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Abstract: In this study, we propose a queueing model to analyse the performance of an opportunistic spectrum access
(OSA) system with service interruptions operating over heterogeneous channels in which the service transmission rate
and the service interruption rate after the transmission is resumed are generally different than their value prior to the
interruption. We first propose Markov chain models to analyse this system under memoryless service time and
availability periods. On the basis of simplification assumptions, we also provide an analytical z-Transform analysis of
the Markov models. The Markov model and approximations are validated with accurate system simulations. We also
provide numerical results illustrating the non-convex relations between the traffic metrics and system parameters and
that the proposed models are essential for optimal OSA network planning and operation. We further analyse and
discuss the OSA queueing model for general distribution of service time and availability periods. The analytical and
simulation results indicate that for usual system parameters, the queue average occupancy is similar for different
distributions of service time and availability periods and that the memoryless Markov models can be used to
accurately predict the heterogeneous OSA system traffic performance.

1 Introduction

Opportunistic spectrum access (OSA) is expected to be widely
deployed in next generation wireless networks to address the fast
traffic growth in wireless networks [1–4]. In OSA networks, the
packet transmissions are frequently interrupted because the
cognitive radio (CR) users must stop using their operating channel
when the channel’s primary users appear or if the channel quality
drops below a minimum threshold. During the interruption,
depending on the OSA medium access control (MAC) algorithm,
the CR users might stay on the channel until it becomes available
again or switch to a new channel [5]. In both cases, the operating
channel after the interruption might have different parameters
(channel bandwidth, probability of primary user arrivals,
propagation conditions, level of interference etc.) than the
operating channel prior to the interruption.

Our objective in this work is to obtain a queueing model, which is
an important tool to analyse CR traffic performance [6], in an OSA
network with heterogeneous operating channels. In the queueing
model, the operating channel is the server of the queue. We
therefore have a system with a server with a time-variant service
rate subject to frequent service interruptions occurring at a
time-variant rate.

1.1 Related work

Queueing models for servers with interruptions have been previously
studied [7–11]. However, all those works have considered a server
with a time-invariant service rate and server interruption rate.
Two-class preemptive queueing models have been proposed for
OSA networks where the CR server interruptions are modelled as
the busy periods of the preemptive primary traffic [6, 12–14].
With this approach, the server is considered time-invariant with a
constant service rate and interruption rate. Furthermore, it is not
straightforward to use those models to study OSA networks with
generally distributed operating and interruption periods.

In [15], we proposed a new queueing model for OSA networks for
a single class of CR traffic for general operating and interruption
period lengths. However, a time-invariant service rate and server

interruption rate are also assumed in this model. In [16], an OSA
queueing model with variable service rate is studied. However, the
work did not address the recovery periods and variable
interruption rate. The queueing model is also specific to the MAC
protocol studied in this paper. The applicability of queueing theory
to analyse multiuser multichannel CR networks has been discussed
in [17, 18] where channels are assumed to be similar. In [19],
Rashid et al. discuss a queueing model for a multiuser CR
network with a variable service rate, but the notion of recovery
periods is not considered. Variable service rate has also been
addressed in [20], but for an underlay model; the notion of
interruption is therefore not applicable.

1.2 Contributions

Our major contribution in this paper is, to the best of our knowledge,
the first accurate Markov chain (MC) queueing model for an OSA
system using heterogeneous channels with different transmission
and interruption rates in the presence of interruptions with random
periods. To obtain analytically tractable results, some simplifying
assumptions, such as memoryless packet and interruption arrival
process, have naturally been made to the cognitive network model.
We also introduce another MC model for generally distributed
interruptions where the arrival process during interruptions is
approximated as a bunch arrival. Those two models can be
numerically solved to find the distribution of the number of
packets and therefore analyse the OSA network traffic metrics for
different network parameters’ values. In some cases, such as for
large number of channels and queue lengths, or for real-time
control algorithm implementations such as the MAC protocol,
channel sensing order selection and user admission, the MC
models can be computationally too intensive to solve. Another
important contribution of this paper is therefore a novel analytical
z-transform analysis to approximate the traffic metrics for the
heterogeneous OSA network queue model. The z-transform
analysis is also extended to general distributions of service time
and availability periods.

The queueing models developed in this paper can be used to
analyse the traffic metrics of different OSA networks using a set
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of heterogeneous channels. Although the performance study of an
OSA network for specific MAC protocols is outside the scope of
this paper, we present numerical results in this paper illustrating
the complex non-convex relationships between the traffic metrics
and demonstrating that tools, such as the ones we introduce in this
paper, are essential for OSA network planning. Even though the
analysis is made in the presence of some commonly used
simplification assumptions, we further provide some simulation
results demonstrating that the simplified model is a good analytical
approximation for more complicated and realistic scenarios.

The remainder of this paper is organised as follows. Section 2
presents the OSA system and queueing models considered in this
paper. In Section 3, we present the accurate two-dimensional (2D)
MC model and the approximate z-transform analysis for
exponentially distributed recovery periods. The case of general
interruption periods is studied in Section 4. The accuracy of those
different models and approximations is verified with Monte Carlo
simulations of the system in Section 5. We further analyse and
discuss in Section 6 the OSA queueing model for general
distributions of service time and availability periods. Finally,
Section 7 concludes this paper.

2 System model

As illustrated in Fig. 1, the CR node alternates between operating and
recovery periods. The operating periods begin from the time that the
CR node switches to a new channel and last until a recovery or
spectrum search has to be performed. Without loss of generality,
we will use the term recovery to designate the period during which
the CR node must stop its transmission and search over channels
according to an arbitrary channel search algorithm depending on
the protocol used by the CR network and, possibly, compete with
other users to reserve a channel according to a MAC protocol. At
the end of the recovery period, the CR node will select a channel
of type i, i∈ {1, …, B}, and resume its packet transmission. We
assume in this paper that the B types of channels are
heterogeneous with different parameters such as channel
bandwidth, link signal-to-noise-plus-interference ratio and primary
user occupancy distribution. Therefore the system parameters are
different between the operating periods before and after a recovery
period. We also use, without loss of generality, the term failure
event to designate the event triggering the start of a recovery
period or equivalently the end of an operating period. A failure
event can be because of several factors such as the appearance of
primary users, a bad link quality in the operating channel or a
periodic trigger.

The operating period has a random length Y with a general
distribution. We assume that the distribution type is the same for
the B types of channel (for example, they are all exponentially
distributed), but the parameter (for example, the average) is
different for each channel. The general distribution case is studied
in Section 6.1, but, as discussed there, it is very difficult to obtain
analytical queue performance results for non-memoryless operating
period distributions. For this reason, the exponential distribution
has widely been used in the literature to model the operating
periods’ length [16, 21–23]. Results presented in this paper also

show that the analytical results with the exponential distribution
are good approximations for other distributions. For the
memoryless case analysed in Sections 3 and 4, the operating
period over channel type i, i∈ {1, …, B}, is modelled with an
exponential distribution with parameter αi. Thus, when the CR
node is operating on channel i, failure events occur at a rate αi.

The service time depends on both the packet length and the
channel transmission rate. In this model, we consider a
time-invariant Poisson packet arrival process with rate l and
time-invariant packet length distribution and parameters. During an
operating period, it is also assumed that the channel transmission
rate is constant. However, the transmission rate is channel
dependent (for example, because of the different bandwidths or
channel link quality) and changes for each operating period. We
therefore have a system where the service time probability
distribution is the same for all operating periods, but its parameters
change for each operating period (for example, the service time is
exponentially distributed with a different mean for each operating
period). The general service time distribution case is studied in
Section 6.2 and the memoryless packet length (and thus
memoryless service time) is analysed in Sections 3 and 4. For the
later case, the service rate for channel type i, i∈ {1, …, B}, is
modelled with an exponential distribution with parameter μi.

The recovery period had a random length R. Since the recovery
period length depends on the system parameters, we model it with
a time-invariant distribution which does not depend on the channel
used during the previous operating period. In Section 3, we study
the case of a recovery period with an exponential distribution with
the parameter β (i.e. E[R] = 1/β) and in Section 4 we consider a
generally distributed recovery period. The probability that channel
j will be selected at the end of the recovery period given that
channel i was used before the recovery period is assumed to be
known and it is given by qij.

Several factors affect the distribution of the recovery period R and
the channel selection probabilities qij. In multiuser scenarios, the
MAC and opportunistic scheduling of users influence the
distribution of R and the probabilities qij. For instance, in
probabilistic MAC models, based on Aloha or Carrier sense
multiple access (CSMA), the recovery time to find a new channel
includes not only the search time, but also the competition time
(including backoff periods) with other nodes [5, 24]. Even if the
user is blocked because of other users transmitting on all channels,
the total time of blocking until a successful channel reservation is
included in the recovery time, which can be found for instance
using a renewal model (i.e. if the user is blocked, the competition
process to reserve a channel is renewed). In a network where a
spectrum server assigns the channels, the recovery time is a
deterministic short period of negotiation with the spectrum server
until a new channel is assigned. Other factors, such as the channel
search algorithm, channel sensing strategy and number of channels
should also be taken into account to determine the distribution of
R. Note that the exponential distribution is a good approximation
for the commonly used random channel search where channels are
sensed one by one until the first available channel is found [25]
and for multiuser Aloha competition for channel reservation [24].
A methodology to find the recovery period distribution for two
baseline multichannel OSA MAC protocols is also provided in [24].

Fig. 1 CR node operation in OSA
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qij, the probability of finding a channel with a specific service rate
after the period R, also depends on several factors such as the
channel availability, channel models (fading and interference),
multiuser channel assignment and, in some cases, on the service
rate of the channel used before the recovery. For example, we are
using the common assumption in the literature [5, 16] that each
channel is used by one user. However, given that multiple users
may share the channels, we can assume that when a channel is
multiplexed between multiple users, its service rate is also divided
equally between the users. Therefore, in the proposed queueing
model, we can have a row for each possible service rate which
would depend on the number of users assigned to the channel.
The qij then depends on the number of users assigned to a channel
and the channel scheduling strategy. Naturally, finding the qij
values with channel sharing can be more involved [26].

A combination of prior statistical knowledge about the channels
(availability probability, channel fading model etc.) in addition to
system parameters (MAC protocol, channel search and sensing
algorithms, channel assignment algorithm, number of users,
number of channels etc.) is therefore required to determine the
distribution of R and the qij. The approach to find those is thus
case-dependent and is out of the scope of this paper. However, the
objective of this paper is to propose and analyse a general
queueing model which can be used to find the packet level

performance once those distribution are found. As discussed, the
proposed model in this section is general and may be used for
per-node performance analysis in different heterogeneous
multichannel OSA network scenarios with multiple homogenous
users.

3 Queue model for exponentially distributed
recovery periods

In this section, we consider exponential distributions for the
operating periods, service time and recovery periods, which enable
the development of an accurate queue model. In Section 3.1, we
present an MC model for this CR queue, and in Section 3.2 we
derive approximate analytical queue performance results.

3.1 MC model

Fig. 2 shows the exact bi-dimensional MC model for the case of
exponentially distributed recovery periods. State (k, i), k = 0, 1, …,
and i = 1, …, B, indicates that there are k packets in the system
operating over a channel of type i. State (k, 0i), k = 0, 1, … and
i = 1, …, B, indicates that there are k packets in the system which
is in a recovery period, and the last operating channel before the

Fig. 2 MC for the queue with variable service rate and exponential recovery periods (M1)
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start of the current recovery period has been channel i. When a
failure occurs, the state makes a transition from (k, i) to state (k,
0i), whereas at the end of a recovery period, the state makes a
transition from (k’, 0i) to state (k’, j) with a probability qij. The
states (k, 0i) enable us to accurately model the packet arrivals
during the recovery period, but the recovery periods must be
exponentially distributed to be able to introduce them into the MC.
Note that B separate lines are needed for the recovery periods
because of the memory between consecutive operating channels.

For convenience, let us define μ0i = 0, ∀i > 0. The transition rates
are then as follows
The balance equations are then given by

p(0, i)(ai + l) = p(1, i)mi + b
∑B
j=1

p(0, 0j)q ji,

i = 1, . . . , B

(2)

p(k, i)(ai + l+ mi) = p(k + 1, i)mi +p(k − 1, i)l

+ b
∑B
j=1

p(k, 0j)q ji, k . 0, i = 1, . . . , B

(3)

and

p(k, 0i)(b+ l) = p(k − 1, 0i)(l)+ p(k, i)ai,

k . 0, i = 1, . . . , B
(4)

p(0, 0i)(b+ l) = p(0, i)ai, i = 1, . . . , B (5)

The MC above can then be solved numerically and used to obtain the
exact system performance metrics.

3.2 Analytical approximations

The previous MC can be numerically solved; however, it could be
computationally intensive for large number of channels and large
queues. We thus propose to use two different approximations
based on the symmetric structure of this MC to obtain analytical
results for this model which could be used, for instance, in
real-time CR network scheduling and configuration algorithms. Let
us first define Qi as the steady-state probability of operating over
channel i which implies either the channel being used now is i
(being in a row with an i index) or i was the last channel before a
recovery (being in a row with a 0i index). The Qi values can be
directly found from an MC, illustrated in Fig. 3, where each state
represents a whole line in the bi-dimensional MC and the
transition probabilities (rates) are given by αi’s and qij values. Note
that as β is unique and thus the same for all rows, in finding the
steady-state probabilities of operation over channel type i, the
recovery periods are neglected.

In the first approximation approach, we neglect the dependence
between the rows for each service rate to approximate the
z-transform of the number of packets in the queue as

pz(z) ≃
∑B
i=1

Qipz(z, i) (6)

where πz(z, i) is the z-transform of the distribution of the number of
packets in the system for a queue with a fixed service capacity μi.

That is, we approximate πz(z) as the weighted sum of independent
MCs for different service rates, where the weights are the
probabilities of having each service rate.

In this MC, each service rate is itself modelled by a 2D MC with
two lines: one line for the operating state and the second for the
recovery period. The z-transform of each line cannot be obtained
because it does not correspond to a complete probability
distribution (i.e. the probabilities of a line do not sum to 1). To
solve this problem, we introduce P(k, i) and P(k,0i), which are the
conditional probabilities that the system is in states (k, i) and
(k, 0i), respectively, given that the system is in an operating period
or a recovery period. From the symmetric structure, it can be
immediately seen that π(k, i) = (β/(αi + β))P(k, i) and π(k, 0i) =
(αi/(αi + β))P(k,0i).

Let qii = 1 (and thus qij = 0, ∀j≠ i) to decouple the service rates.
We then obtain the following balance equations as a function of
the conditional probabilities P(k, i) and P(k,0i)

P(0, i)b(ai + l) = P(1, i)bm+ P(0, 0i)bai (7)

P(0, 0i)ai(b+ l) = P(0, i)bai (8)

(l+ ai + m)bP(k, i) = mbP(k+1, i) + lbP(k−1, i) + baiP(k, 0i),

k . 0
(9)

and

(l+ b)aiP(k, 0i) = laiP(k−1, 0i) + baiP(k, i), k . 0 (10)

Note that in all of the above equations, (αi + β) is common in the
denominator and was thus dropped. Since P(k, i) and P(k,0i) are
complete probability distributions, we can then obtain their
z-transforms Pzi(z) and Pz0i(z), respectively, by computing

∑1
k=1 z

k

Fig. 3 Steady-state probabilities of working on a channel of type i (Qi) are
steady-state probabilities of the MC above

p(k, i)(l, j) =

l i = j and l = k + 1
mi i = j, i [ {1, . . . , B}, l = k − 1 and k . 0
ai i [ {1, . . . , B}, j = 0i and l = k

bqmj i = 0m, m [ {1, . . . , B}, j [ {1, . . . , B} and l = k
0 otherwise

⎛
⎜⎜⎜⎜⎝ (1)
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on both sides of the last two equations. We can then find that Pz0i(z)
is equal to

Pz0i(z) =
bPzi(z)− bP(0, i) + (l+ b)P(0, 0i)

(l+ b)− lz
= bPzi(z)

(l+ b)− lz

= Pzi(z)Az(z) (11)

Az(z) represents the z-transform of the number of arrivals during
exponential recovery periods. Pzi(z) can then be determined as

Pzi(z) =
mi(1− r)(1− z)

mi(1− z)− lz(1− z)− aiz 1− (b/(l+ b− lz))
( ) (12)

P(0,i) is equal to 1− ρi = 1− lE[Xb, i] [27]. We can now find P(0,0i)

from (8), and from there, we can find that π(0, i) and π(0, 0i).
Finally, the P0 of the system can be found to equal

P0 = p(0, i)+ p(0, 0i) = 1− ri
1+ (lai/(b(ai + b+ l)))

(13)

πz(z, i), the z-transform of the number of packets in an unconditioned
queue with the rate μi, can be found equal to

pz(z, i) =
b

ai + b
Pzi(z)+

ai

ai + b
Pz0i(z)

= Pzi(z)
b+ aiAz(z)

ai + b

( )
(14)

The average number of packets in the system can be given by

p ′
z(1, i) = �N = P′

zi(1)+
ai

ai + b
A′
z(1)

= ri
1− ri

+ ail
2E[R2]

2mi(1− ri)
+ ai

ai + b
lE[R]

(15)

where A′
z(z) is the first derivative of A. Combining those results with

(6), the overall queue performance can be analytically approximated.
For the second approximation approach, we define the average

service rate (�m) and the average failure rate (�a) of the

bi-dimensional queue as

�m =
∑B
i=1

Qimi (16)

�a =
∑B
i=1

Qiai (17)

We then approximate the model with a system with homogeneous
channels where the service rate is �m and the operating periods are
exponentially distributed with the parameter �a. That is, the
z-transform of the number of packets in the queue is approximated as

pz(z) ≃ pz(z, �m, �a) (18)

where pz(z, �m, �a) is the z-transform of the distribution of the
number of packets in the system for a queue with a fixed service
capacity �m. pz(z, �m, �a) can be found using the same approach as
outlined previously to find πz(z, i).

4 Queue model for general interruptions

In this queue model, we simplify the system by assuming that all of
the packets arriving during the recovery period actually arrive at the
end of the recovery period, or equivalently, at the beginning of the
next operating period. However, this model is a simplification and
indeed a lower bound, as it neglects a small part of the waiting
time for the packets that arrive during a recovery period. On the
other hand, this assumption provides a lower-bound analysis for
generally distributed recovery periods. Exponential distributions
for the operating periods and service time are still considered.

The evolution of the CR queue can be modelled with a continuous
time Markov model, as illustrated in Fig. 4.

As the service rate may change between different operating
periods, we use a 2D MC model where line i, i = 1, …, B,
corresponds to an operating period with channel i. State (k, i), k =
0, 1, … and i = 1, …, B indicates that k packets are accumulated in
the queue and that channel i with service rate μi and failure rate αi
is currently used. In each state of the MC, in addition to
transitions caused by the arrival and service processes, there are
also transitions because of failure events. Those transitions depend
on the channel selected after the recovery period and on the
number of packet arrivals during this recovery period. For
example, suppose that the current state is (k, i). If a failure occurs,
the CR node performs a recovery and selects channel j, j = 1, …,
B with probability qij. The next state will then be {(k, j), (k + 1, j),
…}, which depends on the number of arrivals (probability of n
arrival, an, in R). The number of arrivals during the random

Fig. 4 Approximate MC for the queue with a variable service rate (M2)
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recovery period R is denoted by the random variable Ar and its
distribution is given by

an = Pr(Ar = n) =
∫1
0

e−lt(lt)n

n!
fR(t) dt (19)

where fR(.) is the probability density function of R.
In the proposed MC, the ‘transition rate’ from state (k, i) to state

(l, j) can be expressed by

p(k, i)(l, j) =
l+ aia1qii, i = j and l = k + 1

mi, i = j, l = k − 1 and k . 0
aia(l−k)qij, i = j and l ≥ k or i = j and l . k + 1

0, otherwise

⎛
⎜⎜⎝

(20)

For the state (0, i), the boundary steady-state balance equation can be
written as

(l+ ai)p(0, i) = mip(1, i)+ a0
∑B
j=1

ajq jip(0, j) (21)

For the states where k > 0, we have

(l+ a+ mi)p(k, i) = mip(k + 1, i)+ lp(k − 1, i)

+
∑B
j=1

∑k
n=0

anajq jip(k − n, j) (22)

and the last equation

∑B
i=1

∑1
k=0

p(k, i) = 1 (23)

Numerical techniques can then be used to solve these balance
equations to find the steady-state probabilities π(k, i) of this MC.
From this distribution, different performance parameters of interest
can be obtained such as the queue occupancy, the system time and
the waiting time. It is also straightforward to develop analytical
approximations for this model using an approach similar to
Section 3.2.

5 Simulation and numerical results

To investigate the accuracy of derived results, the first moment of the
average number of packets in the system (E[N ]) has been evaluated
using the numerical solutions for the two proposed Markov models
and the analytical approximations, and the results are compared with
accurate Monte Carlo simulations of the system. We investigated the
CR performance for exponentially distributed operating periods and
recovery periods with averages of 75 ms (E[Y ] = E[Yi] = 1/αi = 75
ms, ∀i) and 25 ms (E[R] = 1/β = 25 ms), respectively. We also
present results for a high system availability case where E[Y ] = E
[Yi] = 750 ms (∀i). We consider a system with B = 6 and rates μi =
[0.27, 0.4, 0.47, 0.8, 0.87, 1] (packets/milliseconds). The transition
probabilities are independent of the original states and given by qij
= [0.3, 0.25, 0.15, 0.15, 0.1, 0.05], ∀i. In these figures, M2 refers
to the lower-bound model presented in Section 4 and M1 to the
accurate model for the exponential recovery period presented in
Section 3, ‘Num’ refers to the MC numerical solution and
‘An-Apx1’ and ‘An-Apx2’ refer to the two approximate analytical
solutions. Note that using simulation results, we find an
appropriate buffer size to be able to truncate the MCs and solve
them numerically.

As expected and illustrated in Figs. 5–7, the simulated E[N] and
E[N2] and their numerical evaluation using the first MC are
identical. As discussed, the second model provides a lower bound

for the exact simulated performance. Regarding the analytical
approximations, the first approximation is built on a weighted sum
of B fixed-rate queues (6) and is therefore sensitive to instability in

Fig. 5 E[N] against the arrival rate l

Fig. 6 E[N2] against the arrival rate l

Fig. 7 E[N] when availability periods are much longer than recovery
periods
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any one of the B queues. This approximation is therefore accurate as
long as the weakest queue with the lowest service rate has a queue
utilisation, ρi, lower than one. For example, for E[Y ] = 75 ms
(Fig. 5), we can easily find that ρ1 = 1 for l = 0.2025. The first
approximation thus starts to diverge when l approaches 0.2025.
The second approximation based on (6) underestimates E[N ], and
the gap between the exact result and the approximation increases
as a function of the arrival rate. This can be explained by
considering that increasing the arrival rate makes the heterogeneity
of the channels more important. This approximation thus
underestimates the impact of the weakest queue on the overall
performance by assuming homogeneous channels with a single
average service rate.

Fig. 7 depicts the queue performance when availability periods are
much longer than recovery periods (for this case E[Y ] = 30E[R]).
Longer availability periods imply that the system operates as a
fixed-rate queue for long periods of time and the dependency
between the different lines of the MC thus becomes less
important. The first approximation, which is based on this
assumption, therefore provides a very tight bound for the exact
performance of the queue.

The previous results have confirmed the exactitude of the Markov
model for heterogeneous spectrum access and the first approximation
tightness in the regime where all the channels are stable. In the
following, we will use the accurate Markov model to gain some
insights on the queue performance for a heterogeneous OSA
network with two channel types. We assume a packet arrival rate
of l = 0.12 and a recovery period with an average length E[R] =
1/β = 10. The parameters of the type 2 channel are an average
availability period length of E[Y2] = 150 and an average packet
service time of E[Y2] = 7.5. Fig. 8 shows E[N ], the average
number of packets in the system, as a function of q1 (q2 = 1− q1),
the probability of selecting a type 1 channel after an interruption,
for different parameters of the type 1 channel. E[Y1] varies
between 20 and 70 while E[T1] = 0.1E[Y1] and therefore varies
between 2 and 7. That is, the more reliable channels with longer
availability periods have slower service rates.

First, it can be observed from this figure that E[N] is a non-convex
function of q1 and that the lowest value of E[N] is always achieved
when only one channel type is used (q1 = 0 or 1). We observed the
same behaviour for the minimal value of E[N ] for all system
parameters that we studied. It is straightforward to see that this
behaviour will not be affected if we had different recovery
distributions for each channel type, and if the average recovery
time for a transition towards a channel type is longer than the time
for staying on that channel type (which is normally the case since
there is an additional switching time because of the transition
between channels). We therefore conjecture that the optimal E[N ]
in an heterogeneous OSA system, where the transition

probabilities between channel sets are fixed, is achieved when the
system always stays on the channel type with the minimum
(single-row calculated) E[N]. However, because of the system
complexity and non-convexity of E[N ], proving this conjecture
remains an open problem.

Fig. 9 shows the variance of N, which is related to the jitter and has
an important impact on the buffer size design, as a function of the
arrival rate for E[T2] = E[Y2]/30. Figs. 8 and 9 demonstrate how
the MC analysis can be used for OSA network planning. For
example, assume that the type 2 channels are the basic channels
available to the OSA network and that the network designer needs
to select the type 1 channel set. q1 depends on this selection since
it is a function of, without limitations, the average channel
availability, the channel service rate, the number of available
channels in the set and the number of users. It can be observed
that depending on the value of q1 for the different channel types,
the optimal type 1 channel varies. For example, assuming that
q1 = 0.2 for E[Y1] = 20, then in order to minimise E[N ], the type 1
channel set with E[Y1] = 40 should be selected if for those
channels we have q1 > 0.28. Fig. 9 also shows that there are
multiple cross-over points where the best channel set changes,
further illustrating the non-convexity of the system performance
and the importance of carefully selecting the channel sets as a
function of the system parameters.

6 General operating periods and service times

Memoryless operating periods and service times were assumed in
Sections 3 and 4 to develop MC models. Although the
memoryless model has been shown to be a good assumption [21],
we explore in this section the analysis and the performance of the
CR queues with general distributions for the operating periods and
service times.

6.1 Operating periods

The operating period distribution depends on several factors such as
the remaining availability part of the selected channel during the
recovery period. Since the system has no knowledge of how long
this channel has been available so far, we should use renewal
theory results [28, 29]. Furthermore, the distribution of the
remaining parts of the operating period will be different after each
packet transmission, which further complicates the analysis. As
discussed in [7, 15], even for a fixed service rate queue with
non-exponentially distributed operating periods, only analytical
approximations can be obtained for the queue performance. An
approximation for the heterogeneous system can be obtained by
using the approximate analytical results for a queue with fixedFig. 8 E[N] against q1 for two types of channels (B = 2)

Fig. 9 Var[N] against q1 for two types of channels (B = 2)
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service rate provided in [15] for each variable service rate queue into
the two approximations (6) and (18). Results obtained by this
approach are called ‘Apx1-AnaApx’ and ‘Apx2-AnaApx’ in this
figure.

In [21], it was discussed that one of the best models for the
channels availability periods in CR networks is to assume a
constant part in addition to an exponential tail. We therefore
modelled the operating periods with a Pareto distribution with the
same average as the exponential distribution used before (E[Y ] =
75 ms), but a larger variance (shape parameter = 0.43, scale
parameter = 18.3825 and threshold parameter = 42.75) [Generalised
Pareto distribution is used to generate Pareto instances.]. The
constant part with this distribution is thus 42.75 ms. We also
investigated the case where the CR system has constant operating
periods (with the same average) to model a protocol where the
system remains on a channel for a fixed given time and not until
the moment where the channel becomes unavailable. Simulation
and analytical results are presented in Fig. 10 for both cases as
well as for the exponential distribution. We can observe that the
impact of the higher moments of the operating periods on the
average number of packets is small so that the queue performance
has very close results for the different distributions. This can be
explained by the fact that the packet service time is much smaller
than the average operating periods. We can also observe that the
average number of packets in the system for both Pareto and
constant distributions is slightly lower than for the exponential
distribution. This is because of the guaranteed constant part where
no failure event can occur. We also see that the analytical
approximations quality is similar for the general distributions as
for the exponential distribution. From those results, we can
conclude that the performance results (either analytical or
numerical with the MC model) obtained with the memoryless
model can provide acceptable approximations of the queue
performance with generally distributed operating periods.

6.2 Service time

For a generally distributed service time, we essentially have an M/G/
1 queue with interruptions. For the average queue occupancy, from
[27, Eq. 37] and for a queue with a fixed service rate we have

E[N ] = lE[Xb]+
l2E[X 2

b ]

2(1− lE[Xb])
+ lE[R2]

2(E[Y ]+ E[R])
(24)

where E[Xb] is the average completion time [15] and is given by
E[T ](1 + αE[R]). E[T ] is the real service time of the packets

(packet length divided by the queue service rate). Using (24) for
each service rate, we can obtain the same analytical
approximations with (6) and (18) for the heterogeneous CR
system. The two bounds will thus be given by

∑B
i=1 QiE[N (mi)]

and E[N (�m)] (called ‘Apx1-AnaApx’ and ‘Apx2-AnaApx’ in these
figures). We have performed simulations for two different
distributions: Pareto distribution with a large variance (shape
parameter = 0.43, scale parameter = 3.6765 and threshold
parameter = 8.55) and constant packet size, both with the same
average as for the exponentially distributed packet length in
Section 5. As illustrated in Fig. 11, we can observe similar results
for different packet length distributions and the two analytical
approximations can still be used for performance analysis of a CR
system with generally distributed service times.

7 Conclusion

A queueing model with frequent interruptions and heterogeneous
channels with variable service rates and failure rates were studied
in paper for OSA in CR networks where the new channel after
spectrum handover does not necessarily provide the same service
rate and availability as the last channel. Modelling the queue as a
2D MC, we established numerical evaluations and analytical
approximations for the general case in which recovery periods can
have any distribution and for the specific case when they are
exponentially distributed. Simulation results are presented to
validate our analysis. We also investigated the performance for
general distributions of the service time and operating periods and
showed that in realistic scenarios, the performance is similar as for
memoryless distribution.

This work constitutes a first step for the traffic level study of OSA
networks. Future research includes the modelling of MAC protocols
for heterogeneous OSA networks to study their performance using
the analytical tools provided in this paper. Another interesting
research area is to use dynamic transition probabilities between
channel sets, for example, as a function of the instantaneous
number of packets in the system, to obtain a better performance
than with the fixed transition probability scheme studied in this
paper.
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Fig. 10 E[N] when operating periods are distributed with Pareto and
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Fig. 11 E[N] when packet length is distributed with Pareto and constant
distribution. Packet length average and all other parameters are the same
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