
Noting the benefits of mathematics in students’ future educational attainment and labor 
market success, there is considerable interest in high school requirements in terms of 
course-taking in mathematics at the national, state, and school district level. Previous 
research indicates that taking advanced math courses in high school leads to positive col-
lege outcomes. However, these studies often fail to account for the self-selection of students 
into curricular pathways that may result in biased estimates of the effect of course-taking 
on subsequent educational outcomes. Applying an instrumental variable (IV) approach, 
we investigate how the level of math courses a student completes in high school differ-
ently affects their chances of attending and completing postsecondary education. Using 
longitudinal student unit record data from Florida, our results indicate that a statistical 
model that does not account for students’ self-selection produces results different from a 
technique that corrects for this potential source of bias. Specifically, completing Algebra II 
significantly increases the probability of attending college, particularly two-year colleges, 
but has no significant effect on degree attainment.

Keywords: high school mathematics; high school course-taking; Algebra II; college at-
tendance; degree attainment; instrumental variable

Introduction

There is broad consensus that mathematics skills are critical for one’s 
future educational attainment and labor market success. Prior research 
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indicates that students who complete more and higher levels of mathe-
matics courses in high school are more likely to pursue higher education 
and to have higher earnings later in life (Adelman, 2006; Altonji, 1995; 
Rose & Betts, 2004). Despite the importance of math skills, the United 
States has consistently ranked low among Organization for Economic 
Cooperation and Development (OECD) countries in international com-
parisons of math literacy, and the average math score of fifteen-year-old 
students in the U.S. has fallen significantly below the OECD average 
(OECD, 2013).

Increasing mathematics curriculum standards in high school has 
therefore received particular attention as a means to strengthen the rigor 
and raise the expectations for what counts in the awarding of a high 
school diploma. The curricular improvement envisioned in A Nation at 
Risk (1983) urged states to raise academic requirements for high school 
graduation, recommending that all students complete three courses in 
math and science to graduate from high school (Teitelbaum, 2003). 
The federal No Child Left Behind (NCLB) Act of 2001 prompted in-
creased accountability at the state level, particularly in the specification 
of mathematics curriculum requirements (Reys, 2006). In response to 
these national policy changes, many states have increased the minimum 
number of credits (and years) of mathematics required to graduate from 
high school, and states are also specifying particular types of math-
ematics courses that students must complete (Federman, 2007; Reys, 
Dingman, Nevels, & Teuscher, 2007).

There is some evidence that these statewide efforts to increase high 
school graduation requirements encourage students to earn more math-
ematics credits in high school (Teitelbaum, 2003). However, what re-
mains unclear is whether and how the benefits of completing more 
advanced courses in general, and the completion of specific types of 
advanced courses (e.g., mathematics) in high school translates into ex-
panded access to and successful completion of postsecondary education, 
especially in terms of bachelor’s degree attainment.

To answer this question, we examined the effects of completing more 
rigorous courses in high school on access to and graduation from col-
lege, focusing on the mathematics curriculum. We investigated how a 
specific level of math course preparation in high school (completing Al-
gebra II) may differentially affect a student’s chances of attending and 
completing postsecondary education.1 We used Florida’s longitudinal 
student unit record data to examine the impact of math preparation in 
high school for six cohorts of students who were enrolled in the 7th 
through 12th grades in the 1995–96 school year and retrospectively 
tracked through the 2005–06 academic year. Florida has changed math 
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course requirements for high school graduation (Reys, et al., 2007) but 
estimating the impact of this state-level policy change is beyond the 
scope of this study. Rather, herein we examine the relationship between 
high school mathematics course completion and subsequent educational 
outcomes, and provide evidence that failing to account for nonrandom 
assignment into high school courses may provide incorrect information 
to policymakers about this important relationship.

Literature Review

Many studies of access to college take high school preparation and 
graduation as given and studies of persistence and success in college 
tend to focus on what happens during the college years. However, it is 
likely that what happens in high school is inextricably linked to one’s 
chances of entering and being successful in college. There is consid-
erable evidence that academic preparation and performance in high 
school−typically measured in terms of high school course completion 
patterns, grades, and/or college entrance exams−is positively related to 
not only graduation from high school, but also enrollment in postsec-
ondary institutions (Berkner & Chavez, 1997; Choy, 2002; Goldrick-
Rab, Carter, & Wagner, 2007; Lee, Croninger, & Smith, 1997). Students 
who take a more rigorous high school curriculum, such as Advanced 
Placement (AP), honors, and other “college prep” courses (especially 
in math), are more likely to attend college and receive a postsecondary 
degree (Adelman, 2006; Altonji, 1995; Attewell & Domina, 2008; Horn 
& Kojaku, 2001; Klopfenstein & Thomas, 2009; Rose & Betts, 2001). 
Among college preparatory curricula, the empirical evidence indicates 
the role of math course-taking in promoting access to a bachelor’s de-
gree relative to other subjects. St. John and Chung’s (2006) analysis 
using the National Education Longitudinal Study 1988 (NELS:88) re-
veals that taking advanced math courses significantly increases high 
school graduates’ probability of attending a four-year college. Klopfen-
stein and Thomas (2009) investigate the effect of AP course-taking on 
early college grades and retention. They control for non-AP curricular 
experiences that existing studies often failed to consider (e.g., Dough-
erty, Mellor, & Jian, 2005; Geiser & Santelices, 2005) and find no sig-
nificant effect of taking AP core courses on first-semester college GPA 
and retention to the sophomore year. These findings suggest that im-
proved educational outcomes by students taking AP courses may be a 
consequence of self-selection, rather than the direct result of AP course 
completion. However, these results do not shed light on the effect of 
the high school curriculum taken by most students. Using data from the 
High School & Beyond surveys (HS&B:80), Rose and Betts (2001) ex-
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plore the relationship between math courses completed in high school 
and college graduation. They find that completing higher-level math 
courses during high school significantly increases the probability of 
earning a bachelor’s degree.

Many scholars argue that important barriers to higher education are 
erected by unequal opportunities for college preparatory classes while 
in high school and that these academic barriers are greater for minor-
ity and low-income students (Kao & Thompson, 2003; Terenzini, Ca-
brera, & Bernal, 2001). Research demonstrates that socioeconomically 
advantaged students are more likely to take rigorous math and science 
courses in high school (Cavanagh, Schiller, & Riegle-Crumb, 2006). 
On the contrary, access to college-preparatory courses (e.g., advanced 
math) may be restricted for low-income and underrepresented minority 
students because their academic opportunities are often structurally con-
strained by poor school conditions that impede the provision of rigorous 
and high quality academic courses and learning resources (Perna, 2004; 
St. John & Chung, 2006).

Importantly, much of the education research that examines the ef-
fects of high school academic preparation on college-level outcomes 
fails “to be sufficiently critical of issues of causality and selection bias, 
and methodological solutions to these concerns are often underutilized” 
(Goldrick-Rab, Carter, and Wagner, 2007, p. 2471). Although high 
school curriculum choices are likely to be endogenously related to post 
high-school education outcomes, many of the existing studies do not ad-
equately account for such nonrandom selection of students into different 
high school curricular pathways (B. T. Long, 2007). Failure to account 
for this self-selection of students into curricular pathways may result 
in biased estimates of the effect of high school course taking on subse-
quent educational outcomes, thereby misleading policymakers.

Several studies have sought to account for the potential bias noted 
above by employing quasi-experimental methods such as a propensity 
score matching (Attewell & Domina, 2008) and instrumental variable 
(IV) approaches (Klopfenstein & Thomas, 2009; Rose & Betts, 2001). 
Attewell and Domina (2008) account for the nonrandom selection of 
curricular choices by employing a propensity score matching technique 
that attempts to ensure the equivalence between the “treated” (students 
taking a college-preparatory curriculum) and “control” groups (those 
who did not take a college prep curriculum) based on observable char-
acteristics. Their results indicate that taking a more demanding high 
school curriculum is associated with greater math and reading achieve-
ment in high school, higher SAT test scores, and greater access to and 
graduation from college (relative to students who took a less rigorous 
curriculum). Their findings are consistent with the historical research 



632    The Journal of Higher Education

documenting the positive effects of rigorous course completion on col-
lege enrollment, but the smaller effects they find suggest that studies 
that fail to control for observed differences between those who take a 
more rigorous curriculum and those who do not tend to produce up-
wardly biased estimates.

Instrumental variable (IV) approaches have also been used to study 
the effect of high school course completion on educational outcomes. 
An IV is a variable that is (conditionally) correlated with the treatment 
(e.g., highest level of high school math course completed) but uncor-
related with the error term in the outcome of interest (e.g., college 
attendance) equation. The IV approach can be used to isolate, net of 
other observed and unobserved factors, the effect of the treatment on 
the outcome. Altonji (1995) used the average number of courses taken 
by students in their high school as an instrument to examine the effect 
of an additional year of high school coursework on years of college 
education and postcollegiate wages. Using the National Longitudinal 
Survey of Youth (NLSY: 1979), his research indicates that an addi-
tional year of science, foreign language, and math during high school 
increases years of postsecondary education and future earnings. His 
results also reveal that the IV estimates are smaller than a “naïve” sta-
tistical model that inadequately accounts for self-selection into high 
school courses.

Rose and Betts (2001) use Altonji’s instrument to investigate the ef-
fect of the types of math courses students take in high school on col-
lege graduation and labor market earnings. Their results indicate that 
the math curriculum has a strong effect: all types of math courses have 
statistically significant positive effects on college graduation, but com-
pleting more advanced math courses has a larger impact (than complet-
ing less advanced courses) on bachelor’s degree completion and labor 
market outcomes.

Using data from the NLSY and the High School & Beyond surveys, 
Levine and Zimmerman (1995) examine the effect of math and science 
courses on college and labor market outcomes. They find that complet-
ing additional math courses during high school increases the chances 
of attending college (for men) and increases education and labor mar-
ket outcomes for female college graduates, whereas the science curri-
cula has very little impact for either gender. However, the effects are 
inconsistent across the two datasets, raising doubts about the existence 
of a common curricular impact on both education and labor market out-
comes. Also, they find that the parameter estimates of the IV regression 
are not statistically significantly different than the “naïve” ordinary least 
squares (OLS) results. They acknowledge, however, that this finding is 
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of little substance because the IV estimates are imprecisely estimated 
with standard errors substantially larger than the standard errors pro-
duced by the OLS models.

These studies are notable because they employ quasi-experimental 
methods to examine the effects of high school course taking on college 
and labor market outcomes. However, the instruments used in some of 
these studies (e.g., Altonji, 1995; Levine & Zimmerman, 1995) may not 
be valid. For example, Altonji’s (1995) instrument is likely to be condi-
tionally correlated with unobserved school characteristics that influence 
post-high school education outcomes. Moreover, these studies often 
focus on labor-market outcomes only, rather than on the educational 
processes related to high school completion, college access, and college 
completion (e.g., Joensen & Nielsen, 2009; Rose & Betts, 2004).

Notwithstanding the research mentioned above, there has been a 
dearth of evidence with regard to the direct effects of high-school cur-
ricular choices on postsecondary enrollment and degree completion. 
Our research begins to fill this gap by examining how the level of the 
math course completed in high school (e.g., Algebra II) influence stu-
dents’ chances of attending and graduating from college in the state of 
Florida. And we do so while accounting for the potential endogeneity of 
math course selection in high school on these postsecondary outcomes 
(Heckman, 1979). A better understanding of this relationship will be in-
formative for state policymakers interested in promoting college access 
and success through curriculum reforms. If differences in high school 
curricular choices really do improve postsecondary outcomes, then state 
policies aimed at encouraging students to take a more rigorous curricu-
lum may be an effective way of increasing access to and success in col-
lege, potentially improving students’ labor market outcomes (Rose & 
Betts, 2001).

High School Math Requirements in Florida

In most states, the number and rigor of the mathematics courses com-
pleted in high school has been an important component of their high 
school graduation requirements. In recent years there has been a par-
ticular interest in Algebra II as a benchmark as a course that all students 
must complete. For example, in 19 states students must complete Al-
gebra II for high school graduation.2 And states that employ the Fed-
eral government’s Common Core standards require all students to meet 
learning objectives at what is generally considered the Algebra II level, 
in order to be equipped with “algebraic thinking” skills.

The state of Florida is one such state that has increased its standards 
regarding math course completion in high school. Math is a major com-
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ponent of the requirements to receive a high school diploma, and the 
subject is particularly important in order to receive a special diploma 
establishing one’s readiness for college. Since the 1997–98 academic 
year, the number of math credits required for high school graduation 
has increased (3 credits for the entering cohort of 1997–98 and there-
after, and 4 credits for the entering cohort of 2010–11 and thereafter). 
The required course level was also increased from Algebra I to Algebra 
I and Geometry (in the academic year of 2010–11), and to Algebra II 
(in the academic year of 2012–13) (Florida Department of Education, 
2013).3 Meanwhile, Algebra II was included as a requirement for the 
College Ready Diploma (College Preparatory Program) and qualifica-
tion for state university admission (Florida Statutes, 1997; 2003; Dou-
nay, 2006).

In April 2013, the Florida Senate approved Senate Bill 1076, which 
allows students to substitute courses, including Algebra II, with industry 
certifications. This decision provoked a debate about the math course 
requirements, particularly about the role of Algebra II. While similar 
debate is in progress in other states (e.g., Texas), knowing more about 
the impact of Algebra II on students’ college attendance and degree at-
tainment may be able to provide input to these important curriculum 
decisions happening in states.

Theoretical Framework

One theory that helps explain the relationship between high school 
course-taking and postsecondary outcomes is human capital theory. 
Human capital theory rests primarily on the hypothesis that more 
schooling increases the ability, productivity and, hence, wages of stu-
dents who will enter into the labor market (Becker, 1993; Cohn & 
Geske, 1990). Completing an advanced high school curriculum may 
directly improve an individual’s labor productivity. It is also likely to 
have an indirect impact by making further increases in labor produc-
tivity possible by improving a student’s chance of being admitted to 
a four-year college and eventually earning a bachelor’s degree (Rose 
& Betts, 2001). Once students are admitted to and attend college, stu-
dents who completed higher-level courses in high school are less likely 
to be placed in remedial courses (Roth, Crans, Carter, Ariet, & Resn-
ick, 2001). Avoiding developmental courses may keep students on track 
in terms of earning credits that count toward, and a GPA sufficient to 
graduate (Long & Boatman, 2013), thereby increasing the probability of 
obtaining a college degree (Berry, 2003).

Although human capital theory offers an explanation for how com-
pleting more rigorous courses in high school may increase college ac-
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cess and success, it is difficult to test empirically because individuals 
with higher unmeasured ability may simply be more likely to complete 
higher-level math courses in high school, attend a four-year college, and 
complete a bachelor’s degree than individuals with low unmeasured 
ability. Untangling the actual contribution of a rigorous curriculum on 
postsecondary outcomes from that of students’ innate ability (or other 
possibly confounding factors) depends on how well researchers account 
for the (potential) endogeneity between high school course completion 
and subsequent educational outcomes. Recognizing the challenges in 
estimating the effect of the high school curricular choices on college 
access and success, next we discuss the empirical approach we use to 
attempt to mitigate such self-selection (i.e., nonrandom assignment) 
problems.

Methodology

Research Questions

Expanding this line of research, we examined how the math courses 
students complete in high school affect their chances of going to college 
and obtaining a degree. Specifically, we intended to answer the follow-
ing questions:

1.	 Does completing Algebra II in high school affect whether, and if so the 
type of college that a student attends?

2.	 Does completing Algebra II in high school affect whether, and if so the 
type of degree a student attains?

Data and Variables

In this study, we used data from Florida’s student unit record (SUR) 
system, obtained from the Florida Department of Education’s Educa-
tional Data Warehouse (EDW). This SUR data includes students’ de-
mographic, academic, and socioeconomic information as well as mea-
sures of the social, economic, financial, and institutional contexts these 
students faced during the observation period. Grade 7–12 and college 
enrollment information is available for individuals who have stayed in 
the Florida public education system. For individuals who work in Flor-
ida after leaving high school there is also information about their labor 
force participation and earnings. Although the coverage of the EDW is 
extensive with regard to the public education system, it does not include 
students who attend private institutions or postsecondary institutions 
outside of Florida, so they are not included in our data.

Our analytic sample included six cohorts of public school students 
(N = 758,456) who were enrolled in the 7th−12th grades during the 
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1995–1996 academic year. These students were (retrospectively) fol-
lowed for up to 10 years in order to assess their educational progress 
over time. Students in 12th (7th) grade in 1995–1996 could have grad-
uated from high school as early as 1996–1997 (2001–2002), and re-
ceived their bachelor’s degrees beginning in 1999–2000 (2004–2005).

In terms of educational outcomes, we examined both enrollment in 
and graduation from college, but different subsamples were used to 
study each of these outcomes. First, we analyzed the impact of com-
pleting Algebra II on the college enrollment margin (0 = no college, 1 = 
attended a two-year college, 2 = attended a four-year college). We also 
estimated the impact of completing Algebra II on the degree attainment 
margin (highest degree attained; where 0 = no degree, 1 = received an 
associate’s degree, 2 = received a bachelor’s degree) conditional on 
college attendance. Two different samples were used to study each of 
these outcomes. When estimating enrollment in college, the sample 
was restricted to students with high school records in the 12th grade  
(N = 615,185); when estimating college graduation, we further re-
stricted the sample to students who attended college (N = 427,845). Be-
cause these samples were very large, missing values comprised a very 
small proportion of the data,4 and appeared to be quite randomly dis-
tributed based on observable factors, we used listwise deletion.

The variable of interest was the level of mathematics courses com-
pleted in high school. This variable is binary and indicates whether a 
student passed Algebra II or higher (Trigonometry, pre-Calculus, and 
Calculus) (or not) during high school. We controlled for students’  
i) demographic (race/ethnicity, gender, free or reduced-priced lunch 
status, and language spoken at home) and financial characteristics (the 
total amount of financial aid an individual student received during col-
lege; included only in the degree attainment model); ii) academic ex-
perience (the number of AP and IB credits) and academic ability (SAT 
scores, high school GPA); and iii) cohort and school district differ-
ences, and institutional differences (in the degree attainment model). 
Descriptive statistics for each of the dependent and explanatory vari-
ables are included in Table 1.

The Statistical Model

Given the categorical nature of the outcomes, we estimated the ef-
fects of completing Algebra II on enrollment in and graduation from 
college using multinomial logistic regression (MNL). Employing MNL 
allowed us to investigate how each covariate, and in particular the  
Algebra II variable, affects the odds of choosing a particular outcome 
category. The general model is formally described in (1) below:
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		  (1)

where m indexes the j = 3 outcome categories for the enrollment and 
graduation margins; Pr(Yi = b|x) is the probability that student i will 
choose the baseline category (not attending college in the access model; 
no postsecondary degree in the attainment model); Pr(Yi = m|x) repre-
sents the probability that student i will choose one of the other catego-
ries (e.g., two-year or four-year for the college attendance margin; asso-
ciate’s degree or bachelor’s degree and above for the degree attainment 
margin) compared to the baseline category.

The vector Xi represents a set of demographic and financial character-
istics, such as gender, race, economic status (i.e., receiving free or re-
duced-priced lunch in secondary school), language spoken at home, and 
the total amount of financial aid received during college (included only 
in the degree attainment model). Because income data was not avail-
able, we used whether students receive free or reduced-priced lunch 
as a proxy for family income. As an indicator of one’s socioeconomic 
status, researchers have traditionally used direct measures of paren-
tal income, education, or occupational status. However, the eligibility 
for a free or reduced-priced lunch may also be employed as an indi-
rect indicator of socioeconomic status because eligibility for the free/
reduced lunch program is determined by the federal poverty guideline 
based on family’s gross income and the number of people in the family 
(Dynarski & Scott-Clayton, 2008; Heller & Rogers, 2006). We further 
distinguish students receiving free lunch from those students receiving 
a reduced-priced lunch (relative to students who do not participate in 
these programs).

The vector Ai represents an individual’s academic experiences during 
high school including course-taking behavior (i.e., the number of AP 
and IB credits and highest level of mathematics course completed [1 
= Algebra II or higher, 0 = less than Algebra II]) and academic ability 
(i.e., high school GPA and SAT score). The vector Zi represents cohort 
and school district fixed effects to control for time-related and unob-
served/unmeasured differences in the school district, and (in the degree 
attainment model) this vector also includes fixed effects to control for 
the college a student attended. The parameter estimates associated with 
X, A, and Z are δ, β, and γ, respectively.

The multinomial logit model can be derived from an additive ran-
dom utility model (Cameron & Trivedi, 2005). In this model, the error 
terms associated with the utility for each choice are assumed have type 
1 extreme value distributions that are independent of each other and in-

ln ����� 	� 	��x�
����� 	� 	��x� � ���� � ������ � ������ � ������ �	ε for	m	=	1 to j                   (1) 
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dependent of the all the explanatory variables. However, the Algebra II 
regressor is likely to be correlated with these errors since a student with 
high unmeasured ability may be more likely to complete Algebra II and 
receive different utility from post high-school educational alternatives 
than a student with low unmeasured ability. That is, after conditioning 
on their other characteristics, students’ selection of high school math 
courses may not be independent of subsequent educational outcomes 
(i.e., enrollment in and graduation from college). Unless this endog-
enous relationship is adequately accounted for, the coefficient estimate 
on the Algebra II variable may be biased.

To mitigate this problem we employed an instrumental variable (IV) 
approach (Angrist & Krueger, 2001; Bielby, House, Flaster, & Des-
Jardins, 2013; Stock & Trebbi, 2003). An instrument is a variable that 
is unrelated to the error term (ε) in (1) but, conditional on the other 
variables, is related to the endogenous variable (e.g., whether a student 
took Algebra II or higher in high school). A valid instrument identifies 
a source of exogenous variation and uses this variation to determine the 
impact of a treatment (e.g., Algebra II) on an outcome (e.g., college en-
rollment/graduation). IV estimation allows a researcher to make rigor-
ous claims about the effect of the treatment on the outcomes (Angrist & 
Pischke, 2009) by minimizing bias due to endogeneity. Yet, the “cure 
can be worse than the disease” when the instrument is only weakly cor-
related with the endogenous variable (Bound, Jaeger, & Baker, 1993; 
1995). Weak instruments may result in tests of significance with incor-
rect size and inaccurate confidence intervals, thereby (potentially) lead-
ing to incorrect statistical inferences. Weak instruments may also lead 
to estimates that are not consistent (Chao & Swanson, 2005) or are bi-
ased in the same direction as the naïve statistical approach that does not 
correct for nonrandom assignment issues.

The instrumental variable we used was the unemployment rate in the 
county where students lived during the 9th grade, information that was 
obtained from the Bureau of Labor Statistics’ Local Area Unemploy-
ment Statistics. We also included the interaction of the unemployment 
rate with race and free/reduced-priced lunch status, which allowed the 
influence of the unemployment rate on Algebra II completion to differ 
by race and free- or reduced-priced lunch status. Our selection of this 
instrument was based on conceptual and empirical grounds. Conceptu-
ally, the selection of this instrument was based on a simple two-period 
model of time allocation. We assumed that students allocated their 
time between school, work, and leisure while enrolled in high school  
(period one)5 and between work and leisure once they were in the post-
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education labor force (period two). We also assumed that students who 
allocate more time to schooling while in high school take more difficult 
courses.

In the following equations, t
sh  denotes how much time a student de-

votes to schooling in a period, t
wh  denotes how much time is allocated 

to work in period t, lt denotes how much time is devoted to leisure ac-
tivities in period t, and t is either 1 or 2 depending on whether we are 
referencing time period one or time period two.

To simplify matters, we assumed that school, work, and leisure com-
prise all of a student’s time when individuals are in high school (period 
one, T 1), and work and leisure take up all of their time when individuals 
were in the post-education labor force (period two, T 2). So:

1 1 1 1
s wh h l T+ + = 	 (2)

and

2 2 2
wh l T+ = 	 (3)

We also assumed that a student’s overall utility or well-being (U) was 
a function of their consumption of goods, c, and their leisure time, l. 
The amount of consumption in period t depended on their earnings in 
period t, equal to their hourly wage, wt, multiplied by their hours of 
work:

		  (4)

The human capital model implies that wages will depend on school-
ing, so we also assumed that wages in period two increase with the 
amount of time allocated to schooling in period one according to 
wh

2 = f (hs
1) . So a student will choose their hours of work and time de-

voted to schooling in such a way as to attempt to maximize their utility, 
U, across both periods:

( ) ( )( )1 1 2
1 1 1 1 1 1 2 2 2   ,,

w s w
w w s s w wh h h

max U w h T h h U f h h T hβ× − − + × × − 	 (5)

Here, β represents a discount factor that depreciates the value of fu-
ture utility relative to current utility. Therefore, individuals attempt to 
obtain the highest overall combined utility in period one and discounted 
utility in period two. However, the utility obtained in period two de-
pends on the discount factor and the amount of time allocated to school-
ing in period one.

t t t
wh w c× =
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An individual’s time allocation in period one is not only determined 
by their personal discount factor, but also by exogenous factors such 
as the availability of work, which is reflected by w1. Local labor mar-
ket conditions when students are in high school may affect their col-
lege preparation decisions and in so doing affect college attendance and 
completion. For example, in a weak (strong) local labor market students 
may allocate less (more) time to work and more (less) time to study by 
increasing (decreasing) the quantity or difficulty of the courses that they 
take in high school.

Furthermore, we used the five assumptions associated with a valid IV 
as proposed by Angrist, Imbens, and Rubin (1996) to evaluate our se-
lection of this instrument: 1) stable unit treatment value assumption, 2) 
random assignment, 3) exclusion restriction, 4) nonzero average causal 
effect of the instrument on the treatment, and 5) monotonicity. The sta-
ble unit treatment value assumption (SUTVA) requires that an individ-
ual student’s Algebra II completion does not influence other students’ 
college outcomes (e.g., spillover effects). It is unlikely that one student 
completing Algebra II (or not) will impact another student’s decision to 
attend or complete college. However, students in the unit record data 
are clustered within high schools, so it is worth addressing possible 
threats to this assumption. Students who do not complete Algebra II 
might be affected by a college going/prep-culture, sharing instructors, 
by interactions among Algebra II instructors and other teachers, or by 
Algebra II content being covered in lower-level math classes. Schools 
with a college going culture may offer more academic and administra-
tive supports for students, which may induce more students to take ad-
vanced courses and prepare for college (Klugman, 2012). Yet, students’ 
decision for college attendance starts at early stage, often before sopho-
more year, followed by enrollment in college-bound curriculum (Ca-
brera & Nasa, 2000; Kinzie et al., 2004). Therefore, students who did 
not complete Algebra II still could be encouraged to pursue postsecond-
ary education, but those will be a very small number. Furthermore, it is 
hard to imagine that one student’s algebraic knowledge is transmitted 
to another through peer interaction. In addition, high school curricula 
are hierarchically structured, particularly for mathematics, and teach-
ing Algebra II without prerequisite material would be difficult. Thus, 
Algebra II content is less likely to be covered in lower-level classes, 
and this practice would not significantly vary across teachers. Thus, we 
believed the risk of violating this assumption was low. This assumption 
also required that the treatment was consistent across all treated groups. 
Given that Algebra II content/curricula may vary from school district to 
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school district or year-by-year, we included school district fixed effects 
by year to address this concern.

The second assumption is about random assignment which required 
that the distribution of the instrumental variable across individuals be 
comparable to what would be the case under random assignment. This 
means that any individual in the sample must have an equal probabil-
ity of having any level of the instrumental variable, which may not be 
the case if students/their families move to find lower unemployment 
rates. We believe our IV satisfies this assumption for following rea-
sons. First, 9th graders are highly unlikely to travel across county lines 
for employment or change their residence to obtain employment in a 
county with a lower unemployment rate which would invalidate the use 
of a home address-based unemployment rate as an IV. It is also un-
likely that parents will choose to move their students when they are in 
9th grade: residential mobility across counties decreases as children get 
older (L. H. Long, 1972). Second, the geographical characteristics of 
the state provide indirect evidence to support our argument. Florida’s 
counties are large (average land area is 804 sq. miles), and none of 
Florida’s four largest cities (Miami, Tampa, Orlando, and Jacksonville) 
are located at a county border, although Miami is about 30 miles from 
Ft. Lauderdale, which is in Broward County. Finally, local labor market 
conditions (and other factors related to residential choice) change in-
dependently of students’ course taking/completion, college going, and 
degree completion behavior.

The exclusion restriction assumption ensures that an IV affects the 
dependent variable (e.g., enrollment/graduation from college) only 
through its relationship with the endogenous independent variable of 
interest (e.g., Algebra II). To satisfy this assumption, the instrument 
must not be correlated with the error term in (1). Our instrument vari-
able satisfies this assumption in two ways. First, we used county level 
unemployment rates when students were in the 9th grade. It is argu-
able that the local unemployment rate changes while students are in 
high school, affects students’ and parents’ financial status and ability 
to save, and thus affects students’ decision about attending college 
and persisting through graduation. However, financial conditions for 
high school students tend to be stable. Local unemployment rates when 
students are in 9th−12th grades are highly correlated (r = 0.895). For 
the years that are included in our analyses (1997–2005), the state un-
employment rate in Florida was stable, ranging from 3.8% in 2001 to 
5.7% in 2003. Therefore, students in our sample did not face financial 
circumstances that made them likely to change their academic plans 
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dramatically. Nonetheless, to remove any potential correlation between 
the 9th grade unemployment rate and outcomes, we also included the 
unemployment rate at the time when a student was in 12th grade as a 
control in the outcome equation. Second, we conducted an over-iden-
tification test providing evidence that the second-stage residuals are 
uncorrelated with the IV. This test assumes that the first IV (county-
level unemployment rate) is properly excluded from the second-stage 
equation. Thus, satisfying this assumption means failing to reject the 
null hypothesis that instruments are correctly excluded from the sec-
ond stage estimation of the dependent variable. The Hansen J statistic6 
results indicate that the null hypothesis is rejected both for the college 
attendance equation (x2 = 26.46, p = 0.0002) and for the degree attain-
ment equation (x2 =17.92, p = 0.0064). These tests are valid, however, 
only when the treatment has a homogenous effect on outcomes, which 
is unlikely to be the case in this study.7 We also tested the redundancy 
of the IVs by comparing the results when each instrument is used sepa-
rately versus the results when all IVs are included.8 If the parameter es-
timates using different instruments differ appreciably and significantly 
from one another, the validity of the instruments is suspect. If all of 
the estimates are consonant with a single interpretation of the data, the 
credibility for instruments is enhanced (Murray, 2006). We estimated 
the attendance and graduation models using only one instrument–9th 
grade unemployment rate. The estimated results were similar for both 
outcomes compared to our specification that included 9th grade un-
employment rate and its interactions with race and free-and reduced-
priced lunch status.9

The fourth assumption is nonzero average causal effect of the instru-
ment on the treatment. This assumption requires that there be a strong 
relationship between the instrumental variable(s) and the endogenous 
regressor (Algebra II). Although there is no formal statistical test to 
verify the quality of the IV, some test statistics can provide guidance. 
Often, first stage F-statistics and the partial R2 have been used (Bound, 
Jaeger, & Baker, 1995); However, there are tests now available that are 
improvements on these statistics (see Baum, 2008; see also Angist & 
Pischke, 2009) and are more appropriate for judging whether there is 
a weak instrument problem. For example, the Cragg-Donald Wald F- 
statistic test is now often employed to assess whether there are viola-
tions to this assumption. However, this test assumes independent and 
identically distributed standard errors (the i.i.d assumption) and is in-
valid when the analyst employs cluster-robust standard errors, as is the 
case in the models we estimated. Thus, we employed the Kleibergen-
Paap (K-P) test, which provides evidence about the weak instrument 
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issue when the i.i.d. assumption is violated (see Baum, 2008). Although 
there is no formal critical value associated with the K-P test, both the 
college attendance (F = 167.16) and degree attainment model (F = 
56.05) K-P test results exceed the rule-of-thumb critical value of 10 
(Baum, 2008) and the maximum value of 19.86 (Stock & Yogo, 2005) 
for models like ours. Thus, we believe any bias that could be introduced 
by weak/invalid instruments is mitigated.

Finally, monotonicity assumes that the IV has a unidirectional effect 
on the endogenous variable. That is, the relationship between the en-
dogenous independent variable (Algebra II) and the instrumental vari-
able (local unemployment rate) should be either positive or negative for 
all students in the sample. In our context this meant that increases in 
the unemployment rate should never result in decreases in math course 
taking. Our instrument is unlikely to satisfy this assumption fully, as 
there may be students who choose not to take Algebra II when unem-
ployment rates are rising because they feel they need to devote addi-
tional time to searching for work when unemployment rates are high. 
However, we believe this set of students is likely to represent a very 
small fraction of our sample, and any presence of these “defiers” simply 
places an upward bound on our estimate of the treatment effect (Angrist 
& Pischke, 2009; Porter, 2012). Because defiers act in contradiction to 
the expected influence of the instrument, the estimated relationship be-
tween the instrument and the endogenous variable was expected to be 
in the opposite direction to that of compliers (i.e., negative influence 
of unemployment on Algebra II). Mathematically, if we were to com-
bine the estimated effects for each individual, the opposing signs would 
simply push the average effects of the instruments toward zero. As long 
as compliers outnumber defiers in our sample, we are able to obtain at 
least a lower bound estimate of the causal effect of mathematics course 
taking on postsecondary enrollment and graduation. Moreover, nonpara-
metric estimates we conducted of the effect of the unemployment rate 
on the Algebra II variable were generally positive throughout the range 
of unemployment rates, providing indication of monotonicity.

It is important to note that the IV estimates are local to the students 
whose math course choices are shifted by the unemployment rate in the 
county where students lived during the 9th grade (a “Local Average 
Treatment Effect” or LATE). Therefore, the analysis and the interpreta-
tion of the findings hold for students in the sample who were induced to 
complete Algebra II by a change in the local unemployment rate. Those 
students were likely to be individuals at the margin of ether working 
or taking/completing Algebra II and were then induced to take Algebra 
II by an increase in the unemployment rate. Such students were more 
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likely to come from working class families (Kane & Rouse, 1999; Betts 
& McFarland, 1995) compared to their counterparts from high-income 
families who were likely to be “always-takers” in the sense that they 
would take Algebra II regardless of the level of the local unemployment 
rate.

We implemented the IV method discussed above in two stages. In the 
first stage we regressed a binary variable Algebra II (T) on a full set of 
covariates (X) as well as the 9th grade county level unemployment rate 
and its interactions with race and free lunch status (Z), using a linear 
probability specification. 

T = γ + βX + θZ + ω	 (6)

From our estimates of (6) we calculated and stored the residuals ω̂ .
In stage two we estimated a multinomial logit model where the cat-

egories for the attendance and enrollment margins were the same as in 
(1) on a full set of controls (X; discussed above) and the residuals from 
the stage one equation (6) that accounts for the endogeneity of Algebra 
II in this structure. 

| | | | |
pr(   m | x)ln   
pr(   b | x)

ˆi
m b m b i m b i m b i m b i

i

Y X A Z
Y

α β γ δ ρ ω= = + + + +
= 	 (7)

Correcting for endogeneity using this “control function” approach 
should result in the estimate of δ that more accurately approximates the 
causal influence of T on Y than when employing the “naïve” statisti-
cal model that does not account for self-selection [as formalized in (1) 
above].10 In addition, we also bootstrapped the entire two-step process 
200 times to account for the estimation of the residuals in stage one and 
account for any uncertainty introduced by this two-stage estimation pro-
cess. For example, bootstrapping this two stage structure only one time 
would not account for sources of uncertainty introduced by the estima-
tion of the first stage. Failure to account for such uncertainty may re-
sults in underestimates of the coefficient standard errors, overestimates 
of the significance of the regressors, and incorrect inferences about their 
effects on enrollment and graduation.

To test for any differences in the naïve and IV model we estimated 
(1) and compared the results to those obtained from (7). In particular we 
were interested in any differences in the effect of the policy variable of 
interest, Algebra II, on college enrollment and graduation. To ease com-
parison of the estimates of this important variable across model speci-
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fications, the Algebra II coefficients were reported as average marginal 
effects (AMEs). All other estimates were reported as odds ratios be-
cause it was computationally prohibitive (due to the large sample sizes), 
to bootstrap the marginal effects for all the other regressors included in 
the enrollment and graduation models.

Limitations

This study has a number of limitations. First, although the postsec-
ondary attainment process begins when students make a transition to 
college and is over when they graduate from college, we considered col-
lege enrollment and completion as distinct outcomes and model these 
outcomes separately. College students make transitions across a set of 
discrete states, and these states include being enrolled in one’s institu-
tion, interrupting one’s enrollment in the institution (i.e., stopout), drop-
out, and graduation. Future research is thus warranted to jointly account 
for this interrelationship in students’ academic pathways using longitu-
dinal modeling methods.

Second, we exclusively focused on how mathematics course comple-
tion in high school was related to postsecondary outcomes. Given the 
variety of curricular choices other than math curriculum open to high 
school students it would be interesting to investigate the association 
between other subjects (e.g., science, English) and postsecondary out-
comes. We intend to do so at a later date.

Ideally, we would have preferred to estimate two-stage models where 
both the selection (equation 6) and outcome (equation 7) regressions in-
clude a multinomial outcome. We simplified the selection equation by 
dichotomizing the math course treatment into whether a student com-
pleted Algebra II or not. We acknowledge that this strategy resulted 
in a loss of information which might introduce a potential bias in our 
findings. Although we treated the effect of the different levels of math 
courses to be the same within the Algebra II (= 1) or not (= 0) groups, 
the effects may differ within these groups. For example, the effects of 
math course completion may “flatten out” at certain math course levels 
(MacCallum, Zhang, Preacher, & Rucker, 2002). By treating students 
who completed Algebra II only and those who completed Algebra II or 
higher the same, we may have introduced a potential upward bias in our 
estimates.

In our data we have the full range of high school math courses stu-
dents take so we could estimate the first stage using these multiple cat-
egories as the dependent variable. However, we focused on Algebra II 
for two reasons. First, the national policy debate on math course taking 
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has centered on the effect of completing Algebra II, rather than what 
course level matters for subsequent educational outcomes. The goal of 
this study was to test the former and not necessarily the latter. Second, 
to our best knowledge, there is no statistical program that will permit 
the estimation of both the first- and second-stage with multicategori-
cal dependent variables. We are currently working to develop statistical 
software that will enable us to estimate such a model.

Results

Course Completion and the Type of College Attended

As noted above, we first estimated a “naïve” MNL regression of col-
lege attendance on completing Algebra II. Although this regression also 
controlled for factors such as demographic and academic characteristics 
of students, it ignored the possible endogeneity between students’ math 
course selection and college attendance. We compared all other results 
produced by the two-stage IV method describe above to this model in 
order to ascertain the extent of any bias due to not accounting for the 
(potential) endogeneity of Algebra II on enrollment in college.

The results of the naïve model, depicted in columns (1) through (3) 
in Table 2 indicate that completing Algebra II increases the chances of 
attending a postsecondary institution, in particular of attending a four-
year college. Holding all other characteristics constant, completing Al-
gebra II increases the probability of attending a four-year college by 
20.6%. For students who completed Algebra II, the probability of not 
going to college (attending a two-year college) is 18.5% (2.1%) lower 
than their counterparts who did not complete Algebra II. Again, the co-
efficients produced by this naïve model may be biased due to nonran-
dom selection into math courses in high school.

To account for any potential endogeneity, the second set of results 
are from the “control function” (i.e., two stage) IV approach described 
above. Columns (4) through (6) in Table 2 indicate that the estimated 
effect of Algebra II produced by the IV approach is different from that 
of the naïve statistical model. Whereas the naïve model suggests a nega-
tive effect of completing Algebra II on two-year college enrollment, the 
IV model results indicate a positive effect. Holding other variables con-
stant, completing Algebra II increases the probability of two-year col-
lege attendance by 27.6%. In addition, the estimated effect of Algebra II 
on four-year college attendance is about 0.3 percentage points lower for 
the IV than the naïve model results, and the effect is statistically insig-
nificant. In terms of not attending college, completing Algebra II results 
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in a lower probability of not going to college by about 48%. The results 
indicate that for statistically similar students, completing Algebra II in 
high school dramatically increases their chances of college attendance 
in general and is also related to the type of postsecondary institutions 
they attend.

Course Completion and the Type of Postsecondary Degree  
Attained

Next we present results (see Table 3) illustrating whether the level 
of math courses students complete in high school affects their prob-
ability of obtaining (or not) different postsecondary (e.g., associate’s or 
bachelor’s) degrees. The naïve multinomial model results indicate that 
completing Algebra II is positively associated with degree attainment: 
holding other characteristics constant, completing Algebra II increases 
the probability of associate’s and bachelor’s degree attainment by 2.1 
and 5.6%, respectively. However, students who complete Algebra II in 
high school have a lower probability of not receiving a postsecondary 
degree (about 8%), compared to their counterparts who did not com-
plete Algebra II.

The IV results tell a different story. The positive association between 
Algebra II and associate’s degree attainment found in the naïve model 
is insignificant when controlling for student self-selection into Alge-
bra II. When employing the IV estimation method, completing Algebra 
II increases the probability of bachelors’ degree attainment (by about 
20%), but this result is not statistically significant at the .05 level. In 
addition, the significant effect of completing Algebra II on the probabil-
ity of obtaining an associate degree or not obtaining a degree that was 
evident in the naïve model is not significant once selection into math 
courses is taken into account.

Overall, our results suggest that completing Algebra II in high school 
has a positive effect on postsecondary education attainment of any kind, 
but the effect is only significant for two-year attendance, rather than 
four-year college attendance. Conditioning on college attendance, we 
found no Algebra II effect on degree attainment. Finally, estimates from 
the naïve model diverge from those from the IV models in direction and 
magnitude, often overestimating the impact of Algebra II. This suggests 
the importance of accounting for selection bias in order to estimate the 
actual effect of Algebra II and to provide accurate policy implications.
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Discussion and Conclusions

The political debate over high school mathematics requirement has 
been focused on two main questions. First, “does completing Algebra 
II in high school matter for college access and success?” The particu-
lar interest in Algebra II is based on the assumption that it is a “gate-
keeper” course in terms of college readiness and success not only be-
cause colleges require Algebra II, but also because algebraic thinking 
is thought to prepare students for college entrance and college level 
classes, which in turn increases the chances of obtaining a degree (Rose 
& Betts, 2001). Previous studies have supported this idea: all types of 
math courses have statistically significant positive effects on college en-
rollment (Altonji, 1995; Levine & Zimmerman, 1995) as well as college 
graduation, and the impact is larger for higher level math courses (Long 
et al., 2012; Rose & Betts, 2001). However, the results from our study 
suggest a somewhat different story. For students who graduated from 
high schools in the Florida public system between 1996–97 and 2001–
02 and who are likely to make course-taking choices that are associated 
with local labor market conditions, completing Algebra II only matters 
for two-year college attendance, but not for four-year attendance and 
degree attainment. The finding is significant since students to whom the 
results apply are the very students we might be most interested in help-
ing to access and complete college.

This finding is in line with the recent national trend in Algebra II 
completion and high school math achievement. Using the data from the 
national assessment of educational progress (NAEP), Loveless (2013) 
demonstrated that despite the increasing completion rates of Algebra 
II, the average math scores of 17 year olds who have taken Algebra 
II or Advanced Algebra fell by 10 points between 1992 and 2012. He 
concluded that about one-third of students who complete a college pre-
paratory curriculum are ill-prepared for college course work, and this 
trend reflects the watered down effect of Algebra II over time. How-
ever, to fully understand the insignificant impact of completing Alge-
bra II on four-year attendance and degree attainment, we need to know 
what is taught in Algebra II. Although graduation requirements in many 
states, including Florida, are increased to align with national standards 
(e.g., Common Core standards), having Algebra II requirements does 
not guarantee that all states, districts, or schools would cover the same 
level of concepts in Algebra II classes. If concepts that are supposed 
to be covered in Algebra I are taught as Algebra II in many districts, 
we may observe a diminishing impact of Algebra II on subsequent 
outcomes.
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While the intensity and pattern of coursework completed in high 
school are considered to be the best indicators of academic performance 
and eventual graduation from college (Adelman, 1999), the insignificant 
effect of Algebra II on four-year attendance and degree attainment raises 
questions about what level of math courses are sufficient to equip stu-
dents with the requisite knowledge and skills that improve their chances 
of attaining a degree. For example, Geometry may increase a student’s 
chances of attaining an associate’s degree, whereas Trigonometry or 
Calculus may increase the chances of bachelor’s degree attainment. 
Therefore, the national attention to Algebra II needs to be expanded to 
consider the impact of different levels of math courses. To support this, 
future research needs to examine the effect of different levels of math 
courses on students’ access to, choice, and completion of college. We 
intend to do just that, and develop a statistical program that will permit 
the estimation of a multicategorical outcome in an IV framework.

The second question raised in the policy debate is whether Algebra 
II should be required for all students. The major debate about this ques-
tion is whether Algebra II has similar effects for college- and career-
bound students. The result of our study suggests that the policy debate 
should also consider the difference between students who pursue associ-
ate’s degrees and students who pursue bachelor’s degrees. Given the in-
creased interest in state policy to encourage transfer and bachelor’s de-
gree attainment (Wellman, 2002), the effect of high school math course 
completion for different postsecondary pathways also deserves an in-
depth inquiry.

From a methodological standpoint, this study indicates that the failure 
to account for selection bias is one of the causes of the “fallacy of mis-
placed causation” (Baker, 2013). The comparison between the naïve and 
control function models indicates that without taking account of selec-
tion bias, we would overestimate the impact of advanced math courses 
on subsequent outcomes. Relying on those results may well then lead to 
an incorrect policy response.

Finally, future research needs to investigate the effect of completing 
advanced math courses in high school on college outcomes across ra-
cial and/or socioeconomic status (examine “heterogeneous treatment ef-
fects”). Our study results indicate that even if students of different races 
take advanced math courses in high school, there are differential effects 
on outcomes by race and socioeconomic background. Given that Afri-
can Americans, Hispanics, and students with low-socioeconomic back-
grounds tend to be concentrated in schools with lower levels of social, 
economic, and academic resources (Perna & Titus, 2005), even among 
those who complete advanced math courses the quality of the knowl-



658    The Journal of Higher Education

edge obtained may be lower for these underrepresented students com-
pared to their counterparts from schools with more resources. There-
fore, it may be beneficial to target academic support for math and other 
subjects to students in under-resourced high schools to maximize their 
access to college and degree attainment.

In addition, the effect of math course-taking on degree attainment 
may vary depending on what majors students take. For example, levels 
of math courses taken in high school may matter more for students in an 
engineering field compared to their counterparts in the liberal arts. Un-
fortunately, we are not able to test this proposition due to a lack of data 
regarding college majors in our Florida data set.

We hope that our study informs individuals responsible for instituting 
policies that promote postsecondary educational outcomes through high 
school curriculum reforms. One interesting avenue for future research 
is to examine whether or not differences in math curriculum choices in 
high school eventually affect individuals’ labor market outcomes. This 
line of inquiry will be possible once linkages between the longitudinal 
student unit record data used for this study and employment data are 
obtained.

Notes

This research was supported by the Spencer Foundation’s Education and Social Oppor-
tunities Major Grants Program (Grant Number 201000120).

1 Our definition of level of math course completion is dichotomous. For example, 
“Algebra II” means the student completed Algebra II or higher, “Trigonometry” means 
the student completed Trigonometry or higher, etc. 

2 Arizona, Minnesota, New Mexico, North Carolina, Ohio, and Tennessee recently 
adopted and started implementing Algebra II requirement. 

3 The ordering of math courses in Florida is: pre-Algebra, Algebra I, Geometry, Alge-
bra II, Trigonometry, pre-Calculus, and Calculus. 

4 The variable that has highest missing rate is the highest level of math courses com-
pleted (9.19%).

5 Although compulsory schooling is required up to age 16, high school students are 
allowed to work up to 15 (age 14 & 15) to 30 (age 16 & 17) hours per week when 
school is in session according to the child labor law of the State of Florida.

6 The Hansen J statistic is the most common test statistic for the validity of the instru-
ments, testing whether the instruments are uncorrelated with the errors. The significant 
statistic indicates that one or more of our instruments are not valid (assuming that the 
model is otherwise correctly specified). 

7 Maintaining the hypothesis that all instruments in an overidentified model are valid, 
the traditional overidentification test statistic becomes a formal test for treatment-effect 
heterogeneity (Angrist & Pischke, 2009). 

8 This is based on tests of instrument redundancy available in Stata’s ivreg2 com-
mand. The test is needed because including redundant instruments in overidentified 
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models (include more IVs than endogenous regressors), will tend to bias point estimates 
(Angrist & Pischke, 2009). The significant statistic indicates that the specified instru-
ments are redundant. 

9 Specifically, the results were similar for the attendance equation; there were some 
differences in the estimated graduation (point estimate of BA degree became negative) 
but the effect was not statistically significant. 

10 The control functions (CF) approach is more robust than alternatives, such as using 
propensity scores (predicted values only) as controls in the outcome equation. The CF 
approach allows any unobservables affecting the dependent variable (Y) to be depen-
dent on X (Algebra II) while controlling for both the covariates (Z) and any instrumen-
tal variables. Importantly, the CF approach explicitly models this dependence whereas 
alternative methods fail to incorporate such dependence (see Heckman & Navarro-Loz-
ano, 2004, for details).
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