as

Ĥ(np, kp) =
Y (np, kp)

X (np, kp)
= H(np, kp)

+W (np, kp)

X (np, kp)
= H(np, kp)+ N (np, kp)

(5)

where X(np, kp) denotes the pilots, N(np, kp) denotes the noise term at
pilot locations np in time direction and kp in frequency direction.

Then, the final estimates of complete channel coefficients
[H̃(n, k)] are obtained from Ĥ(np, kp) using appropriate
interpolation techniques. Let H̃(n, k) denote the final estimate of
channel at nth symbol and kth subcarrier, and E{.} denote the
expected value; then, channel estimation MSE can be calculated as
follows

s2
e = E H̃(n, k)− H(n, k)

∣∣ ∣∣2{ }
(6)

The Nf and Nt values that minimise the MSE of the CIR estimation
must be determined. If there is no noise or interference, the CIR can
perfectly be estimated by using an ideal interpolator as in (7),

H n, k[ ] =
∑+1

i=−1

∑+1

ℓ=−1
HS n+ i, k+ ℓ[ ]vp i, ℓ[ ] (7)

where HS[n, k] is equal to H[n, k] for the pilot symbol and zero
otherwise, and ωp[i, ℓ] is the ideal 2D sinc filter coefficients.

The real LS estimates are noisy samples of the channel that are
used as the input to the 2D non-ideal estimation filter to obtain the
CIR estimate H̃[n, k],

H̃ n, k[ ] =
∑+1

i=−1

∑+1

ℓ=−1
ĤS n+ i, k+ ℓ[ ]v i, ℓ[ ] (8)

where ĤS[n, k] is equal to Ĥ[n, k] for the pilot symbol and zero
otherwise, and ω[i, ℓ] denotes the coefficient of the interpolator.

The estimation error is calculated as (see (9)) where NS[n, k] is
equal to N[n, k] for the pilot positions and zero otherwise, and
ωe(i, ℓ)denotes the error due to imperfect estimation filter.

Applying 2D discrete time Fourier transform (DTFT) to the (9),
the error can be rewritten as follows

E(vn, vk ) = HS(vn, vk )We(vn, vk )

+ NS(vn, vk )W (vn, vk )
(10)

Applying 2D discrete Parseval’s theorem to (10), the channel

IET Commun., 2015, Vol. 9, Iss. 15, pp. 1915–1923
1916 & The Institution of Engineering and Technology 2015



estimation MSE can be written as

s2
e =

1

4p2

∫p
−p

∫p
−p

SHS
(vn, vk ) We(vn, vk )

∣∣ ∣∣2 dvk dvn

+ s2
n

4p2NfNt

∫p
−p

∫p
−p

W (vn, vk )
∣∣ ∣∣2 dvk dvn

(11)

where SHS
is the sampled channel’s power spectral density as shown

in Fig. 1 and s2
n is the variance of the noise.

The 2D DTFT of the error filter is given by

We(vn, vk ) = W (vn, vk )−Wp(vn, vk ) (12)

Because

Wp(vn, vk ) = NfNt, vk

∣∣ ∣∣ ≤ p/Nf , vn

∣∣ ∣∣ ≤ p/Nt

0, otherwise

{
(13)

as shown in Fig. 2, the error can be rewritten as

We(vn, vk ) = W (vn, vk )− NfNt, vk

∣∣ ∣∣ ≤ p/Nf , vn

∣∣ ∣∣ ≤ p/Nt
W (vn, vk ), otherwise

{
(14)

Because the interpolator filters most of the energy of the channel
replicas inside the area |ωk|≤ π /Nf, |ωn|≤ π /Nt as shown in Fig. 1,
the error introduced by the first term of (11) in this area is

negligible, and (11) can be approximated as

s2
e ≃

1

4p2

∫p
Nt−p

Nt

∫p
Nf−p

Nf

SHS
vn, vk

( )
W vn, vk

( )− NfNt

∣∣ ∣∣2 dvk dvn

+ s2
n

4p2Nf Nt

∫p
−p

∫p
−p

W vn, vk

( )∣∣ ∣∣2 dvk dvn

(15)

The optimum Nf and Nt can be determined by solving

∂s2
e

∂Nf

∣∣∣∣∣
Nf=N̂ f

= 0 and
∂s2

e

∂Nt

∣∣∣∣∣
Nt=N̂ t

= 0 (16)

Since the limits of the integral are independent from the partial
derivative variables,

∂

∂Nt

∂

∂Nf

s2
n

4p2

∫p
−p

∫p
−p

W (vk , vn)
∣∣ ∣∣2 dvk dvn

[ ]
= 0 (17)

The partial derivative of the first term of (15) with respect to Nf and
Nt must be equal to zero for the optimum N̂f and N̂t values, as in (18):
(see (18)). In the presence of noise, the term We (ωn, ωk) in (18)
always contains non-zero values, as given in (19), and its absolute
value is greater than zero.

We vn, vk

( ) = 0, W vn, vk

( )⇔ Wp vn, vk

( )
non-zero values, otherwise

{
(19)

Fig. 1 Channel’s sampled power spectral density

Fig. 2 Ideal 2D sinc filter’s magnitude response

e n, k[ ] = H̃ n, k[ ] − H n, k[ ]

=
∑+1

i=−1

∑+1

ℓ=−1
ĤS n+ i, k+ ℓ[ ]v i, ℓ[ ] −

∑+1

i=−1

∑+1

ℓ=−1
HS n+ i, k+ ℓ[ ]vp i, ℓ[ ]

=
∑+1

i=−1

∑+1

ℓ=−1
HS n+ i, k+ ℓ[ ] + NS n+ i, k+ ℓ[ ]( )

v i, ℓ[ ] −
∑+1

i=−1

∑+1

ℓ=−1
HS n+ i, k+ ℓ[ ]vp i, ℓ[ ]

=
∑+1

i=−1

∑+1

ℓ=−1
HS n+ i, k+ ℓ[ ] v i, ℓ[ ] − vp i, ℓ[ ]

( )
︸�����������︷︷�����������︸

ve i,ℓ[ ]

+
∑+1

i=−1

∑+1

ℓ=−1
NS n+ i, k+ ℓ[ ]v i, ℓ[ ]

(9)
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Keeping that in mind, (18) can be equal to zero if and only if the
condition in (20) is fulfilled.

∂

∂Nt

∂

∂Nf

∫p
Nt

−
p

Nt

∫p
Nf

−
p

Nf

SHs
(vn, vk ) dvk dvn

⎡
⎢⎣

⎤
⎥⎦
∣∣∣∣∣∣∣Nt=N̂ t
Nf=N̂ f

= 0 (20)

(see (21)).

After taking the partial derivative of (20) with respect to Nf, and
using the symmetrical property of power spectral density, (21) can
be rewritten as follows:

∂

∂Nt

∫(p/Nt)

−(p/Nt)
− 2p

N2
f

( )
SHs

vn,
p

Nf

( )[ ]
dvn

[ ]∣∣∣∣∣Nt=N̂ t
Nf=N̂ f

= 0 (22)

Then, (22) can be reorganised as

−2p

N2
f

( )
SHs

p

Nt
,
p

Nf

( )
− p

N2
t

( )
− SHs

p

Nt
, − p

Nf

( )
p

N2
t

( )[ ]∣∣∣∣
Nt=N̂ t
Nf=N̂ f

= 0

(23)

The channel estimation MSE can directly be expressed as a function
of a channel’s sampled power density as follows:

4p2

N2
f N

2
t

( )
SHs

p

Nt
,
p

Nf

( )[ ]∣∣∣∣∣Nt=N̂ t
Nf=N̂ f

= 0 (24)

The N̂f and N̂t values that make the SHS
value zero in (24) are

determined as the optimum Nf and Nt.

4 Analysis and results

In this study, the impact of pilot density on channel estimation error
performance is evaluated by analytical results. Pilot symbols are
inserted as 2D rectangular. Nf and Nt values that yield the
minimum SHS

value in dB are determined as N̂f , N̂t. A propagation
measurement based channel model was used in the calculations to
adapt the system to real-time conditions. The propagation
measurements were previously carried out in Manchester city
centre within the middle 20 MHz section 2110–2170 MHz band
using a CHIRP sounder. Details of the sounder and the
measurements can be found in [15]. Five different frequency
selective channels that represent mild, moderate, and strong
multipath spreads are chosen, and these data are referred to as
Channel 1 (Ch1), Channel 2 (Ch2), Channel 3 (Ch3), Channel 4
(Ch4), and Channel 5 (Ch5). The average impulse responses (IRs)
for the channels are depicted in Fig. 3, while the system
parameters and channel properties are given in Table 1. To create
different time selective channels the simulator that uses the Clarke
and Gans model is used [16]. The Rayleigh fading envelopes are
obtained for 5, 92, 166, 222, 370 Hz Doppler frequencies and 2
GHz carrier frequency, and these fadings are applied to all paths.

4.1 Optimum pilot intervals

The impact of pilot density on channel power spectral density’s
envelope is evaluated for various Nf and Nt, then the Nf and Nt

values that yield the minimum normalised SHS
value are defined as

the optimum pilot symbols (N̂f andN̂t). The simulations are
performed for all the Nf and Nt values which fulfil (4). However,
the results between the intervals which contain the minimum value
are shown in Fig. 4. Because Ch1 represents the lowest frequency
selectivity, 5 and 370 Hz Doppler frequencies cause the lowest
and the highest time selectivity; the results are given in the
following figures for mentioned ones, while others are saved to be
used during the curve-fitting process.

The changes in the envelope of normalised power spectral
densities versus Nf and Nt, for Ch1, 5 and 370 Hz Doppler
frequency are given Figs. 4a and b. In Fig. 4 the (N̂f , N̂t) values
are shown with a circle.

Since Ch1’s frequency selectivity and for 5 Hz Doppler frequency
time selectivity is low, optimum pilot density is obtained at larger Nf

and Nt values (Fig. 4a). With the increase of a channel’s time
selectivity, the optimum Nt value is decreased and optimum Nf

value remains almost the same.
After determining the optimum pilot density, the optimum pilot

symbol interval in frequency (Δfopt) and time (Δtopt) direction is
calculated from N̂f , N̂t as follows

D fopt = N̂f .Df (25)

Dtopt = N̂t.Ts (26)

4.2 Proposed adaptive pilot placement

The optimum pilot symbol intervals are obtained through (25) and
(26) for five different frequency selective channels and Doppler
frequencies. In this study, unlike the previous studies, relating
these optimum intervals to a channel’s coherence time and
bandwidth is the aim. To achieve this goal, coherence time and
bandwidth with 0.5, 0.75, and 0.9 correlation coefficients, which
are frequently used in the literature, are related to the optimum
intervals by using the following equations.

Ff ,c(w) =
Bc,c(w)

D fopt(w)
w = 1, 2, . . . , 5

c = 0.5, 0.75, 0.9
(27)

Ft,c(g) =
Tc,c(g)

Dtopt(g)
g = 1, 2, . . . , 5

c = 0.5, 0.75, 0.9
(28)

Therein, j is the number of channels, γ is the number of different
Doppler frequencies, c is correlation coefficients, and Ff,c and Ft,c

are the ratio parameters for frequency and time direction
respectively. The statistical evaluation between the optimum pilot
symbol interval and channels’ coherence bandwidth and coherence
time is assessed for all cases, as well as the cumulative distribution
functions (CDF) which are used for determining the probability of
being lower or higher than a certain value or between two values
in analysis. Thus, use of the generalised distribution functions
gives rise to determining which correlation coefficient relates the
parameters the best. Generalised CDF for the generalised ratio

∂

∂Nt

∂

∂Nf

1

4p2

∫p
Nt

−
p

Nt

∫p
Nf

−
p

Nf

SHs
(vn, vk ) W (vn, vk )− NfNt

∣∣ ∣∣︸�����������︷︷�����������︸
We(vn ,vk )

2
dvkdvn

⎡
⎢⎣

⎤
⎥⎦
∣∣∣∣∣∣∣
Nt=N̂ t
Nf=N̂ f

= 0 (18)

∂

∂Nt

∫(p/Nt )

−(p/Nt)
SHs

vn,
p

Nf

( )
− p

N 2
f

( )
− SHs

vn, −
p

Nf

( )
p

N 2
f

( )[ ]
dvn

[ ]∣∣∣∣∣Nt=N̂ t
Nf=N̂ f

= 0 (21)
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parameters (F̂f ,c and F̂t,c) are illustrated in Figs. 5a and b for Bc, and
Tc, respectively. As seen in Fig. 5a, F̂f ,c is approximately 1.5 for
15% of all data at three correlation levels. As the F̂f ,c increases
twofold, 20, 25, and 95% of data can be represented by 0.5, 0.75,
and 0.9 correlation levels, respectively. 100% of data is covered at
3.8 F̂f ,c for 0.9 correlation. Similarly, for coherence times, 15% of
data can be represented at all correlation levels by choosing the
F̂t,c as 0.8. When the F̂t,c is about 1.6, the optimum pilot symbol

interval in the time direction can be determined for 24, 34, and
85% of data at the corresponding correlation level. Complete data
representation is obtained for the F̂t,c of 2.6 for 0.9 correlation.
Considering both the data representation percentage and margin of
error for the fixed 95% confidence interval, the optimum pilot
symbol intervals can be expressed best with coherence bandwidth
and time at 0.9 correlation. It is also seen from the figures that the
F̂f ,0.9 varies between 1.28–3.80, and for F̂t,0.9 between 0.71–2.60.
The estimated optimum pilot symbol intervals Df̂opt and Dt̂opt can
be calculated as follows

Df̂opt(w) =
Bc,0.9(w)

F̂ f ,0.9(w)
(29)

Dt̂opt(g) =
Tc,0.9(g)

F̂ t,0.9(g)
(30)

Then, the normalised root mean squared errors (NRMSE) between
the estimated and actual optimum pilot symbol intervals are

Fig. 3 Average IRs for

a Ch1
b Ch2
c Ch3
d Ch4
e Ch5

Table 1 System parameters and channel properties

Number of users One

uplink/downlink Downlink
number of subcarriers (Nc) 1024
number of OFDM symbols (Ns) 2048
CP length 256
transmission bandwidth 20 MHz
channel model Ch1 Ch2 Ch3 Ch4 Ch5
RMS delay spread, trms, μs 0.078 0.217 0.249 0.364 0.767
fading type Rayleigh
doppler frequencies, Hz 5, 92, 166, 222, 370
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calculated as in (31) and (32) and shown in Fig. 6.

NRMSEf =

�����������������������������������
1

5

∑5

w=1
D fopt(w)− Df̂ opt(w)
[ ]2√

max (D fopt)−min (D fopt)
(31)

NRMSEt =

����������������������������������
1

5

∑5

g=1
Dtopt g

( )− Dt̂opt g
( )[ ]2√

max (Dtopt)−min (Dtopt)
(32)

By using these equations, F̂f ,0.9 and F̂t,0.9 are calculated as 2.59 and
1.77, while NRMSEs are 0.115 and 0.107, respectively.To find the
mathematical method that yields even lower NRMSE between the
optimum pilot symbol interval and channels’ coherence bandwidth
and coherence time, widely used curve fitting methods are applied
to data, and the goodness of the fits are compared in terms of
NRMSE. Taking into account both simplicity and accuracy, the
three fitting methods that yield the better performance among
others (such as exponential, Gaussian, rational i.e.) are used, and
the results are given in Figs. 7a and b for Bc,0.9, Tc,0.9,
respectively. In figures, dashed lines refer to the linear polynomial,
and dotted lines represent the power function, while a solid line
shows the quadratic polynomial. The NRMSEs of the methods are
0.093, 0.029, and 0.016 for Bc,0.9 and 0.065, 0.033, and 0.014 for
Tc,0.9, respectively.It is seen from the results that using a quadratic
polynomial yields the minimum NRMSE. The mathematical
relationships between Df̂optand Bc,0.9, Dt̂optand Tc,0.9 can be defined

as follows

Df̂opt = −0.1142 (Bc,0.9)
2 + 0.6836Bc,0.9 − 0.0074 (33)

Dt̂opt = −0.05281 (Tc,0.9)
2 + 1.13Tc,0.9 − 0.03257 (34)

The optimum pilot symbol interval in time and frequency direction
can be expressed with one variable channel parameter as in (33)
and (34) for time variant frequency selective channels. With the
use of these proposed equations, the optimum pilot arrangement
can be determined easily without high computational complexity,
as in (24).

These equations, which are obtained from five characteristically
different channel profiles, give similar results for other possible
channel conditions. To test the accuracy of the proposed method,
the optimum intervals are obtained for ITU test channels, using
(24) and the proposed method, and results are given in Table 2 as
an example. It is seen from the table that the theoretical values can
be determined easily with the use of the proposed method with, on
average, 90% accuracy.

To achieve higher bandwidth efficiency compared with fixed pilot
placement that is commonly used in literature, an adaptive pilot
pattern using the proposed method can be constructed. An
example of such a pilot placement is shown in Figs. 8a and b. It is
seen from the figures, In the case of user movement and changing
channel conditions with time (multipath profile, Doppler
frequency, etc.), there is no change in the pilot positions for the
fixed placement. However, in adaptively placed pilot symbols,
pilot positions are updated correspondingly. It is also seen from
Fig. 8b that for the case of lower selectivity, fewer pilot symbols

Fig. 4 Changes in SHS
values for Ch1 for

a 5 Hz
b 370 Hz

Fig. 5 Generalized CDF for

a Bc,
b Tc
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can be used to estimate the channel, and vice versa for higher
selectivity.

The block diagram of such a system is illustrated in Fig. 9. To use
this adaptive pattern, the receiver must send the Bc,0.9, Tc,0.9 values to
the transmitter via a feedback channel over a short period of time
when the channel has stationary fading statistics. Then, the
transmitter (adaptive pilot insertion block) determines the optimum

Fig. 7 Curve fitting performances for

a Δfopt
b Δtopt

Fig. 6 NRMSE versus

a F̂f ,0.9
b F̂t,0.9

Table 2 Performance assessment of equations

Channel Doppler,
Hz

Δfopt,
MHz

Δtopt,
ms

Df̂opt (33),
MHz

Dt̂opt (34),
ms

pedestrian-A 5 916 6.2 869 5.5
vehicular-A 70 97.5 4.3 109 4.8

Fig. 8 Example for

a fixed
b adaptive placement of pilot symbols
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pilot symbol interval using the proposed method [(33), (34)]. The
details of the proposed adaptive system are explained in the flow
chart in Fig. 10. In the first system, the initial values of Bc and Tc
are assigned. Then, the OFDM symbol is sent via wireless radio
channel. After that, the Bc and Tc values that are sent via the
feedback channel are compared with the previous values in the
adaptive pilot insertion block. If there is a change in Bc and Tc,
time and/or frequency direction pilot pattern is modified
accordingly; otherwise, no pilot symbols are inserted into the data.
Therefore, a more efficient adaptive pilot pattern can be obtained.
Using this adaptive pattern leads to minimising channel estimation
error and maximising bandwidth efficiency for slow or fast
changing channels.

4.3 Performance of proposed algorithm

In the end of the study, performance comparison of fixed pilot
placement (Fig. 8a) and proposed adaptive pilot placement
(Fig. 8b) is done. To do so, an OFDM system simulator is created
with the parameters in Table 1. It is assumed in simulations that the
vehicle passes through Ch1–Ch5, respectively, at the velocity of 50
km/h, as shown in Fig. 11, and stays in each channel for a second.

Performance comparison between fixed (rectangular pattern) and
adaptive placement is assessed in terms of BER and shown in
Fig. 12. In simulations, for the fixed placement, pilot spacing in
frequency and time direction (Nf × Nt) are chosen as 4 × 4, 8 × 8,
and 16 × 16, while, for the proposed placement, as 50 × 45, 30 × 45,
15 × 45, 9 × 45, 4 × 45 which are calculated through (33) and (34)
for each channel respectively. As seen from the figure, the use of
the proposed adaptive placement provides notable BER
performance improvement over the use of other ones. It can also
be seen that the use of the adaptive placement closely follows the
results for 4 × 4.

In spite of having good BER performance, using 4 × 4 fixed pilot
placement causes considerable degradation in bandwidth efficiency
compared with the proposed method. The bandwidth efficiency (η)
can be obtained by the equation as follows

h = NUD

NUD + NP
(35)

where NP is number of pilot symbols, and NUD is number of useful
data in an OFDM frame, these can be calculated as follows

NP = Ns

Nt
· Nc

Nf
(36)

NUD = Ns.Nc − NP (37)

The bandwidth efficiencies are calculated for all of the pilot
placements within each channel. Then mean of the results are
given in Table 3. By using the adaptive placement, 99.7%
bandwidth efficiency is achieved, that is, 6% higher than for 4 × 4.

Fig. 9 Structure of the proposed OFDM system with adaptive pilot
placement

Fig. 10 Flow chart of the proposed algorithm

Fig. 11 Channel change for the simulation

Fig. 12 Performance comparison of the methods
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5 Conclusions

In this study, channel estimation quality is assessed for different
pilot densities, and types of fading analytically. Then a novel
adaptively changed pilot placement based on channel parameters is
proposed. To determine this placement, the pilot intervals that
yield the minimum sampled channel’s power spectral density
value in frequency and time direction are determined and related
to Bc,0.9 and Tc,0.9, respectively. The results demonstrate that using
a quadratic polynomial yields the minimum normalised root MSE
for fitted curve. Using this proposed method gives rise to
constructing the adaptively placed pilot symbols according to
changing channel conditions easily with reduced computational
complexity while minimising channel estimation error and
maximising bandwidth efficiency.
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Table 3 Bandwidth efficiencies for different pilot placements

Pilot
placement
(Nf ×Nt)

Channel Bandwidth
efficiency, η

Ch1 Ch2 Ch3 Ch4 Ch5

proposed 50 × 45 30 × 45 15 × 45 9 × 45 4 × 45 0.997
fixed 4 × 4 0.937

8 × 8 0.984
16 × 16 0.996
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