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Abstract On-chip distributed memory system has become an attractive solution for
massive parallel memory accesses found in future many-core processors. However,
increasing number of on-chip cores and memory controllers inevitably introduce many
remote memory accesses, which generate a large amount of on-chip traffic and put
great pressure on the interconnection. This paper tries to optimize on-chip memory
access traffic via runtime thread migration. We first analyze memory access behaviors
in multi-threaded applications and find that the memory access targets and volumes
are similar during short periods, which makes runtime prediction feasible. But the
memory access targets exhibit great mobility during long periods, motivating us to
dynamically move threads towards the data. Based on these observations, we pro-
pose a novel low-cost and distributed thread migration algorithm which adjusts thread
placement in chains based on benefit estimation. We present details of the workflow,
including the trigger and arbitration of migration requests and the procedures to deter-
mine the migration chains. Simulation results show that our algorithm achieves system
performance speedup of 11.5 % and reduces average memory access latency by 11.0 %.
It can find a few but effective thread migrations to optimize on-chip memory access
traffic with acceptable hardware and runtime overheads.
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1 Introduction

On-chip distributed memory system (DMS) is considered as a promising memory orga-
nization for future many-core systems to hit the great memory wall [1], which exploits
memory-level and communication-level parallelism deeply via integrating multiple
distributed memory interfaces and interconnect components inside to deal with mas-
sive concurrent memory accesses. However, increasing number of on-chip cores and
memory controllers (MCs) inevitably introduces many remote memory accesses and,
therefore, a large amount of memory traffic. It puts great pressure on the on-chip
interconnection, which may become another bottleneck of system performance.

The performance of memory access traffic is determined by many factors. In addi-
tion to the architecture and bandwidth supply of the on-chip interconnection, actual
traffic patterns of memory accesses also play a crucial role, which is closely related
to the mappings of tasks to cores and data pages to memory banks. Colocation of
computation and data is a popular optimization scheme [2–4], which elaborates to
shorten the paths to fetch data. If the positions of data pages are fixed, the placement
of threads will determine the average distance of memory accesses. Thread migration
is known as an efficient optimization method to improve the overall communication
performance [5–7] since the changing behaviors of execution make static task map-
ping insufficient to guarantee high performance in all phases. If the system acquires
some knowledge of future memory access patterns, it may let some threads migrate
to cores which are closer to their dataset.

In this paper, we propose a novel runtime thread migration algorithm to optimize
memory access traffic in on-chip manycore processors with distributed memory sys-
tems. The cores and memory controllers are interconnected by a network-on-chip
(NoC) [8–10], which has emerged as a primary substrate for on-chip communication.
Our mechanisms are based on runtime prediction of future memory access patterns.
We first examine the predictability of memory accesses found in real applications from
PARSEC [11] benchmark suite. We find that for most applications, the targets and vol-
umes of memory accesses are similar between two continuous sample periods when
the data pages are bank-interleaved. It implies that the behaviors of memory accesses
for most applications are highly predictable. Besides, we observe great mobility of
memory access targets during long periods of execution, which motivates us to dynam-
ically move the threads towards the memory access center (MAC) node. Using simple
information exchanging and benefit estimation schemes [6,7], our mechanisms are
distributed and allow multiple threads to move together in chains, which can achieve
a few profitable migrations to optimize overall memory traffic with acceptable over-
heads. We further discuss the workflow and architectural support of our algorithm.
The hardware and runtime overheads are also characterized. Using cycle-accurate
simulation, we show the effectiveness of the suggested mechanisms.

The remainder of this paper is organized as follows: We elaborate on the motivation
for runtime thread migration in Sect. 2. The framework of our distributed chained
thread migration and the detailed mechanisms are studied in Sect. 3. Section 4 shows
some experimental results. We review related researches and make some comparisons
with this work in Sect. 5 and finally Sect. 6 concludes this paper.
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2 Motivation

2.1 Predictability of memory traffic

In on-chip manycore processors with distributed memory systems, the main purpose
of thread migration is to shorten the distance between computation and data. Since
the efforts to transmit memory requests and data to the destination are alleviated, the
average transmission latency and link contention can be significantly reduced. How-
ever, thread migration introduces non-trivial overheads, which may incur performance
degradation if the benefit of a migration is not significant enough. To make efficient
migration decisions, we need sufficient and accurate knowledge of memory access
targets and frequency in the near future. The positions of targets determine where to
migrate the thread, and the frequency of accesses affects the benefits of migration.
Profiles built beforehand can provide precise memory access traces [12], but they are
very costly and sometimes impractical. Besides, if the datasets are changed, profiles
should be regenerated even for the same application. We, therefore, focus on poli-
cies that rely on runtime estimation of memory access behaviors, which are adaptive
and insensitive to the datasets. However, the accuracy of runtime estimation has a
strong impact on the efficiency of the algorithm. Misprediction may introduce serious
negative impacts.

History-based prediction is widely adopted in previous works [13]. In a simplest
scheme, the execution of an application is divided into multiple sample periods, and
the memory access pattern sampled in the last period becomes the predicted result
of the next period. The principle of prediction lies in temporal and spatial locality of
memory accesses during a short period. In order to verify the accuracy of the simple
prediction scheme for various applications, we make some definitions to analyze the
predictability of both memory access targets and volumes.

A memory access list of a thread i in a sample period p (MALi,p) is a list which
records the number of memory accesses falling on each memory interface during the
period. If the elements in a MAL are normalized to the total memory access number, it
is called a normalized memory access list (NMAL). A NMAL reflects the relative dis-
tribution of memory accesses towards different targets. If there is no memory accesses
for a thread during a sample period, all the values of its NMAL are zero.

We define the similarity of memory access targets (ST) for two sample periods (a
and b, b is after a in timeline) of an application to be

ST(a, b) =
∑

i∈S

⎛

⎝wi ×
∑

j∈T

Min(NMALi,a( j), NMALi,b( j))

⎞

⎠ (1)

in which S is the set of threads in the application and T is the set of memory access
targets, i.e. the memory interfaces involved. ST is the weighted sum of similarities of
the memory access targets from all the threads. The weight for thread i (wi ) is the
proportion of memory accesses from thread i compared with the overall number of
memory accesses during the period. Apparently, ST is between 0 and 1. If the NMALs
of all the threads in the two sample periods are identical, the ST value is 1.
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Considering the spatial locality of memory accesses, adjacent memory interfaces
may be frequently accessed during a short period. We extend the definition of ST which
can accept a new parameter r (in number of hops) to introduce r -range ambiguity in
calculating ST:

STr (a, b) =
∑

i∈S

⎛

⎝wi ×
∑

j∈T

Min

⎛

⎝
∑

D(k,i)≤r

NMALk,a( j), NMALi,b( j)

⎞

⎠

⎞

⎠ , (2)

where D(k, i) is the distance between node k and the node where thread i is running.
In (2), if the sum of relative memory access volumes falling inside the r -neighborhood
of a certain node in the last period is equal to that in the next period, they are still
considered similar. For example, assume that the NMALs of a single thread application
in two periods A and B are (1, 0, 0, 0, 0, 0, 0, 0) and (0.5, 0.5, 0, 0, 0, 0, 0, 0) for a
system with eight MCs; if the distance from MC-1 to MC-2 is one hop, the value of
ST0 is 0.5 while ST1 is 1 in this scenario.

If a and b are adjacent periods, ST is used to compute the predictability of memory
access targets. We define the r-hop predictability of memory access targets (PTr ) as
the average STr of all adjacent sample periods. If r is 0, we call it strict predictability:

PTr =
∑

(a,b)∈P

STr (a, b) (3)

in which P is the set of all the pairs of adjacent sample periods in the execution
of an application. Using the above definitions, we analyze the predictability of real
applications from PARSEC benchmark suite [11]. We target a 64-core tiled chip-
multiprocessor (CMP) with 64 MCs distributed along with the cores. The tiles are
interconnected by an 8 × 8 mesh network-on-chip. The other configurations will be
shown in Sect. 4. We use overall number of memory accesses to divide the periods,
i.e. a new period begins when the amount of memory accesses in the system reaches
a threshold N , which is swept from 5,000 to 40,000. Three static data page mapping
schemes called Random, Global Interleaving (GI) and Single Thread Interleaving
(STI) are assumed in our experiments. In Random placement, each new data page is
randomly mapped to a memory interface; GI allocates new pages to every memory bank
globally in a round-robin fashion. The page placements of STI are also interleaved,
but the round-robin allocation is performed by each single thread independently.

Figure 1a and b demonstrates the average strict and 1-hop predictabilities of memory
access targets under the three mapping schemes. We find that the strict PTs under GI
and STI are similar and higher than Random mapping. For most applications, the
strict PTs are more than 0.55 under STI mapping. On average 60.3 % of memory
target distribution in the next period is similar with that in the last period. 1-hop PTs
are much higher than strict PTs, with the average being 0.81. For applications like
blackscholes and streamcluster, their 1-hop predictability is more than 0.9, which
illustrates very high similarity of memory target distributions between every adjacent
periods if 1-hop ambiguity is introduced. It is a strong proof that the locality of memory
accesses makes the targets predictable.
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(a)

(b)

Fig. 1 a Average strict and b 1-hop predictability of memory access targets under Random, GI and STI
data page mapping schemes

The granularity of partitioning periods is also important to the predictability.
Figure 2 plots 1-hop predictability for ferret and streamcluster under STI mapping
as the function of N . In ferret, the 1-hop PT under N = 20, 000 is much higher than
PT values under other granularities of sample period, necessitating careful selection of
N to improve the accuracy of prediction. The case for streamcluster is very different,
in which the predictability increases with the rise of N and gradually approximates
to 1. It means that the distribution of memory access targets is getting statistically
stable. Since very large N will shrink the benefit of optimization schemes, we choose
N = 15, 000 for streamcluster since it still achieves up to 0.95 predictability.

Next we analyze the predictability of memory access volume (PV), which may
influence the reliability of benefit estimation in thread migration algorithms. The value
of PV is defined as the weighted sum of similarity of memory access volumes for all
the threads between every adjacent period:

PV =
∑

(a,b)∈P

(
∑

i∈S

wi × Min (NAi (a), NAi (b))

NAi (a)

) /
(n − 1) (4)
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Fig. 2 1-hop predictability under STI mapping as the function of N for ferret and streamcluster

Fig. 3 Predictability of memory access volume

in which NAi (a) is the Number of memory Access of thread i during period a, n is
the total number of sample periods during the execution. The above definition implies
to what extent each thread can keep the access frequency of the last period. If there
is a significant reduction of memory access volume, misprediction may occur and the
benefit of the corresponding thread migration may be overestimated. The weight of
frequency maintenance of each thread is also assigned as the proportion of memory
access number during last period.

Figure 3 shows the predictability of memory access volume when N is 20,000. For
most applications PV is over 0.7. For some applications like streamcluster and vips,
the capability of memory access frequency maintenance is more than 0.85, which
proves that the memory-intensive threads during last period will probably maintain
the memory access frequency in these applications.

From the above results, we observe that the memory access behaviors in most
applications exhibit high predictability for both targets and frequency. So the simple
and widely used prediction scheme mentioned above is efficient and accurate enough.
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Fig. 4 1-hop similarity of memory access target between every pair of sample epochs with an interval of
5, 20 and 30 periods

Our thread migration algorithm proposed in this paper also employs runtime prediction
to acquire knowledge of memory access patterns. The actual page placement and
the granularity of partitioning periods also affect the predictability, so we should
carefully decide these configurations to optimize memory access traffic. However,
some applications such as bodytrack have relatively low predictability, which makes
it unsuitable to apply prediction-based runtime mechanisms directly. Misprediction is
more possible to occur in applications with low predictability, which may introduce
serious performance penalty.

2.2 Mobility of memory access targets

We have witnessed high similarity of memory access behaviors between adjacent
periods. But changing phases of execution may result in variation in memory access
patterns. To prove this, we conduct the strict and 1-hop similarity of memory access
target between every pair of sample epochs with an interval of 5, 20, 30 successive
sample periods. We can see from Fig. 4 that the average ST1 values significantly drop
to 0.74, 0.61 and 0.60, respectively. In order to further explain the mobility of memory
access targets, we define the MAC of a thread i in a 2D mesh distributed memory
system as a 2D coordinate:

MACi =
⎛

⎝
∑

j∈T

C j x × NMALi ( j),
∑

j∈T

C jy × NMALi ( j)

⎞

⎠ , (5)

where T is the set of memory access targets, C j x and C jy are the x and y coordinates
of the MC j . The definition is derived from least square method which refers that the
total distance for accessing the data in its MAL is shortest when the thread is running
at the MAC node. Note that the coordinate values of MAC are continuous number. We
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Fig. 5 The average mobility of MAC with intervals 1, 5 and 30

define the mobility of MAC as the weighted mean of Manhattan distances between
the MACs for each thread of two epochs with a certain interval.

Figure 5 demonstrates the average mobility of MAC with the interval being 1
(adjacent periods), 5 and 30 (long periods). Since the similarity of memory access target
for adjacent periods is high, the mobility is only 1 hop on average. For long periods,
however, the changing application behaviors and datasets will cause remarkable MAC
shift (3 hops during 5 periods and 3.8 hops during 30 periods on average). So static
thread mapping is not sufficient to keep the average memory access distance low. It
motivates us to use runtime thread migration to respond quickly to the mobility of
memory access targets. The proposed thread migration algorithm will be shown in the
next section.

3 Proposed runtime thread migration algorithm

3.1 Target system and framework of the mechanisms

Our target system is a CMP with on-chip distributed memory, as shown in Fig. 6.
Memory banks and the corresponding MCs are distributed along with CMP cores.
Each core with its private caches and a memory controller constitute a tile. The tiles are
interconnected by a 2D mesh network-on-chip to deal with remote memory accesses.
The mapping scheme of data pages is single thread interleaving (STI).

In this section we propose the framework of our novel chained thread migration
(CTM) algorithm for the above system, which is shown in Fig. 7. We count the overall
number of memory accesses in the system during the execution of threads. When it
exceeds N , thread migrations can be activated and the counter and other statistics
are cleared. We use the simple prediction scheme mentioned in Sect. 2 to conduct
MALs for all the threads, which are the guidelines of our algorithm. The algorithm is
distributed since each computation or memory node participates in the processes of
thread migration in parallel, including the trigger, arbitration and final determination
of thread migrations.
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Fig. 6 Architecture of the target system

Fig. 7 Framework and basic workflow of our algorithm

Migration triggering: Each core with a thread running on it should decide whether
to trigger a migration according to its MAL. If the thread wants to move, it should
designate a group of nodes as the candidates of migrate destination. Migration requests
as well as the benefit estimation should be sent to the target nodes.

Migration arbitration: We assume that the total number of threads is not more than
the number of on-chip cores, and there is only a single thread running on each core.
If a migration target receives multiple requests, or there has been a thread running
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on it in the last period, it should arbitrate among the candidate threads to handle the
conflicts.

Migration determination: When the migration requests are confirmed, each node
should further assess the benefits and overheads of migration to decide whether to
move the thread. In this paper, we use chained thread migration, in which a couple of
threads may exchange their positions in chain. Simple exchanging algorithm proposed
in previous works [6,7] is a special case of our algorithm, whose maximum chain length
is 2. After the remappings of all the threads have been confirmed, i.e. the migration
chains have been generated, actual thread migrations are activated then. The execution
of a mobile thread can be restored after transferring its context to the destination. The
details of the algorithm will be discussed next.

3.2 Classification of thread mobility

When a sample period terminates, each node should be classified into a certain state
according to its MAL, to decide the mobility of the thread. The state will affect the
trigger and confirmation of a thread migration. In our work we define the following
five states:

IDLE: If there is no thread running on the core, the node is in IDLE state, which
can be the destination of migration for another thread.

VOLUNTARY: The state VOLUNTARY refers that the thread running on the core
is voluntary to migrate to any other position passively, to make room for other threads
requesting the node. We suppose that if the number of memory accesses is below a
threshold Tminor, the performance is insensitive to the memory traffic. So the thread
can migrate to anywhere without introducing significant performance impacts:

NAi < Tminor (6)

Besides, we observe a scenario that the placement of data accessed by a thread
during an epoch can be quite divergent, i.e. the thread issues many remote memory
accesses to different memory interfaces throughout the network. In this case, a great
amount of memory access traffic is unavoidable regardless of the thread’s location.
The state of the node is also VOLUNTARY, because moving the thread to other place
has very small impact on the network performance. We use memory access radius
(MAR) to indicate the degree of divergence of memory accesses:

MARi =
⎛

⎝
∑

j∈T

D(C j , MACi ) × NMALi ( j)

⎞

⎠ , (7)

which is the average Manhattan distance to the MAC of thread i and also the minimum
average distance to access the data. We define a circle of memory access (CMA) as
a circle with the center being MAC and the radius being MAR. If the MAR is larger
than a threshold Tdiv, the memory access targets are divergent enough and the state is
VOLUNTARY, as shown in Fig. 8a.
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(a) (b) (c)

Fig. 8 Classification of thread mobility

MARi > Tdiv (8)

If (6) or (8) is satisfied, the thread on the core must be expelled to any particular
node without concerning the benefits or overheads when the core is required by other
threads.

LOCKED: If the thread running on the core in last epoch is very sensitive to its
placement, and passive migration may dramatically lengthen the average access dis-
tance, the state is set as LOCKED, which means that the current thread will not migrate
and the node cannot be the destination of any migrations. In our algorithm, if the cur-
rent thread has a large memory access volume, very concentrated memory access
targets and its location is inside the CMA, the node should be locked, just as the case
illustrated in Fig. 8b. If the thread migrates outside the CMA, the distance of memory
accesses will rise rapidly, leading to performance degradation. Formally,

NAi ≥ Tmajor (9)

MARi ≤ Tcon (10)

D(i, MACi ) ≤ MARi (11)

If (9)–(11) are satisfied, we fix the current thread on the node.
CANDIDATE of migration (CM): when there are plenty of memory accesses and

the MAC is far away from the current location of the thread, the thread i can be the
candidate for migration. Formally, if both (9) and

D(i, MACi ) − MARi > Tfar (12)

are satisfied, the state of the node is CM, which will trigger a migration request to
the nodes next to its MAC, as shown in Fig. 8c. Since the coordinates of MACs are
continuous values, e.g. (3.35, 4.12), we choose several nearby nodes from (3,4), (3,5),
(4,4) and (4,5) as the candidate targets and sort them by their distances to MAC in
ascending order. The CM node should send a migration request to the first target. The
arbitration and benefit assess schemes will be discussed later.
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NORMAL: If a node does not belong to any of the above categories, its state is
NORMAL. The thread on it will not trigger an active migration, but it is sensitive to
passive migrations. If the node is designated as a target of migration, it should carefully
search for another node to place the old thread, according to the actual benefits and
migration overheads.

3.3 Workflow of chained thread migration

When the state of each node is determined, the CM nodes send migration requests to
their destinations, which is the beginning of our CTM algorithm. We employ a global
clock to synchronize each step in the processes of the algorithm, which will be detailed
as follows:

Benefit estimation: The benefits of a thread migration lie in (1) shortening average
transmission distance and, therefore, a reduction in memory access latency, and (2)
lower load on the interconnect links and routers between the original core and its
MAC, which will diminish the possibility of traffic contention and improve the overall
network performance. We employ a novel distributed mechanism to estimate the ben-
efits. When the message of a migration request sent by each CM node travels along
the NoC routers and links to the migration targets, it estimates the migration benefits
at each hop along the way. The benefit of a migration towards the MAC by one hop
is supposed to be the saving of transmission latency at the hop, i.e. the latency of link
traversal, router pipeline stages and queuing (due to contention). The benefits are con-
ducted and accumulated at each hop until reaching the destination to contend for the
opportunity of migration. Since the memory access traffic is bi-directional (we assume
that the memory request and response messages travel along the same route towards
opposite directions [14]), we should consider the loads on both of the opposite output
ports of each router. For example, a thread migration message penetrates a router from
the west port to east; we should reckon in the average hop latency of flits destined for
both west and east output ports, because the memory traffic generated by the thread
must experience these two ports and the corresponding links during last epoch. If
the thread has migrated through the router, the efforts to transfer packets through the
router in both directions can be avoided. So we conducted the saved latency (TL) as
the benefit value. Besides, since each hop of thread migration introduces additional
traffic, we should deduct the firm overhead G from the benefit value of every hop.
We assume that the traffic latency after migration is MAR × t , where t is the router
pipeline latency. So the final benefit function is

BN = NA ×
(

∑

h∈R

TLh − MAR × t

)
−

∑

h∈R

G, (13)

where R is a collection of all the nodes along the route and NA is the number of
accesses for the thread. Many previous works [6,7] count transmission hops as the
benefit function, which is simple to implement. But they fail to consider the traffic
contention in the benefit assessments. Consider the scenario where both nodes A and
B are CM nodes and the threads want to migrate to an IDLE node C in the very
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center between A and B. Assume that both threads only access data in C for equal
times, but the load on the interconnection between C and A is much heavier than that
between C and B. In hop-based scheme, the estimated benefits of the migrations are the
same. However, the benefits of B-to-C migration should be much greater than A-to-C
migration because the contention on the B-to-C links can be avoided. Node B should be
the winner of arbitration. Our latency-based estimation scheme will be more feasible,
since the hop latency values will reflect the relative intensity of interconnection load.

Request confirmation: when a target node receives some migration requests, and
its state is not LOCKED, it must arbitrate from the requests (R1, R2, ...) and choose
one with the greatest benefits, which satisfy

Max(BN(R1), BN(R2), . . .) ≥ Tbn (14)

as the winner for request confirmation. The requests which are not confirmed should
be forwarded to their next targets (note that each migration request message contains
2–4 candidate targets) for next-round arbitration until all the migration requests in
the system have been confirmed or rejected. It is a simple process which is also
distributed and can be finished quickly under the coordination of the global clock.
Once a migration is confirmed, the target node sends back an ACK signal to inform
the source core of a migration acknowledgement. The requestor should start preparing
for thread migration by halting the execution, packetizing the context, etc. CM nodes
that fail to acquire any confirmation will receive an NACK signal and switch their
states to NORMAL.

Chained thread migration: After all the requests have been confirmed or rejected,
we run our chained thread migration algorithm to determine the migrations. The basic
principle is shown in Fig. 9. A thread running on node A in last period requests to
migrate to node B, and the state of node B is also CM, whose current thread has to
migrate to node C. An A–B–C migration chain has been generated. We assume that
node A is the head of the chain, i.e. node A is not the migration destination of any other
nodes, and node C is the tail of the chain (unless the chain is circular). The migration
chain can have the following patterns.

1. If the state of node C is also CM and the thread wants to migrate to A, a circular chain
(A–B–C–A) has been formed (Fig. 9a). The migrations in chain will not affect other
threads. Since each section of the migration chain has sufficient positive benefits,
the migrations will be estimated effective, which can be performed without further
consideration.

2. If node C is IDLE. No conflicts occur at the tail. So the migrations of (A–B–C) can
be activated immediately (Fig. 9b).

3. If node C’s state is VOLUNTARY, i.e. the thread on node C must migrate passively
to any other place. In our algorithm, we move it back to the head (node A) to
avoid conflicts between different chains. The chained migrations (A–B–C–A) can
be determined without hesitation, because the impact of passive migration from C
to A is minor (Fig. 9c).

4. If the state of the tail is NORMAL, it should be the most complicated condition.
The thread on node C must migrate to make room for the thread on node B, but
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Fig. 9 Chained thread migration

the destination should be carefully chosen. Migration back to A is an option since
a circular migration chain is simple and contention-free, but we must conduct the
benefit of the passive reverse migration (from tail node C to head node A), which
is the difference of the estimated route latency minus the migration cost:

BNreverse =
∑

j∈T

(MALi ( j) × (D(C, j) − D(A, j)) × t) − G × D(C, A) (15)

We should also accumulate the positive benefits of active migrations along the chain
to calculate the total benefits of the circular migration chain:

BNcircular =
∑

BNchain + BNreverse (16)

If the total benefits satisfy

BNcircular ≥ Tbn × m (17)

the migration chain (A–B–C–A) is determined (Fig. 9d). Here m is the length of the
chain. Otherwise, we should find another node outside the chain to place the thread.
We consider the nodes next to C because moving a thread to a core nearby has a small
impact on performance and introduces minimum costs. So node C distributes signals
to search for a nearest node D that is IDLE or VOLUNTARY to form an A–B–C–D
(Fig. 9e) or A–B–C–D–A (Fig. 9f) chain, respectively.

If the migration chain has been determined, the nodes with a new immigration
switch their states to LOCKED, and the node A should be switched to IDLE if the
chain is not circular. Since multiple independent migration chains can be generated
concurrently, the procedures of chained migration are highly parallel.
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Fig. 10 Architecture of thread migration manager

Actual thread migration: The above algorithm has decided the mapping of each
thread. Then the thread labeled to migrate should launch actual migration processes.
As mentioned, some preparations can be made once it is determined to move. The
thread migration procedure has been studied in many previous works, which is beyond
the scope of this paper.

3.4 Architecture support and hardware overhead analysis

In this section we discuss the architecture support for our runtime algorithms and ana-
lyze the hardware overhead briefly. We add a simple module, called thread migration
manager (TMM), in each tile, which conducts information from the tile and works
in concert with other TMMs to guide the migrations. The basic structure of TMM is
shown in Fig. 10, which is comprised of the following sub-modules.

MAL monitor: the MAL monitor contains a table to record MAL information of
the thread running on the core. It monitors each memory request message to count the
number of memory accesses (NA) towards every memory interface. In a CMP with 64
memory controllers, we assume N = 20, 000 and use 10 bits to record NA towards
each MC, necessitating 640 bits of table storage. Actually, we may only conduct NA of
the most significantly accessed MCs, because many MCs are seldom accessed during
a sample period by a thread, which will not affect the accuracy of prediction. So we
may further compress the storage space.

State register and calculation logic: we need state calculation logic and a register
to keep the state of each node and trigger migrations. The logic is very simple with
negligible overhead.

Benefit assess unit: We employ this sub-module to estimate the benefits and over-
heads of thread migration. As mentioned in Sect. 3.3, it should conduct the average
flit latency at the NoC router as the benefit value, which will be transferred and accu-
mulated from the source to the migration target.
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Migration controller: the migration controller is the key component of TMM, which
takes charge of running the multiple procedures of our algorithm discussed above. The
migration controllers are interconnected by a global synchronization clock to keep in
coordination.

We can see that our TMM modules are compact units with low computational cost
and storage space. So our mechanisms will not bring excessive hardware overheads.

3.5 Runtime overhead analysis

The thread migration process is similar to that of a context switch, which introduces
non-trivial runtime overhead. The processes of thread halting, context packing and
transferring, and execution recovery significantly affect the runtime performance.
After being confirmed for migration, the core should halt current processing operations
and flush the processor pipeline. The process control block needs to be packetized and
transmitted across the network. The size of the context to be transferred is typically
256 KB [6,15], which takes about 30–50 cycles to reach the destination through NoC.
Once the context has been transferred, the target core can resume nominal operation
within hundreds of cycles.

The above runtime overheads are inevitable. In our work, we try to reduce runtime
overhead of thread migration by exploiting the intrinsic parallelism of the algorithm.
First, we activate the preparation of thread migration before the final determination of
the migration chain to hide latency. Even for the tail node, it can switch the context
beforehand for passive migration without knowing the actual migration target. Second,
the migration mechanisms such as protocol message exchanging, benefit calculating,
etc. are fully parallel and distributed. We deploy multiple low-cost TMMs to enable
thread migration, which fit in well with the distributed nature of the NoC and DMS. In
comparison, centralized algorithms such as GA remapping [16] require a central node
(called global manager) to gather information from all over the system, compute for
an optimal remapping and distribute the decisions to all the nodes. The computational
and traffic overheads are very large, which hurts the scalability of the mechanisms.
Besides, GA remapping may result in too many migrations at every epoch to achieve
the minimum memory access distance. But some migrations may have very little
benefit while introducing large runtime overhead. In our work, we run distributed
benefit estimation for each migration candidate and permit migrations with sufficient
benefits only. In this way we perform a few but beneficial migrations to minimize
runtime overheads.

4 Evaluation

4.1 Methodology

We target a 64-core chip-multiprocessor (CMP) with 64 MCs distributed along with
the cores, as described in Sect. 3.1. We assume 64 DRAM DIMMs with four memory
banks each. Each DIMM is connected to a memory controller via a single channel,
with a memory capacity of 16 MB to reach a total of 1 GB main memory. The cores
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and MCs are interconnected by an 8 × 8 2D mesh network-on-chip. Each core has
private 4 KB L1s (2 ways) and 16 KB L2 (8 ways) caches. Open-page row-buffer
policy is assumed in our DRAM modules. We use three-stage wormhole routers in
NoC and FR-FCFS scheduling [17–19] policy for memory arbitration.

We use a C++ based cycle-accurate trace-driven simulator to evaluate the perfor-
mance of our mechanisms. We faithfully model the MCs, DRAM modules and the
NoC, simulating the transmission and buffering of memory requests, data and other
necessary messages. Scheduling of the MCs, contentions on memory buses and banks,
and timing constraints of DDR3 DRAM are also involved for simulation, according
to the Micron datasheet [20]. Memory access traces from Gem5 full-system simu-
lator [21] executing applications from PARSEC [11] with sim-large dataset are con-
ducted to feed our simulator. The initial mappings of both threads and data are the
same for all the scenarios. We randomly map the threads to the cores at first and place
the data pages to the memory banks using single thread interleaving (STI) scheme.

We carefully choose the sample period N according to the predictability, which
is discussed in Sect. 2.1. We conduct the MALs of each thread as the guidelines of
thread migration. The set of thresholds (Tminor, Tmajor, Tdiv, Tcon, Tfar) assumed in our
algorithm is set as (N/250, N/50, 4, 1.5, 3). The thresholds of benefit (Tbn) of different
applications are set case by case in our simulation. We model the runtime overheads
of thread migration mentioned in Sect. 3.5. The additional traffic introduced by our
CTM algorithm is also simulated, including the transmission of migration requests,
responses and the contexts of mobile threads.

4.2 Results

In this section we show performance results of the memory system with our CTM
mechanisms, which are compared with static thread placement (no migration, “None”
in the following results) and other thread migration schemes. First we show results of
average latency breakdowns of accessing memory in Fig. 11. We break the total mem-
ory access latency into three parts: network transmission latency, memory read/write
latency and MC queuing latency. Our thread migration mechanisms can reduce trans-
mission latency by 25.4 %, but have almost no impact on read/write latency and
queuing latency. This is because thread migration schemes focus on improving mem-
ory traffic, which will not change the loads and read/write performance of memory
modules. For swaptions, MC queuing latency dominates due to load imbalance on
different memory interfaces, which makes the effect of thread migration negligible
(only 2.3 % reduction of total latency). However, for most applications, the latency of
transferring memory request/data is the main contributor to the total latency. It shows
that the on-chip interconnection will be one of the bottlenecks of memory access
performance in DMSs and our thread migration scheme can reduce total latency by
11.0 %.

Next we compare our CTM algorithm with other two algorithms: Simple Exchange
(SE) and Genetic Algorithm (GA), which are derived from the similar task migration
schemes proposed in our previous work [7]. In SE, the five most memory-intensive
threads directly migrate to their MAC nodes and exchange the positions with the
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Fig. 11 Average latency breakdowns of accessing memory

Fig. 12 Comparisons of average memory access latency

current threads on the MACs. We also make some modifications to GA remapping
algorithm [16], with the fitness function being the reciprocal of average hops. Multiple
iterations are experienced to reach correct convergence, to minimize average memory
access distance. We evaluate the average memory access latency and IPC speedup
of various thread migration algorithms, compared with the system with immobile
thread placements. The results are shown in Figs. 12 and 13. We find that CTM,
SE and GA improve latency by 11.0, 7.1 and 13.1 %, and achieve IPC speedup by
11.5, 6.4 and 8.9 % on average, respectively. For SE algorithm, the improvements are
less than our CTM scheme, because SE only considers the benefits of the initiative
migrations and ignores the effects of the reverse ones. Some passive migrations may
bring negative impacts on the reciprocal performance. Besides, a thread with massive
but divergent memory accesses will acquire very limited benefits from the migration to
its MAC, which may also become a new hotspot. For GA algorithm, although multiple
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Fig. 13 Comparisons of average IPC speedups

Fig. 14 Number of migrations of GA and CTM per sample period

iterations of optimization can achieve minimum access latency, the IPC speedup is
a bit lower than CTM (about 2.6 %). GA has been a centralized algorithm which
requires a global manager (located in the center of the network in our evaluation)
to gather MAL information, compute the mapping of every thread and distribute the
determinations. It introduces a great amount of extra traffic and creates a network
hotspot in the center. The processes are serial and slow. Furthermore, we compare the
average number of migrations in each period between GA and CTM in Fig. 14 and find
that GA requires much more thread migrations to complete the remapping processes
which introduces non-trivial runtime overheads. In our CTM algorithm, however,
on average only 5.8 migrations are elaborated in each period to achieve considerate
performance promotion. It proves that our mechanisms can optimize overall memory
traffic through a few efficient thread migration, while some excessive migrations in
GA are not beneficial enough to compensate for the runtime overheads. Most of the
migrations found in CTM are active migrations, and the other 44 % passive migrations
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Fig. 15 Comparisons of average memory distance

must experience strict estimation of overheads to minimize the negative impacts from
them. Besides, as discussed in Sect. 3.5, the computation efforts of our CTM algorithm
are much lower than GA due to its distributed and parallel features.

However, for bodytrack, we observe performance degradation for all the runtime
algorithms, which mainly results from misprediction. As discussed in Sect. 2, the pre-
dictability of bodytrack is relatively low. The prediction is unreliable to serve as the
guidelines of runtime algorithms, which leads to serious deviation in benefit/overhead
estimation. We evaluate a profiling-based CTM algorithm in which the MALs are
precisely profiled to eliminate the effect of misprediction. We find in Fig. 13 that the
performance are better than runtime schemes for most applications, including body-
track. In spite of this, our runtime CTM algorithm still achieves up to 97 % performance
on average due to high predictability in most benchmarks. For applications with low
predictability, we must employ other schemes such as profiling to acquire an accurate
knowledge of future memory access behaviors in order to avoid performance penalty
caused by misprediction.

We then evaluate the impact of the three algorithms on the two important NoC
performance indicators: memory access distance and average router latency, which
are shown in Figs. 15 and 16. GA is dedicated in minimizing average memory access
hops after massive migrations, while CTM takes advantages of a small number of
thread migrations to shorten the average hop count by 0.89 hops and achieves the
least hop latency. As discussed in Sect. 3, we use hop latency, rather than hop count
to estimate benefits. Our algorithm can distinguish transmission links with different
loads and prioritize migration requests which can significantly reduce link contention.
SE has the least promotion of both memory access hops and router latency due to the
limited benefits of active migrations and disadvantages of reverse ones. Then we use
ORION [22] to estimate the values of dynamic power dissipation in the interconnec-
tion, which are normalized and shown in Fig. 17. CTM, SE and GA save dynamic
power by 19.9, 15.4 and 22.8 %, respectively. Obviously, we can significantly reduce
power consumption via thread migration, since the numbers of buffering, arbitration,
switching and link traversals are remarkably decreased.

123



Optimizing memory access traffic via runtime thread migration 1511

Fig. 16 Comparisons of average router latency

Fig. 17 Comparisons of dynamic power on the interconnection

Finally, we analyze the impact of granularity of dividing the periods (N ). We plot
the IPC speedup and average memory access latency as the function of N for two
typical applications: ferret and streamcluster in Fig. 18. In ferret, if the length of each
period is too short, the collection of MALs is insufficient to predict future behavior
(since the predictability shown in Fig. 2 is low when N is small). Misprediction may
occur and significantly affect the performance of our runtime algorithm. For stream-
cluster, although it is also predictable when N = 5,000, frequent migrations introduce
large overheads and shrink the benefits of every thread migration. When N increases to
15,000, ferret has the highest predictability and also the best performance. The benefits
of our algorithm in both ferret and streamcluster decrease sharply when the periods
of migrations are too long, since many opportunities of optimization are missed. So
we choose N = 20,000 for streamcluster, which achieves very high predictability
and the largest performance improvement. Above all, we should carefully choose the
granularity of partitioning periods with comprehensive considerations of predictabil-
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(a)

(b)

Fig. 18 IPC speedup and average memory access latency as the function of N for a ferret and b streamcluster

ity, runtime overheads of migrations and reaction time for the ever changing memory
access behaviors.

5 Related work

5.1 Task/thread migration

Runtime task migration methods have been studied in various scenarios for years.
Chen [5] proposed hybrid task migration schemes in 2D mesh wormhole-routed multi-
computers to minimize transmission latency. The algorithms share some similarities
with our work, but the mechanisms in multi-computer systems cannot be directly
applied in NoC-based systems, which are featured with limited chip area and com-
putational capability. The authors in [23] proposed remote core locking mechanism
aiming to improve the performance of critical sections in legacy applications on multi-
core architectures. In [24] the authors proposed a task management infrastructure
that is well suited for the constraints of single chip multiprocessors with distributed
operating systems. User-managed migration scheme based on code check-pointing
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is assumed to keep load balance and the overheads of migration are characterized.
Task migration in NoC systems were also well studied, which mainly focused on spe-
cific migration mechanisms [25], including hardware support [26] and mechanisms
to alleviate negative impact caused by migration [27]. In our recent work [28], an
online task mapping algorithm is proposed for NoC-based systems, which optimizes
task mapping/remapping to reduce communication energy consumption according to
runtime communication status. The authors in [29] described an execution migration
mechanism, called EM2, in which threads always migrate to the core where data are
statically stored. Misler et al. [6] proposed Moths, a distributed runtime task migration
mechanism for NoC platform. The mechanism is based on traffic volume monitoring
between every pair of nodes. Simple exchanging of only one pair of threads is assumed
during each epoch, and the algorithm complexity for searching the pair is very high.
In this work, we avoid to employ global benefit competition algorithms like [6] and
significantly reduce computing complexity, while allowing multiple threads to move
together in chains. Most of these researches tried to directly optimize NoC traffic, and
few of the previous works focused on memory access traffic found in modern on-chip
distributed memory systems.

Many approaches employ application behavior prediction to guide task migration
or cache line migration. In [30] the authors proposed approaches to increase the tim-
ing predictability in multicore architectures for task migration in embedded systems.
The scheme shows increased predictability in the presence of cross-core migration.
Other works on the predictability of migration focused on the migration overhead and
cache-related behaviors [31,32], but not the memory access or network behavior itself.
Our previous work [7] analyzed the predictability of communication volume between
every pair of nodes and proposed several simple thread migration schemes based on
Genetic Algorithm, Simple Exchange and Benefit Assess. The source of packets can
be migrated closer to its destination. However, the process of information gathering
and migration are based on approaches that only distinguish different network node,
neglecting the type of packet source. Actually, in NoC-based DMSs the source can
be the core, cache controller or the memory controller, while task migration only
affects packets which are sent from the core (such as memory request and write data
messages). The algorithms in [7] may incur misprediction due to confusion of packet
types. Our work can avoid such confusion by employing memory level investigation,
since the memory access pattern directly determines memory traffic in NoC.

5.2 Optimization of memory access traffic

Most prior researches on on-chip communication are concentrated in processor-to-
processor traffic and very few work discussed the influence of processor-to-memory
traffic. Abts [14] examined the placement of MCs in NoC to improve performance
predictability. Bakhoda et al. [33] proposed hardware optimizations in NoC routers
which handle many-to-few-to-many memory traffic appeared in many-core acceler-
ators like GPGPUs. In [34], Kim proposed a communication-aware MC design to
deal with network congestion in which transactions waiting in the DRAM queue that
have to be sent back to cores in areas of the NoC which are less congested are given
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higher priority. Memory-centric NoC architectures with real chip implementations are
studied in [35]. Recent work [36] tried to reduce end-to-end memory access latency in
NoC-based multicore system by prioritizing memory response packets and messages
destined for idle memory banks. Memory placement mechanisms in NUMA systems
such as page migration [37–39], interleaving [2] and replication [2,40] have been
studied for decades. In [41] the authors proposed a mechanism to deal with resource
contention in NUMA systems, memory migration strategies are studied in the work,
which are the necessary part of the NUMA contention-aware scheduling algorithm.
They tried to reduce the distance between computation and data via moving the data,
while our work achieves the same goal by moving the computation closer to the data.

6 Conclusion

This paper proposed a runtime thread migration algorithm for CMPs with on-chip
distributed memory system to optimize memory access traffic. We found that for
most applications, the memory access targets and volumes are similar in short peri-
ods, which enable us to predict the memory access pattern of the next sample period.
Besides, mobility of MAC during long period motivates us to move the threads towards
the MAC dynamically. A distributed chained thread migration algorithm was studied
then, including the processes of node classification, migration trigger and arbitra-
tion, benefit estimation and the final determination. We further generally discussed
architecture support and overheads of the algorithm. Simulation results show that the
mechanisms presented here can reduce transmission latency and increase system per-
formance with acceptable overheads. For future work, we will study algorithms to
support multi-threading systems and migration schemes based on affinity of memory
accesses between threads. We will also focus on the topic of high-level (compiler,
language, application levels) analysis of memory access behaviors and imbalanced
computational workloads.
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