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Abstract: In this study, the authors study lossy communication of correlated sources over a multiple-access wiretap
channel (MAC-WT). Consider a system with two transmitters, a receiver and an eavesdropper. There are two correlated
sources where each of them is observed by the corresponding transmitter, separately. Each transmitter wishes to
describe its source sequence to the receiver with a desired distortion. The sources need to be kept secret from the
eavesdropper. They find an achievable region for the MAC-WT with correlated sources by separation. A joint source-
channel coding scheme for the MAC-WT is also proposed. They consider lossy communication of a bivariate Gaussian
source over Gaussian MAC-WT (GMAC-WT). They propose a separation-based achievable scheme for the GMAC-WT.
An achievable region for the GMAC-WT based on uncoded transmission is also found. They compare the separate and
the uncoded schemes for the symmetric GMAC-WT, where the same constraint on the power of each transmitter is
imposed and the same distortion on each source is achieved. For another case of source correlation coefficient, they
compare the separate, uncoded and hybrid schemes. They obtain outer bounds to the rate-distortion-equivocation
region of: (i) the degraded MAC-WT where the output at the eavesdropper is a degraded version of the output at the
receiver, (ii) the GMAC-WT with independent sources and (iii) the symmetric GMAC-WT when the correlation of the
sources is maximum. Optimal regions for some cases are established.

1 Introduction

Consider a multiple-access channel (MAC) where there are two
transmitters, a receiver and two sources. Each transmitter observes
its source component, separately and tries to describe its source to
the receiver. The receiver wishes to reconstruct both sources with
desired distortions. There is also an eavesdropper (wiretapper)
from which, the sources need to be kept secret. The whole system
is referred to as multiple-access wiretap channel (MAC-WT). The
motivation of this model is given by an example in the following
(see Fig. 1). Consider a wireless sensor network where the sensors
collect environmental conditions and send them to a main
location. The data of the sensors may have correlated with each
other. Also, suppose that there is another location that eavesdrops
the data of the sensors. Fig. 1 illustrates such a network with two
sensors.

The coding scheme for the above model includes three major
concepts: secret communication, joint (or separate) source-channel
coding and lossy communication over noisy (wireless) channels.
The information theoretic secrecy was first introduced by Shannon
[1]. Wyner [2] studied the so-called wiretap channel (WTC) where
there are a transmitter, a receiver and an eavesdropper. He
determined the capacity of the degraded WTC where the channel
of the eavesdropper is a degraded version of the channel of the
receiver. The achievable scheme involves adding randomness to
the transmitted codeword so that the eavesdropper cannot obtain
enough information about the source. Csiszar and Korner [3]
considered the general WTC and established the secrecy capacity.
There are some works that extended the secrecy problem to
MAC-WTs [4–6] and MACs with confidential messages [7, 8].

Source-channel separation theorem states that a source sequence
can be reliably transmitted over a single-user channel if and only
if the minimum source coding rate is below the channel capacity
[9]. Optimality of the separation does not hold for general
multi-user channels. However, the separate scheme has been
considered in several multi-user networks, for example, in relay
channels [10–12], compound MACs, two-way channels and

interference channels [9]. Cover et al. [13] showed by an example
that the separation is not optimal in the MAC with correlated
sources. Therefore, joint source-channel coding received
considerable attention, for example, in broadcast channels [14, 15]
and relay channels [16]. Lim et al. [17] proposed a hybrid scheme
for the transmission of correlated sources over MAC. In this
scheme, each transmitter compresses its source component to a
codeword. It then maps the observed sequence and the compressed
codeword to the channel codeword, symbol-by-symbol. Recently,
the hybrid scheme of [17] has been employed to find sufficient
conditions for the transmission of a source over WTC with side
information at the receivers [18].

Lossy communication of correlated sources has been studied in
different multi-terminal channels, for example, WTCs [19],
interference channels [20] and Gaussian sensor networks [21].
Lossy transmission of Gaussian correlated sources over a Gaussian
MAC (GMAC) has been considered in [22]. Necessary and
sufficient conditions for the achievability of a distortion pair have
been found in [22]. The coding of [22] is related to the quadratic
Gaussian two-terminal source-coding problem [23, 24]. In this
problem, correlated Gaussian sources are described to a central
receiver. It has been shown that the Berger-Tung inner bound [25]
is optimal in this case.

In this paper, we consider lossy communication of correlated
sources over MAC-WT. Comparing to [4], we consider the
correlation between the sources, and comparing to [17], we
introduce some secrecy constraints. First, the separate scheme is
employed to find an achievable rate-distortion-equivocation region.
For the achievability, each source is compressed into common and
private codewords. The common codeword can be decoded by the
eavesdropper. The private codeword needs to be kept secret from
the eavesdropper using Wyner’s wiretap coding [2]. The
corresponding indices are sent to the receiver through channel
codewords. Next, we propose a joint scheme based on hybrid
coding of [17]. In this scheme, each transmitter compresses its
source into common and private codewords. It then maps the
source and the codewords to the channel codeword,
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symbol-by-symbol. In this case, the analysis of the probability of
error is not the same as the conventional random coding proof,
since the transmitted codeword depends on the entire codebook
[26]. The secrecy analysis of this work is different from standard
Wyner’s proof. In this analysis, we find sufficient conditions so
that the eavesdropper can find the private indices, given the
common indices. Then, we consider lossy transmission of a
bivariate Gaussian source over Gaussian MAC-WT (GMAC-WT).
An inner bound to the distortion-equivocation region of the
GMAC-WT is proposed using the separate scheme. The optimal
rate-distortion region of the Gaussian two-terminal source coding
problem [23, 24] is combined with other achievable region which
is based on separation. We also obtain an achievable region for the
GMAC-WT using uncoded transmission. The achievable region of
the separate scheme is compared with that of uncoded
transmission for the symmetric GMAC-WT, where the same
constraint on the power of each transmitter is satisfied and the
same distortion on each source is achieved. We derive the results
of the comparison when: (i) the sources are independent, in this
case, the distortion at the receiver for the separate scheme is
smaller than the uncoded scheme. However, the secrecy rate of the
separate scheme is larger than the uncoded scheme, (ii) the
correlation of the sources is maximum, in this case, the distortion
at the receiver for the uncoded scheme is smaller than the separate
scheme. Moreover, the secrecy rate of the separate scheme is
larger than the uncoded scheme. We also compare the separate,
the uncoded and the hybrid schemes for another case of source
correlation coefficient. An outer bound to the rate-distortion-
equivocation region of the degraded MAC-WT is proposed, where
the eavesdropper’s output is a degraded version of the receiver’s
output. This bound is extended to some other cases of GMAC-WT.

This paper is organised as follows:

† In Section 2, we present a mathematical framework for our work.
† In Section 3, we propose an achievable scheme for the MAC-WT
using separate scheme. We also discuss some special cases of the
inner bound.
† In Section 4, we obtain an achievable region for the MAC-WT
using hybrid scheme. We also propose an outer bound to the
rate-distortion-equivocation region of a class of MAC-WTs.
† In Section 5, we consider the lossy transmission of a bivariate
Gaussian source over a GMAC-WT. We propose outer bounds to
the rate-distortion-equivocation region of: (i) the GMAC-WT with
independent sources and (ii) the symmetric GMAC-WT when the
correlation of the sources is maximum. We also find achievable
regions for the GMAC-WT using separate scheme, uncoded
transmission and hybrid scheme. We compare the achievable
regions of the uncoded transmission and the separate scheme for
the cases of: (i) independent sources and (ii) maximum correlation
of the sources. Also, the separate, the uncoded and the hybrid
schemes are compared with each other for a special case of source
correlation coefficient. Optimal regions for some cases are
established.
† Conclusions are provided in Section 6.

2 Preliminaries and definitions

We denote discrete random variables with capital letters, for
example, X, Y and their realisations with lower case letters x, y. X j

i
indicates a sequence of random variables (Xi, …, Xj). We use H(.)
to denotes the entropy of a discrete random variable and I(.;.) to
denotes the mutual information between two discrete random
variables. We denote by An

1(X , Y ) the set of ε-strongly jointly
typical sequences of length n, on p(x, y). A random variable X
takes values in a set X . Finally, we denote the probability density
function of X over X with p(x) and the conditional probability
density function of X given Y by p(x|y).

Consider the problem of transmission of correlated discrete
memoryless sources (S1, S2) over a discrete memoryless MAC-WT
(X1 × X2, p(y, z|x1, x2), Y × Z) as depicted in Fig. 2. Moreover,
the sources are independent over time. Each transmitter tries to
send its source to the legitimate receiver so that both sources are
reconstructed with desired distortions. The sources must be kept
secret from the eavesdropper.

Let d1:S1 × S1 � [0, dmax] and d2:S2 × S2 � [0, dmax] be two
finite distortion measures such that 0≤ dmax <∞. The average
per-letter distortion for each snj , ŝ

n
j [ Sn

j , j = 1:2, is defined as
dj(s

n
j , ŝ

n
j ) = (1/n)

∑n
i=1 dj(s j,i, ŝ j,i).

Definition 1: An (m, n)-code for source-channel coding is defined by

† two stochastic encoding functions at senders: f1:Sm
1 � Xn

1 and
f2:Sm

2 � Xn
2 and† a decoding function at the receiver: g:Yn � Sm

1 × Sm
2 .

Definition 2: A tuple (κ, D1, D2, Re1, Re2, Re12) is said to be
achievable if there exists an (m, n)-code such that

n

m
≤ k (1)

E[d1(S
m
1 , Ŝ

m
1 )] ≤ D1 (2)

E[d2(S
m
2 , Ŝ

m
2 )] ≤ D2 (3)

1

m
H(Sm1 |Zn) ≥ Re1 (4)

1

m
H(Sm2 |Zn) ≥ Re2 (5)

1

m
H(Sm1 , S

m
2 |Zn) ≥ Re12 (6)

The set of all achievable tuples is denoted byR∗ and is referred to as
the rate-distortion-equivocation region.

3 Separate scheme

In this section, we first find an inner bound to the
rate-distortion-equivocation region of the MAC-WT using
the separate scheme. Then, we discuss some special cases of the
proposed scheme. The achievable region is given in the following.

Fig. 2 Lossy source transmission over MAC-WT

Fig. 1 Two-sensor wireless network with an eavesdropper
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Theorem 1: A tuple (κ, D1, D2, Re1, Re2, Re12) is achievable for the
MAC-WT if (see (7))

where V1, V2,W1,W2, U1, U2 are auxiliary random variables with the
distribution p(v1, w1|s1) p(v2, w2|s2)p(x1, u1)p(x2, u2) and
E[dj(Sj, Ŝj)] ≤ Dj, j = 1:2, where [x]+ = max0, x and Ii(i = 1:11) are
shown in (8) at the top of next page

I1 = kI(X1; Y |X2)

I2 = kI(X2; Y |X1)

I3 = kI(X1, X2; Y |U1)

I4 = kI(X1, X2; Y |U2)

I5 = kI(X1, X2; Y )

I6 = kI(X1, X2; Y |U1, U2)

I7 = kI(X1; Y |X2, U1)

I8 = kI(X2; Y |X1, U2)

I9 = kI(X1; Z|U1)

I10 = kI(X2; Z|U2)

I11 = kI(X1, X2; Z|U1, U2)

(8)

Proof: Each source Sj, j = 1:2, is compressed into codewords (Wj, Vj),
with Vj on the top of Wj. The corresponding bin indices (roj , r

p
j ) are

transmitted to the receiver through variables (Uj, Xj). The codeword
Uj can be decoded by the eavesdropper, but the codeword Xj needs to
be kept secret from the eavesdropper by a random noise rj

r. The
Wyner’s wiretap coding [2] is used to protect Xj from the
eavesdropper. □

3.1 Codebook generation

(1) Source codewords: Fix a conditional pmf p(v1, w1|s1)p(v2, w2|s2)
and functions ŝ1(v1, w1, v2, w2, y) and ŝ2(v1, w1, v2, w2, y) such that
E[dj(Sj, Ŝj)] ≤ Dj/(1+ 1), j = 1:2. For j = 1:2, randomly and

independently generate 2mR̃
o
j sequences wm

j (r̃
o
j ), r̃

o
j [ 1:2mR̃

o
j

[ ]
each

according to
∏m

i=1 p(wji). Partition the set of indices r̃oj [ 1:2mR̃
o
j

[ ]
into equal-size bins Coj (roj ), roj [ 1:2mR

o
j

[ ]
, where Ro

j ≤ R̃
o
j . For

each wm
j (r̃

o
j ), randomly and independently generate 2nR̃

p
j sequences

vmj (r̃
o
j , r̃

p
j ), r̃pj [ 1:2mR̃

p
j

[ ]
each according to

∏m
i=1 p(v ji|wji(r̃

o
j )).

Partition the set of indices r̃pj [ 1:2mR̃
p
j

[ ]
into equal-size bins

Cpj (rpj ), rpj [ 1:2mR
p
j

[ ]
, where Rp

j ≤ R̃
p
j . See Fig. 3a.

(2) Channel codewords: Randomly and independently generate 2mR
o
j ,

j = 1:2, sequences unj (r
o
j ), roj [ 1:2mR

o
j

[ ]
, each according to∏n

i=1 p(u ji). For each unj (r
o
j ), randomly and independently generate

2m(R
p
j +Rrj ) sequences xnj roj , r

p
j , r

r
j

( )
, rpj [ 1:2mR

p
j

[ ]
, rrj [ [1:2mR

r
j ],

each according to
∏n

i=1 p(x ji|u ji(r
o
j )). See Fig. 3b.

3.2 Encoding

Sender j, j = 1:2, first finds codewords wm
j (r̃

o
j ) and v

m
j (r̃

o
j , r̃

p
j ) such that

(wm
j (r̃

o
j ), v

m
j (r̃

o
j , r̃

p
j ), s

m
j ) [ Am

1 (Wj, Vj, Sj)

This can be done with an arbitrarily small probability of error as
n→∞ if

R̃
p
j . I(Vj; Sj|Wj) (9)

R̃
o
j . I(Wj; Sj) (10)

Sender j then finds roj and rpj , the bin indices of r̃oj and r̃pj ,
respectively. Transmitter j randomly selects an index rrj from

1:2mR
r
j

[ ]
and sends xnj roj , r

p
j , r

r
j

( )
.

Fig. 3 Codebook of separate scheme

a Source Codebook
b Channel Codebook

I(V1; S1|V2) , I1, I(V2; S2|V1) , I2
I(V1, V2; S1, S2|W1) , I3, I(V1, V2; S1, S2|W2) , I4
I(V1, V2; S1, S2) , I5, I(V1, V2; S1, S2|W1, W2) , I6

I(V1; S1|V2, W1)− I(W1; V2|W2) , I7
I(V2; S2|V1, W2)− I(W2; V1|W1) , I8

Re1 , H(S1|W1)− I(V1; S1|W1)+ I7 − I9
Re1 , H(S1|W1)− I(V1; S1|W1)− I(W1; S1|W2)+ I1 − I9

Re2 , H(S2|W2)− I(V2; S2|W2)+ I8 − I10
Re2 , H(S2|W2)− I(V2; S2|W2)− I(W2; S2|W1)+ I2 − I10

Re12 , H(S1, S2|W1, W2)−max {[I(V1; S1|W1)+ I(V2; S2|W2)− I6 + I11
I(V1; S1|W1)+ I(V2; S2|W2)+ I(W1, W2; S1, S2)− I5 + I11
I(V1; S1|W1)+ I(V2; S2|W2)+ I(W2; S2|W1)− I3 + I11
I(V1; S1|W1)+ I(V2; S2|W2)+ I(W1; S1|W2)− I4 + I11}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)
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3.3 Decoding

The receiver looks for unique indices roj , r
p
j and rrj , j = 1:2, such that

({unj (r
o
j ), x

n
j (r

o
j , r

p
j , r

r
j )|j = 1:2}, yn) [ An

1(U1, U2, X1, X2, Y )

This can be done with an arbitrarily small probability of error as
n→∞ if

Ro
1 + Rp

1 + Rr
1 , kI(X1; Y |X2) (11)

Ro
2 + Rp

2 + Rr
2 , kI(X2; Y |X1) (12)

Ro
1 + Rp

1 + Rr
1 + Ro

2 + Rp
2 + Rr

2 , kI(X1, X2; Y ) (13)

Rp
1 + Rr

1 , kI(X1; Y |U1, X2) (14)

Rp
2 + Rr

2 , kI(X2; Y |U2, X1) (15)

Rp
1 + Rr

1 + Rp
2 + Rr

2 , kI(X1, X2; Y |U1, U2) (16)

Rp
1 + Rr

1 + Ro
2 + Rp

2 + Rr
2 , kI(X1, X2; Y |U1) (17)

Ro
1 + Rp

1 + Rr
1 + Rp

2 + Rr
2 , kI(X1, X2; Y |U2) (18)

The receiver then looks for indices (r̃oj , r̃
p
j ), j = 1:2, such that

r̃oj [ Coj (roj ), r̃pj [ Cpj (rpj )
and

(wm
1 (r̃

o
1), v

m
1 (r̃

o
1, r̃

p
1), w

m
2 (r̃

o
2), v

m
2 (r̃

o
2, r̃

p
2)) [ Am

1 (W1, W2, V1, V2)

This can be done with an arbitrarily small probability of error as
n→∞ if

∑2
i=1

(R̃
o
i − Ro

i )+ (R̃
p
i − Rp

i ) , I(W1, V1; W2, V2) (19)

∑2
i=1

(R̃
p
i − Rp

i ) , I(W1, V1; W2, V2)− I(W1; W2) (20)

∑2
i=1

(R̃
o
i − Ro

i ) , I(W1; W2) (21)

3.4 Secrecy analysis

Consider the following equivocation rate at the eavesdropper

H(Sm1 |Zn) = H(Sm1 |ro1, rp1, Zn)+ I(Sm1 ; r
o
1, r

p
1|Zn) (22)

Now, we study the first term of (22)

H(Sm1 |ro1, rp1, Zn) ≥ H(Sm1 |r̃o1, r̃p1, ro1, rp1, Zn)

=(a) H(Sm1 |r̃o1, r̃p1, Zn)

=(b) H(Sm1 |r̃o1, r̃p1)

=(c) H(Sm1 |r̃o1)− H(r̃p1|r̃o1)

=(d) H(Sm1 |r̃o1)− mR̃
p
1

≥(e) m[H(S1|W1)− 1]− mR̃
p
1

where (a) follows because ro1 and r
p
1 are deterministic functions of r̃o1

and r̃p1, respectively, (b) follows because S
m
1 � (r̃o1, r̃

p
1) � Zn form a

Markov chain, (c) follows because r̃p1 is a deterministic function of
Sm1 , (d ) follows because r̃p1 is independent of r̃o1, and the fact that

r̃p1 [ [1:2nR̃
p
1 ] (e) follows from [25, Lecture Note 13]. Next,

consider the second term of (22)

I(Sm1 ; r
o
1, r

p
1|Zn)=(a) H(ro1, r

p
1|Zn)

≥ H(rp1|ro1, Zn)

= H(rp1|ro1)− I(rp1; Z
n|ro1)

=(b) mRp
1 − I(rp1; Z

n|ro1)

=(c) mRp
1 − I(Xn

1 ; Z
n|ro1)+ I(Xn

1 ; Z
n|ro1, rp1)

= mRp
1 − H(Xn

1 |ro1)+ H(Xn
1 |ro1, Zn)

+ I(Xn
1 ; Z

n|ro1, rp1)

≥(d) mRp
1 − n[H(X1|U1)+ 1]

+ n[H(X1|U1, Z)− 1]+ I(Xn
1 ; Z

n|ro1, rp1)
= mRp

1 − nI(X1; Z|U1)

+ I(Xn
1 ; Z

n|ro1, rp1)− 2n1

= mRp
1 − nI(X1; Z|U1)+ H(Xn

1 |ro1, rp1)
− H(Xn

1 |Zn, ro1, r
p
1)− 2n1

= mRp
1 − nI(X1; Z|U1)+ mRr

1

− H(Xn
1 |Zn, ro1, r

p
1)− 2n1

≥(e) mRp
1 − nI (X1; Z|U1)+ mRr

1 − m1− 2n1

where (a) follows because (ro1, r
p
1) is a deterministic function of Sm1 ,

(b) follows from the independence of rp1 and ro1 and the fact that
H(rp1) = mRp

1, (c) follows because (ro1, r
p
1, r

r
1) � Xn

1 � Zn forms a
Markov chain, (d ) follows from [25, Lecture Note 13] and (e)
follows because if Rr

1 , kI(X1; Z|U1), then from Fano’s
inequality, we have

H(Xn
1 |Zn, ro1, r

p
1) ≤ m1

This can be proved as the following: the eavesdropper, knowing
(ro1, r

p
1), tries to find rr1. By the analysis of the error event, it can

be easily shown that if the above condition on Rr
1 is satisfied,

then from Fano’s inequality, we obtain the above bound on the
entropy. We choose Rr

1 = kI(X1; Z|U1)− d′ for d′ . 0. Therefore
we have

Re1 , H(S1|W1)− R̃
p
1 + Rp

1 (23)

Similarly, if

Rr
2 = kI(X2; Z|U2)− d′′ (24)

then we have

Re2 , H(S2|W2)− R̃
p
2 + Rp

2 (25)

Re12 ,H(S1, S2|W1, W2)− R̃
p
1 − R̃

p
2 + Rp

1

+ Rp
2 + kI(X1; Z|U1)+ kI(X2; Z|U2)

− kI(X1, X2; Z|U1, U2)

(26)

Collecting the terms in (9)–(26) and performing Fourier–Motzkin
elimination, we obtain the terms in the theorem.

Application of Theorem 1 yields the following results as special
cases.
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Lossy communication over WTC [19]: Let Wj =Uj = 0, j = 1:2,
V2 = 0, S2 = 0, X2 = 0, Re2 = Re12 = 0 and D2→∞ in Theorem
1. Therefore a tuple (κ, D1, Re1) is achievable if

I(V1; S1) , kI(X1; Y ) (27)

Re1 , H(S1)− [I(S1; V1)− k[I(X1; Y )− I(X1; Z)]
+]+ (28)

for some p(v1|s1)p(x1) such that E[d1(S1, Ŝ1)] ≤ D1.
Berger-Tung inner bound [25, Lecture Note 12]: Let Wj =Uj = 0,
j = 1:2, Re1 = Re2 = Re12 = 0, κ = 1, Y = (X1, X2), log |X j| = Rj and
Vj = (Xj, Uj) in Theorem 1. Therefore a pair (R1, R2) is achievable if

R1 . I(S1; U1|U2) (29)

R2 . I(S2; U2|U1) (30)

R1 + R2 . I(S1, S2; U1, U2) (31)

for some p(u1|s1)p(u2|s2) and functions ŝj(u1, u2), j = 1:2, such that
E[dj(Sj, Ŝj)] ≤ Dj.

4 Hybrid scheme and an outer bound

In this section, we first review hybrid coding for a point-to-point
channel which was introduced in [17]. Then, we propose an
achievable region for the MAC-WT. Finally, we derive an outer
bound to the rate-distortion-equivocation region of a class of
MAC-WTs. Suppose that a source S � p(s) is to be sent over the
discrete memoryless channel (X , p(y|x), Y). The decoder
reconstructs the sequence S by Ŝ. The average distortion must
satisfy E[d(S, Ŝ)] ≤ D, where d is a distortion measure. In the
hybrid scheme of [17], 2nR sequences un(T ), T∈ [1:2nR] are
generated. The source sequence Sn is mapped to one of 2nR

sequences Un(T ). The sequence Un(T ) is then mapped to Xn,
symbol-by-symbol. The decoder finds Un(T ) and reconstructs Ŝn

from Un(T ). In this scheme, a single codeword Un(T ) depends on
both source and channel codebooks, so it depends on the entire
codebooks. Just as mentioned in [17], averaging over all
codebooks is not the same as the conventional random coding
proof. Let Pe be the probability of the event that there exists
T̂ = T such that (Un(T̂ ), Ym) [ An

1. Then, we have the following
lemma.

Lemma 1 [17]: The probability Pe is upper bounded as

Pe , 4.2n(R−I(U ;Y )+1) (32)

for ε > 0.
Now, we are ready to find an achievable region for the MAC-WT
using hybrid scheme.

Theorem 2: A tuple (κ = 1, D1, D2, Re1, Re2, Re12) is achievable for
MAC-WT if (see (33))

where V1, V2, W1 and W2 are auxiliary random variables with the
distribution p(s1, s2)p(x1, v1, w1|s1) p(x2, v2, w2|s2) and functions

ŝ1(v1, w1, v2, w2, y) and ŝ2(v1, w1, v2, w2, y) such that
E[dj(Sj, Ŝj)] ≤ Dj, j = 1:2, where Ii(i = 1:11) are shown in (34)

I1 = I(W1, V1; W2, V2, Y )

I2 = I(W2, V2; W1, V1, Y )

I3 = I(V1; W2, V2, Y |W1)

I4 = I(V2; W1, V1, Y |W2)

I5 = I(W1, V1, W2, V2; Y )+ I(W1, V1; W2, V2)

I6 = I(V1, V2; Y |W1, W2)+ I(W1, V1; W2, V2)− I(W1; W2)

I7 = I(W1, V1, V2; Y |W2)+ I(W1, V1; W2, V2)

I8 = I(V1, W2, V2; Y |W1)+ I(W1, V1; W2, V2)

I9 = I(V1; S1, Z|W1)

I10 = I(V2; S2, Z|W2)

I11 = I(V1, V2; S1, S2, Z|W1, W2)

(34)

Proof: Each source sequence Snj , j = 1:2, is mapped to one of 2nR
o
j

sequences Wn
j (r

o
j ) (see Fig. 4). The pair (Snj , W

n
j (r

o
j )) is then

mapped to one of 2n(R
p
j +Rrj ) sequences Vn

j (r
o
j , r

p
j , r

r
j ). The sequence

Wn
j (r

o
j ) denotes the common information that can be decoded by

the eavesdropper. The sequence Vn
j (r

o
j , r

p
j , r

r
j ) denotes the private

information that should be kept secret from the eavesdropper by
using randomness. Then, the source and the codewords
corresponding to the indices (roj , r

p
j , r

r
j ) are mapped

symbol-by-symbol to the sequence Xn
j . In this scheme, the

codewords Wn
j (r

o
j ) and Vn

j (r
o
j , r

p
j , r

r
j ) depend on the entire source

sequences. Therefore the analysis of the probability of error is not
the same as the conventional random coding proof. □

4.1 Codebook generation

Fix a conditional pmf p(v1, w1|s1)p(v2, w2|s2), encoding functions
x1(w1, v1, s1) and x2(w2, v2, s2), and reconstruction functions
ŝ1(v1, w1, v2, w2, y) and ŝ2(v1, w1, v2, w2, y) such that
E[dj(Sj, Ŝj)] ≤ Dj/(1+ 1), j = 1:2. For j = 1:2, randomly and

independently generate 2nR
o
j sequences wn

j (r
o
j ), r

o
j [ 1:2nR

o
j

[ ]
each

according to
∏n

i=1 p(wji). For each wn
j (r

o
j ), randomly and

independently generate 2
n Rpj +Rrj

( )
sequences vnj (r

o
j , r

p
j , r

r
j ),

rpj [ 1:2nR
p
j

[ ]
, rrj [ 1:2nR

r
j

[ ]
, each according to

∏n
i=1 p(v ji|wji(r

o
j )).

4.2 Encoding

Assume that the random index rj
r, j = 1:2, is provided to encoder j.

Transmitter j first finds codewords wn
j (r

o
j ) and vnj (r

o
j , r

p
j , r

r
j ) such

that (wn
j (r

o
j ), v

n
j (r

o
j , r

p
j , r

r
j ), s

n
j ) [ An

1(Wj, Vj, Sj). This can be done
with an arbitrarily small probability of error if

Ro
j ≥ I(Wj; Sj) (35)

I(V1; S1) , I1, I(V2; S2) , I2, I(V1; S1|W1) , I3, I(V2; S2|W2) , I4
I(V1; S1)+ I(V2; S2) , I5, I(V1; S1|W1)+ I(V2; S2|W2) , I6
I(V1; S1)+ I(V2; S2|W2) , I7, I(V1; S1|W1)+ I(V2; S2) , I8

Re1 , H(S1|W1)− I(X1; Z|W1)+min {I9 − I(V1; S1|W1), I3 − I(V1; S1|W1)
I1 − I(V1; S1)}

Re2 , H(S2|W2)− I(X2; Z|W2)+min {I10 − I(V2; S2|W2), I4 − I(V2; S2|W2)
I2 − I(V2; S2)}

Re12 , H(S1, S2|W1, W2)− I(X1, X2; Z|W1, W2)
+min {I11 − I(V1; S1|W1)− I(V2; S2|W2), I5 − I(V1; S1)− I(V2; S2)
I6 − I(V1; S1|W1)− I(V2; S2|W2), I10 − I(V1; S1)− I(V2; S2|W2)

I8 − I(V1; S1|W1)− I(V2; S2)}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(33)
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Rp
j ≥ I(Vj; Sj|Wj) (36)

Sender j then transmits x ji = xj(wji(r
o
j ), v ji(r

o
j , r

p
j , r

r
j ), s ji) at time

i = 1, …, n.

4.3 Decoding

The receiver looks for unique indices roj , r
p
j and rrj , j = 1:2, such that

({wn
j (r

o
j ), v

n
j (r

o
j , r

p
j , r

r
j )|j = 1:2}, yn) [ An

1(W1, W2, V1, V2, Y )

It then finds sji, j = 1:2, for i = 1:n as the following

s ji = ŝj(v1i(r
o
1, r

p
1, r

r
1), w1i(r

o
1), v2i(r

o
2, r

p
2, r

r
2), w2i(r

o
2), yi)

The eavesdropper also finds the indices roj , j = 1:2, such that

({wn
j (r

o
j )|j = 1:2}, zn) [ An

1(W1, W2, Z)

4.4 Analysis of probability of error

We outline the analysis of probability of error in the following. We
declare an error if one of the following events occurs

E1 = {(Sn1 , S
n
2 ,W

n
1 (r

o
1),W

n
2 (r

o
2),V

n
1 (r

o
1, r

p
1, r

r
1),V

n
2 (r

o
2, r

p
2, r

r
2), Y

n)�An
1}

E2 = {(Sn1 , S
n
2 ,W

n
1 (r̃

o
1),W

n
2 (r̃

o
2),V

n
1 (r̃

o
1, r̃

p
1, r̃

r
1),

Vn
2 (r̃

o
2, r̃

p
2, r̃

r
2),Y

n)[An
1

for some (r̃o1, r̃
p
1, r̃

r
1, r̃

o
2, r̃

p
2, r̃

r
2)= (ro1, r

p
1, r

r
1, r

o
2, r

p
2, r

r
2)}

E3 = {(Wn
1 (r

o
1),W

n
2 (r

o
2), Z

n)�An
1}

E4 = {(Wn
1 (r̃

o
1),W

n
2 (r̃

o
2), Z

n)[An
1 for some (r̃o1, r̃

o
2)= (ro1, r

o
2)}

From the Markov lemma [25, Lecture Note 13], Pr (E1) and Pr (E3)
tend to zero as n→∞. The event E2 occurs in one of the following
cases (we use Lemma 1 for the analysis of the probability of error):

(1) r̃o1 = ro1, r̃o2 = ro2, (r̃p1, r̃
r
1) = (rp1, r

r
1) and (r̃p2, r̃

r
2) = (rp2, r

r
2):

The probability of this event goes to zero as n→∞ if

Ro
1 + Rp

1 + Rr
1 + Ro

2 + Rp
2 + Rr

2 , I(W1, V1, W2, V2; Y )

+ I(W1, V1; W2, V2) (37)

(2) r̃o1 = ro1, r̃o2 = ro2, (r̃p1, r̃
r
1) = (rp1, r

r
1) and (r̃p2, r̃

r
2) = (rp2, r

r
2):

The probability of this event goes to zero as n→∞ if

Rp
1 + Rr

1 + Ro
2 + Rp

2 + Rr
2 , I(V1, W2, V2; Y |W1)

+ I(W1, V1; W2, V2) (38)

(3) r̃o1 = ro1, r̃o2 = ro2, (r̃p1, r̃
r
1) = (rp1, r

r
1) and (r̃p2, r̃

r
2) = (rp2, r

r
2):

The probability of this event goes to zero as n→∞ if

Ro
1 + Rp

1 + Rr
1 + Rp

2 + Rr
2 , I(W1, V1, V2; Y |W2)

+ I(W1, V1; W2, V2) (39)

(4) r̃o1 = ro1, r̃o2 = ro2, (r̃p1, r̃
r
1) = (rp1, r

r
1) and (r̃p2, r̃

r
2) = (rp2, r

r
2):

The probability of this event goes to zero as n→∞ if

Rp
1 + Rr

1 + Rp
2 + Rr

2 , I(V1, V2; Y |W1, W2)

+ I(W1, V1; W2, V2)− I(W1; W2) (40)

(5) r̃o1 = ro1, r̃o2 = ro2, (r̃p1, r̃
r
1) = (rp1, r

r
1) and (r̃p2, r̃

r
2) = (rp2, r

r
2):

The probability of this event goes to zero as n→∞ if

Ro
2 + Rp

2 + Rr
2 , I(W2, V2; Y , W1, V1) (41)

(6) r̃o1 = ro1, r̃o2 = ro2, (r̃p1, r̃
r
1) = (rp1, r

r
1) and (r̃p2, r̃

r
2) = (rp2, r

r
2):

The probability of this event goes to zero as n→∞ if

Rp
2 + Rr

2 , I(V2; Y , W1, V1|W2) (42)

(7) r̃o1 = ro1, r̃o2 = ro2, (r̃p1, r̃
r
1) = (rp1, r

r
1) and (r̃p2, r̃

r
2) = (rp2, r

r
2):

The probability of this event goes to zero as n→∞ if

Ro
1 + Rp

1 + Rr
1 , I(W1, V1; Y , W2, V2) (43)

(8) r̃o1 = ro1, r̃o2 = ro2, (r̃p1, r̃
r
1) = (rp1, r

r
1) and (r̃p2, r̃

r
2) = (rp2, r

r
2):

The probability of this event goes to zero as n→∞ if

Rp
1 + Rr

1 , I(V1; Y , W2, V2|W1) (44)

Therefore Pr (E2) tends to zero as n→∞ if the inequalities for all
cases are satisfied. The event E4 occurs in one of the following
cases (we use Lemma 1 for the analysis of the probability of error):

Fig. 4 Hybrid scheme for MAC-WT
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(1) r̃o1 = ro1 and r̃o2 = ro2: The probability of this event goes to zero
as n→∞ if

Ro
1 + Ro

2 , I(W1, W2; Z)+ I(W1; W2) (45)

(2) r̃o1 = ro1 and r̃o2 = ro2: The probability of this event goes to zero as
n→∞ if

Ro
1 , I(W1; Z|W2) (46)

(3) r̃o1 = ro1 and r̃o2 = ro2: The probability of this event goes to zero as
n→∞ if

Ro
2 , I(W2; Z|W1) (47)

Therefore Pr (E4) tends to zero as n→∞ if the inequalities for all
cases are satisfied.

4.5 Secrecy analysis

Consider the following equivocation rate

H(Sn1 |Zn) = H(ro1, r
p
1, r

r
1, S

n
1 , X

n
1 |Zn)− H(ro1, r

p
1, r

r
1, X

n
1 |Sn1 , Zn)

=(a) H(ro1, r
p
1, r

r
1, S

n
1 , X

n
1 |Zn)− H(ro1, r

p
1, r

r
1|Sn1 , Zn)

=(b) H(ro1, r
p
1, r

r
1, S

n
1 , X

n
1 |Zn)− H(rp1, r

r
1|ro1, Sn1 , Zn)

(48)

where (a) follows because Xn
1 is a deterministic function of

(ro1, r
p
1, r

r
1, S

n
1) and (b) follows because ro1 is a deterministic

function of Sn1 . Now, consider the first term of (48)

H(ro1, r
p
1, r

r
1, S

n
1 , X

n
1 |Zn)

≥ H(rp1, r
r
1, S

n
1 , X

n
1 |ro1, Zn)

= H(rp1, r
r
1, S

n
1 , X

n
1 |ro1)− I(rp1, r

r
1, S

n
1 , X

n
1 ; Z

n|ro1)
= H(rp1, r

r
1, S

n
1 , X

n
1 |ro1)− H(Zn|ro1)

+ H(Zn|rp1, rr1, Sn1 , Xn
1 , r

o
1)

=(a) H(rr1, S
n
1 |ro1)− H(Zn|ro1)+ H(Zn|rp1, rr1, Sn1 , Xn

1 , r
o
1)

=(b) H(rr1, S
n
1 |ro1)− H(Zn|ro1)+ H(Zn|Xn

1 )

=(c) H(Sn1 |ro1)+ H(rr1)− H(Zn|ro1)+ H(Zn|Xn
1 )

≥(d) n(H(S1|W1)− 1)+ nRr
1 − n(H(Z|W1)+ 1)+ n(H(Z|X1)− 1)

= n[H(S1|W1)− H(Z|W1)+ H(Z|X1)+ Rr
1]− 3n1

= n[H(S1|W1)− I(X1; Z|W1)+ Rr
1]− 3n1

where (a) follows because Xn
1 (resp. rp1) is a deterministic function of

(ro1, r
p
1, r

r
1, S

n
1) (resp. Sn1), (b) follows because (ro1, r

p
1, r

r
1, S

n
1) �

Xn
1 � Zn form a Markov chain, (c) follows because rr1 is

independent of (Sn1 , r
o
1) and (d ) follows from [25, Lecture Note 13]

and the fact thatH(rr1) = nRr
1. Next, consider the second term of (48)

H(rr1, r
p
1|ro1, Sn1 , Zn) = H(rp1, r

r
1|ro1)− I(rp1, r

r
1; S

n
1 , Z

n|ro1)

=(a) n(Rr
1 + Rp

1)− I(rp1, r
r
1; S

n
1 , Z

n|ro1)

=(b) n(Rr
1 + Rp

1)− I(rp1, r
r
1, V

n
1 ; S

n
1 , Z

n|ro1)
≤ n(Rr

1 + Rp
1)− I(Vn

1 ; S
n
1 , Z

n|ro1)
= n(Rr

1 + Rp
1)− H(Vn

1 |ro1)+ H(Vn
1 |ro1, Sn1 , Zn)

= n(Rr
1 + Rp

1)− n(Rr
1 + Rp

1)+ H(Vn
1 |ro1, Sn1 , Zn)

≤(c) n1

where (a) follows from the independence of (rp1, r
r
1) and ro1, and the

fact that H(rr1, r
p
1) = n(Rr

1 + Rp
1), (b) follows because Vn

1 is a
deterministic function of (ro1, r

p
1, r

r
1), (c) holds because if

Rr
1 + Rp

1 , I(V1; S1, Z|W1), then from Fano’s inequality we have,
H(Vn

1 |ro1, Sn1 , Zn) ≤ nd. This can be proved as the following.
Suppose that the eavesdropper, knowing ro1, tries to find (rp1, r

r
1).

By the analysis of the error event, it can be easily shown that if
the above condition on Rp

1 + Rr
1 is satisfied, then from Fano’s

inequality, we can bound the entropy term as the above. In
summary, we have

Re1 , H(S1|W1)− I(X1; Z|W1)+ Rr
1 (49)

Similarly, if

Rr
2 + Rp

2 , I(V2; S2, Z|W2) (50)

Rr
1 + Rp

1 + Rr
2 + Rp

2 , I(V1, V2; S1, S2, Z|W1, W2) (51)

we obtain

Re2 , H(S2|W2)− I(X2; Z|W2)+ Rr
2 (52)

Re12 , H(S1, S2|W1, W2)− I(X1, X2; Z|W1, W2)+ Rr
1 + Rr

2 (53)

Collecting the terms in (35)–(47), (49)–(53) and performing Fourier–
Motzkin elimination, we find the terms in the theorem.

At the end of this section, we find an outer bound to the
rate-distortion-equivocation region of the degraded MAC-WT,
where (X1, X2) � Y � Z forms a Markov chain. The outer bound
is given in the following theorem.

Theorem 3: If (κ, D1, D2, Re12) is achievable for the degraded
MAC-WT where (X1, X2)→ Y→ Z forms a Markov chain, then we
have

I(S1; Ŝ1|S2) ≤ kI(X1; Y |X2)
I(S2; Ŝ2|S1) ≤ kI(X2; Y |X1)

I(S1, S2; Ŝ1, Ŝ2) ≤ kI(X1, X2; Y )
Re12 ≤ H(S1, S2)− I(S1, S2; Ŝ1, Ŝ2)+ kI(X1, X2; Y |Z)

⎧⎪⎪⎨
⎪⎪⎩

⎫⎪⎪⎬
⎪⎪⎭ (54)

for some pmf p(x1, x2, s1, s2), such that E[dj(Sj, Ŝj)] ≤ Dj, j = 1:2.

Proof: See Appendix 1. □

In the following section, we study lossy transmission of a bivariate
Gaussian source over GMAC-WT.

5 Gaussian case

In this section, we consider lossy transmission of correlated sources
over a GMAC-WT. First, we derive an outer bound to the
rate-distortion-equivocation region of the GMAC-WT. Then, we
use the proposed separate and hybrid schemes to find inner bounds
to the rate-distortion-equivocation region of the GMAC-WT. An
achievable region based on uncoded transmission is also obtained.
The separate, the uncoded and the hybrid schemes are compared
for different values of source correlation coefficient. Optimal
regions for some special cases are established. Suppose that the
sources are Gaussian random variables with joint distribution
(S1, S2) � N (0, KS), where

KS = s2 rs2

rs2 s2

[ ]
(55)

The sources are reconstructed using the quadratic distortion measure
dj(sj, ŝj) = (sj − ŝj)

2, j = 1:2. We assume that the channel to the
legitimate receiver is defined as Y = X1 + X2 + Ny with
Ny � N (0, s2

y ) and input power constraints (1/n)
∑n

i=1 E(x
2
ji) ≤ Pj,
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j = 1:2. The channel of the eavesdropper is defined as Z = X1 + X2 +
Nz with Nz � N (0, s2

z ). We define the quantities De1 = 22Re1/(2pe),
De2 = 22Re2/(2pe) and De12 = 22Re12/(2pe). A tuple (D1, D2, De1,
De2, De12) is said to be achievable if there exists an (n, n)-code
( f1, f2, g) such that

E Sj − Ŝj

∥∥∥ ∥∥∥2[ ]
≤ Dj + 1, j = 1:2 (56)

1

n
H(Sn1 |Zn) ≥ 1

2
log (2peDe1)− 1 (57)

1

n
H(Sn2 |Zn) ≥ 1

2
log (2peDe2)− 1 (58)

1

n
H(Sn1 , S

n
2 |Zn) ≥ 1

2
log (2peDe12)− 1. (59)

In the following, we first propose an outer bound to the
distortion-equivocation region of the GMAC-WT when s2

y ≤ s2
z .

Theorem 4: If (D1, D2, De1, De2, De12) is achievable for the
GMAC-WT when s2

y ≤ s2
z and ρ = 0, then we have

D1 ≥
1

1+ P1/s
2
y

( ) · s2

D2 ≥
1

1+ P2/s
2
y

( ) · s2

D1 · D2 ≥
1

1+ P1 + P2

( )
/s2

y

( ) · s4

De1 ≤ min s2, D1 ·
1+ P1 + (1− b1)P2

( )
/ b1P2 + s2

y

( )( )
1+ P1/ P2 + s2

z

( )( )
⎧⎨
⎩

⎫⎬
⎭

De2 ≤ min s2, D2 ·
1+ P2 + (1− b2)P1

( )
/ b2P1 + s2

y

( )( )
1+ P2/ P1 + s2

z

( )( )
⎧⎨
⎩

⎫⎬
⎭

De12 ≤ D1 · D2 ·
1+ P1 + P2

( )
/s2

y

( )
1+ P1 + P2

( )
/s2

z

( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(60)

for some β1, β2∈ [0, 1].

Proof: See Appendix 2. □

Next, we find inner bounds to the rate-distortion-equivocation region
of the GMAC-WT. We study three coding schemes: separation
approach, uncoded transmission and hybrid schemes. First,
consider the separate source-channel coding strategy.

5.1 Source-channel separation

We combine the optimal scheme for the source-coding problem and
an achievable scheme for the channel-coding problem. The

source-coding problem is explained in Fig. 5. Two source
sequences are observed by two encoders. Each encoder maps its
source sequence to a rate-limited codeword and sends it through
an error-free link. The receiver wishes to reconstruct both sources
with desired distortions. This problem has been considered in [25,
Lecture Note 12] and the optimal rate-distortion region has been
characterised as the following. For the Gaussian two-terminal
source-coding problem, a distortion-pair (D1, D2) is achievable if
and only if [25, Lecture Note 12]

(R1, R2) [ R1(D1)
⋂

R2(D2)
⋂

R12(D1, D2)

where

R1(D1) = (R1, R2):
{

R1 ≥
1

2
log

1

D1
(1− r2(1− 2−2R2 ))

[ ]}
R2(D2) = (R1, R2):

{
R2 ≥

1

2
log

1

D2
(1− r2(1− 2−2R1 ))

[ ]}
R12(D1, D2) = (R1, R2):

{
R1 + R2 ≥

1

2
log

(1− r2)f(D1, D2)

2D1D2

[ ]}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(61)

and

f(D1, D2) = 1+
���������������
1+ 4r2D1D2

(1− r2)2

√

For the channel-coding problem, we use Theorem 1 to find an
achievable region in the following.

Corollary 1: Let Wj =Uj = 0, j = 1:2, and κ = 1 in Theorem 1, and
define Rj = I(Vj;Sj). A tuple (D1, D2, Re1, Re2, Re12) is achievable
for the MAC-WT if

Re1 , H(S1)− [R1 − [I(X1; Y |X2)− I(X1; Z)]
+]+

Re2 , H(S2)− [R2 − [I(X2; Y |X1)− I(X2; Z)]
+]+

Re12 , H(S1, S2)− [R1 + R2 − [I(X1, X2; Y )− I(X1, X2; Z)]
+]+

⎧⎨
⎩

⎫⎬
⎭

(62)

for some pmf p(s1, s2)p(x1)p(x2) where R1 and R2 are rate-distortion
functions of sources S1 and S2, respectively, such that

R1 , I(X1; Y |X2)
R2 , I(X2; Y |X1)

R1 + R2 , I(X1, X2; Y )

⎧⎨
⎩

⎫⎬
⎭ (63)

E[d1(S1, Ŝ1)] ≤ D1 and E[d2(S2, Ŝ2)] ≤ D2.
The remaining problem is to find suitable (R1, R2) pair that falls into
the capacity region of the GMAC. We will choose the following
achievable pairs

(R1, R2) =
1

2
log 1+ P1

s2
y

( )
,
1

2
log 1+ P2

P1 + s2
y

( )( )
(64)

(R1, R2) =
1

2
log 1+ P1

P2 + s2
y

( )
,
1

2
log 1+ P2

s2
y

( )( )
(65)

Inserting (64) into (61) and (62), we obtain the following achievable
distortion tuple.

Theorem 5: The distortion tuple (Ds
1, D

s
2, D

s
e1, D

s
e2, D

s
e12) resulting

from the separate scheme satisfies the following (see (66) at theFig. 5 Source-coding problem
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bottom of the next page)

Similarly, inserting (65) into (61) and (62), we obtain the achievable
distortion tuple (Dss

1 , D
ss
2 , D

ss
e1, D

ss
e2, D

ss
e12) that satisfies the following

(see (67))

We also find an achievable distortion tuple for the symmetric
GMAC-WT where D1 =D2 =Ds, P1 = P2 = P, De1 = De2 = Ds

e and
De12 = Ds

et . We assume that s2
z ≥ s2

y . We choose the achievable

rate as R = (1/4) log 1+ 2P/s2
y

( )( )
. Inserting this rate into (61)

and (62), we obtain the following theorem.

Theorem 6: The distortion tuple (Ds, Ds
e, D

s
et) resulting from the

separate scheme for the symmetric GMAC-WT when s2
z ≥ s2

y is

given by

Ds =

������������������������
1+ 2P/s2

y

( )
(1− r2)

√
1+ 2P/s2

y

( ) · s2

Ds
e = min s2,

1+ P/s2
y

( )
���������������
1+ 2P/s2

y

( )√
· 1+ P/ P + s2

z

( )( )( ) · s2

⎧⎪⎪⎨
⎪⎪⎩

⎫⎪⎪⎬
⎪⎪⎭

Ds
et =

(1− r2)

1+ 2P/s2
z

( ) · s4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(68)

.

Ds
1 ≥

1+ (1− r2)P2

( )
/ P1 + s2

y

( )( )
1+ P1 + P2

( )
/s2

y

( ) · s2

Ds
2 ≥

1+ (1− r2)P1

( )
/s2

y

( )
1+ P1 + P2

( )
/s2

y

( ) · s2

Ds
1 · Ds

2

f(Ds
1, D

s
2)

≥ 1− r2

2 1+ P1 + P2

( )
/s2

y

( )( ) · s2

Ds
e1 ≤

1

max 1,
1+ P1/s

2
y

( )
max 1, 1+ P1/s

2
y

( )( )
/ 1+ P1/ P2 + s2

z

( )( )( )( ){ }
⎧⎨
⎩

⎫⎬
⎭

· s2

Ds
e2 ≤

1

max 1,
1+ P2/ P1 + s2

y

( )( )
max 1, 1+ P2/s

2
y

( )( )
/ 1+ P2/ P1 + s2

z

( )( )( )( ){ }
⎧⎨
⎩

⎫⎬
⎭

· s2

Ds
e12 ≤

(1− r2)

max 1,
1+ P1 + P2

( )
/s2

y

( )
max 1, 1+ P1 + P2

( )
/s2

y

( )( )
/ 1+ P1 + P2

( )
/s2

z

( )( )( ){ }
⎧⎨
⎩

⎫⎬
⎭

· s4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(66)

Dss
1 ≥

1+ (1− r2)P2

( )
/s2

y

( )
1+ P1 + P2

( )
/s2

y

( ) · s2

Dss
2 ≥

1+ (1− r2)P1

( )
/ P2 + s2

y

( )( )
1+ P1 + P2

( )
/s2

y

( ) · s2

Dss
1 · Dss

2

f(Dss
1 , D

ss
2 )

≥ 1− r2

2 1+ P1 + P2

( )
/s2

y

( )( ) · s2

Dss
e1 ≤

1

max 1,
1+ P1

( )
/ P2 + s2

y

( )( )
max 1, 1+ P1/s

2
y

( )( )
/ 1+ P1/ P2 + s2

z

( )( )( )( ){ }
⎧⎨
⎩

⎫⎬
⎭

· s2

Dss
e2 ≤

1

max 1,
1+ P2/s

2
y

( )
max 1, 1+ P2/s

2
y

( )( )
/ 1+ P2/ P1 + s2

z

( )( )( )( ){ }
⎧⎨
⎩

⎫⎬
⎭

· s2

Dss
e12 ≤

(1− r2)

max 1,
1+ P1 + P2

( )
/s2

y

( )
max 1, 1+ P1 + P2

( )
/s2

y

( )( )
/ 1+ P1 + P2

( )
/s2

z

( )( )( ){ }
⎧⎨
⎩

⎫⎬
⎭

· s4
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (67)
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Next, we find an achievable distortion tuple using uncoded
transmission. Then, we compare the separate and the uncoded
schemes for some special cases.

5.2 Uncoded transmission

We choose Xij =
���
Pi

s2

√
Sij, for i = 1:2 and j = 1,…, n and implement a

minimum-mean-squared error (MMSE) estimation at the decoder,
that is, Ŝuij = E[Sij|Yj], j = 1, …, n. Thus, we obtain the following
achievable tuple.

Theorem 7: The distortion tuple (Du
1, D

u
2, D

u
e1, D

u
e2, D

u
e12) resulting

from the described uncoded scheme is given by

Du
1 =

1+ (1− r2)P2

( )
/s2

y

( )
1+ P1 + P2 + 2r

������
P1P2

√( )
/s2

y

( ) · s2

Du
2 =

1+ (1− r2)P1

( )
/s2

y

( )
1+ P1 + P2 + 2r

������
P1P2

√( )
/s2

y

· s2

Du
e1 =

1+ (1− r2)P2

( )
/s2

z

( )
1+ P1 + P2 + 2r

������
P1P2

√( )
/s2

z

( ) · s2

Du
e2 =

1+ (1− r2)P1

( )
/s2

z

( )
1+ P1 + P2 + 2r

������
P1P2

√( )
/s2

z

( ) · s2

Du
e12 =

(1− r2)

1+ P1 + P2 + 2r
������
P1P2

√( )
/s2

z

( ) · s4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(69)

for the symmetric GMAC-WT where Du
1 = Du

2 = Du, P1 = P2 = P,
Du

e1 = Du
e2 = Du

e and Du
e12 = Du

et, the tuple in (69) reduces to the
following

Du =
1+ (1− r2)P

( )
/s2

y

( )
1+ 2(1+ r)P

( )
/s2

y

( ) · s2

Du
e =

1+ (1− r2)P
( )

/s2
z

( )
1+ 2(1+ r)P

( )
/s2

z

( ) · s2

Du
et =

(1− r2)

1+ 2(1+ r)P
( )

/s2
z

( ) · s4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(70)

Remark 1: Consider the symmetric GMAC-WT and let ρ = 0 in (68)
and (70). Also, assume that s2

z ≥ s2
y . We obtain the following

distortion tuples (see (71) and (72))

It can be easily checked that Ds , Du, therefore, the separate
scheme’s distortion at the receiver is smaller than the uncoded
scheme’s. We also have Ds

e . Du
e , that is, the individual secrecy

rate of the separation is larger than the rate of uncoded scheme.
For both strategies, we have Ds

et = Du
et . The results of this

comparison are numerically evaluated for s2
z/s

2
y = 1.5 in Fig. 6.

As shown in Fig. 6, Du
e is smaller than Ds

e while D
u dominates Ds.

Now, we find the optimal region for a special case. We simplify
Theorem 4 to find an outer bound to the distortion-equivocation
region of the symmetric GMAC-WT when s2

y ≤ s2
z and ρ = 0. In

the following theorem, we assume that

���������������
1+ 2P/s2

y

( )√
≤ 1

1+ P/ P + s2
z

( )( )

Theorem 8: The tuple (Ds, Ds
e, D

s
et) is achievable for the symmetric

GMAC-WT when s2
y ≤ s2

z , ρ = 0 and

���������������
1+ 2P/s2

y

( )√
≤

1/ 1+ P/ P + s2
z

( )( )( )( )
, if and only if

Ds ≥ 1���������������
1+ 2P/s2

y

( )√ · s2

Ds
e ≤ s2

Ds
et ≤ (Ds)2 ·

1+ 2P/s2
y

( )
1+ 2P/s2

z

( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(73)

Proof: For the proof of achievability, consider Theorem 6 with ρ = 0.
The inequality

���������������
1+ 2P/s2

y

( )√
≤ 1

1+ P/ P + s2
z

( )( )
implies that

���������������
1+ 2P/s2

y

( )√
1+ P/s2

y

( ) ≤ 1

1+ P/ P + s2
z

( )( )

therefore Ds
e = s2. Also, we have Ds

et = (Ds)2 · ((1+ (2P/s2
y

))
/

1+ (2P/s2
z

))
. It can be easily checked that Theorem 1 yields

similar region. For the proof of converse, consider Theorem 4 with
D1 = D2 = Ds, P1 = P2 = P, De1 = De2 = Ds

e, De12 = Ds
et and

b1 = b2 = b. Thus, if the tuple (Ds, Ds
e, D

s
et) is achievable, then we

have

Ds ≥ 1���������������
1+ 2P/s2

y

( )√ · s2

Ds
e ≤ min s2, Ds ·

1+ (2− b)P
( )

/ bP + s2
y

( )( )
1+ P/ P + s2

z

( )( )
⎧⎨
⎩

⎫⎬
⎭

Ds
et ≤ (Ds)2.

1+ 2P/s2
y

( )
1+ 2P/s2

z

( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(74)

(Ds, Ds
e, D

s
et) =

1���������������
1+ 2P/s2

y

( )√ · s2,

⎛
⎜⎜⎝ min s2,

1+ P/s2
y

( )
���������������
1+ 2P/s2

y

( )√
· 1+ P/ P + s2

z

( )( )( ) · s2

⎧⎪⎪⎨
⎪⎪⎩

⎫⎪⎪⎬
⎪⎪⎭,

1

1+ 2P/s2
z

( ) · s4

)
(71)

(Du, Du
e , D

u
et) =

1+ P/s2
y

( )
1+ 2P/s2

y

( ) · s2,
1+ P/s2

z

( )
1+ 2P/s2

z

( ) · s2,
1

1+ 2P/s2
z

( ) · s4

⎛
⎝

⎞
⎠ (72)
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Also, we have

Ds ·
1+ (2− b)P

( )
/ bP + s2

y

( )( )
1+ P/ P + s2

z

( )( )
≥(a)

1+ (2− b)P
( )

/ bP + s2
y

( )( )
���������������
1+ 2P/s2

y

( )√
1+ P/ P + s2

z

( )( )( ) · s2 ≥(b)s2

(75)

where (a) follows from the first inequality in (74) and (b) follows
from the inequality

���������������
1+ 2P/s2

y

( )√
≤ 1

1+ P/ P + s2
z

( )( )

Therefore the second inequality in (74) reduces to Ds
e ≤ s2. □

Fig. 6 Comparison of Ds with Du, and Ds
e with Du

e as a function of P/s2
y for ρ= 0, σ2 = 1 and s2

z /s
2
y = 1.5

Fig. 7 Comparison of Ds with Du, and Ds
e with Du

e as a function of P/s2
y for ρ= 1, σ2 = 1 and s2

z /s
2
y = 1.5
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Remark 2: Consider the symmetric GMAC-WT with ρ = 1. Also, let
S1 = S2 = S, that is, the term Ds

et is inactive. We obtain the following
distortion pairs

(Ds,Ds
e)=

1

1+2P

s2
y

·s2, min s2,

1+ P

s2
y��������

1+2P

s2
y

√
· 1+ P

P+s2
z

( ) ·s2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

(76)

(Du,Du
e )=

1

1+ 4P/s2
y

( ) ·s2,
1

1+ 4P/s2
z

( ) ·s2

⎛
⎝

⎞
⎠ (77)

The uncoded scheme’s distortion at the receiver is smaller than the
separate scheme’s, that is, Ds >Du. We have Ds

e . Du
e , that is, the

individual secrecy rate of the separation is larger than the rate of
uncoded scheme. The results of this comparison are numerically
evaluated for s2

z/s
2
y = 1.5 in Fig. 7. As shown in Fig. 7, Ds

e is
larger than Du

e while D
s dominates Du.

Next, we obtain the optimal region for a special case. We simplify
Theorem 3 to find an outer bound to the distortion-equivocation
region of the symmetric GMAC-WT when ρ = 1 and s2

y ≤ s2
z .

Theorem 9: The pair (Du, Du
e ) is achievable for the symmetric

GMAC-WT when ρ = 1 and s2
y ≤ s2

z , if and only if

Du ≥ 1

1+ 4P/s2
y

( ) · s2

Du
e ≤ Du ·

1+ 4P/s2
y

( )
1+ 4P/s2

z

( )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(78)

Proof: For the proof of achievability, let ρ = 1 in (70). Also, note that

Du
e = Du ·

1+ 4P/s2
y

( )
1+ 4P/s2

z

( )
For the proof of converse, let S1 = S2 = S, X1 = X2 = X, Ŝ1 = Ŝ2 = Ŝ,
κ = 1 and De12 = Du

e in Theorem 3. □

Finally, we consider the hybrid scheme. In the following, we
simplify the conditions of Theorem 2 for the GMAC-WT.

5.3 Hybrid scheme

Consider the conditions of Theorem 2. Given aj [ 0,
�������
Pj/s

2
√[ ]

and

Rj > 0, j = 1:2, let Wj = 0, j = 1:2, Vj = 1− 2−2Rj
( )

Sj + Nj, j = 1:2
and Xj = αjSj + βjVj, j = 1:2, where Nj are independent Gaussian
random variables with zero mean and variance s22−2Rj (1− 2−2Rj ) and

bj =
�����������������
Pj − a2

j s
22−2Rj

s2(1− 2−2Rj )

√
− aj.

Let

K =

k11 k12 k13 k14 k15 k16
k12 k22 k23 k24 k25 k26
k13 k23 k33 k34 k35 k36
k14 k24 k34 k44 k45 k46
k15 k25 k35 k45 k55 k56
k16 k26 k36 k46 k56 k66

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

denotes the covariance matrix of (S1, S2, V1, V2, Y, Z ), respectively,
where

k jj = s2, j = 1:2

k12 = rs2

k13 = k33 = s2(1− 2−2R1 )

k24 = k44 = s2(1− 2−2R2 )

k14 = rs2(1− 2−2R2 )

k23 = rs2(1− 2−2R1 )

k34 = rs2(1− 2−2R1 )(1− 2−2R2 )

k15 = k16 = b1k13 + b2k14 + a1s
2 + a2rs

2

k25 = k26 = b2k24 + b1k23 + a2s
2 + a1rs

2

k35 = k36 = (a1 + b1 + a2r)k13 + b2k34
k45 = k46 = (a2 + b2 + a1r)k24 + b1k34

k55 = (b2
1 + 2a1b1 + 2b1a2r)k13

+ (b2
2 + 2a2b2 + 2a1b2r)k24 + 2b1b2k34

+ (a2
1 + a2

2 + 2a1a2r)s
2 + s2

y

k56 = (b2
1 + 2a1b1 + 2b1a2r)k13

+ (b2
2 + 2a2b2 + 2a1b2r)k24 + 2b1b2k34

+ (a2
1 + a2

2 + 2a1a2r)s
2

k66 = (b2
1 + 2a1b1 + 2b1a2r)k13

+ (b2
2 + 2a2b2 + 2a1b2r)k24 + 2b1b2k34

+ (a2
1 + a2

2 + 2a1a2r)s
2 + s2

z

(79)

Therefore Theorem 2 reduces to the following.

Corollary 2: The tuple (D1, D2, Re1, Re2, Re12) is achievable if

Dj . s2 − e j1c j1 − e j2c j2 − e j3c j3, j = 1, 2

Re1 ,
1

2
log (s2)− R1 −

1

2
log 1+ rx1

P1k66 − rx1

( )

+min
1

2
log

b′2
1 k13(1− r̃2)+ N ′

N ′(1− r̃2)

( )
,
1

2
log

b2
1k13 + 22R1Ne1

Ne1

( ){ }

Re2 ,
1

2
log (s2)− R2 −

1

2
log 1+ rx2

P2k66 − rx2

( )

+min
1

2
log

b′2
2 k24(1− r̃2)+ N ′

N ′(1− r̃2)

( )
,
1

2
log

b2
2k24 + 22R2Ne2

Ne2

( ){ }

Re12 ,
1

2
log (s4(1− r2))− R1 − R2 −

1

2
log 1+ k66 − s2

z

s2
z

( )

+min
1

2
log

b′2
1 k13 + b′2

2 k24 + 2r̃b′
1b

′
2

�������
k13k24

√ + N ′

N ′(1− r̃2)

( )
,

{

1

2
log

(1− r̃2)(22(R1+R2)s2
z + 22R2b2

1k13 + 22R1b2
2k24)

s2
z

( )}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(80)

such that

R1 ,
1

2
log

b′2
1 k13(1− r̃2)+ N ′

N ′(1− r̃2)

( )

R2 ,
1

2
log

b′2
2 k24(1− r̃2)+ N ′

N ′(1− r̃2)

( )

R1 + R2 ,
1

2
log

b′2
1 k13 + b′2

2 k24 + 2r̃b′
1b

′
2

�������
k13k24

√ + N ′

N ′(1− r̃2)

( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(81)
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where

c11 = k13, c12 = rk24, c21 = rk13, c22 = k24

c13 = (a1 + a2r)s
2 + b1k13 + b2k24r,

c23 = (a2 + a1r)s
2 + b2k24 + b1k13r

e j1
e j2
e j3

⎡
⎢⎣

⎤
⎥⎦ =

k33 k34 k35
k34 k44 k45
k35 k45 k55

⎡
⎢⎣

⎤
⎥⎦

−1 c j1
c j2
c j3

⎡
⎢⎣

⎤
⎥⎦

and

r̃ = r
�������������������������
(1− 2−2R1 )(1− 2−2R2 )

√
rx1 = ((a2

1 + a1a2r)s
2 + (b2

1 + 2a1b1 + b1a2r)k13

+ a1b2rk24 + b1b2rk34)
2

rx2 = ((a2
2 + a1a2r)s

2 + (b2
2 + 2a2b2 + b2a1r)k24

+ a2b1rk13 + b1b2rk34)
2

N ′ = a2
1n1 + a2

2n2 + 2a1a2n3 + s2
y

Ne1 = a2
2(1− r2)s2 + b2

2(1− r2(1− 2−2R2 ))k24

+ 2a2b2(1− r2)k24 + s2
z

Ne2 = a2
1(1− r2)s2 + b2

1(1− r2(1− 2−2R1 ))k13

+ 2a1b1(1− r2)k13 + s2
z

n1 = s2 − (1− a1r(1− 2−2R2 ))2k13

− 2(1− a1r(1− 2−2R2 ))a1k34 − a21k24

n2 = s2 − (1− a2r(1− 2−2R1 ))2k24

− 2(1− a2r(1− 2−2R1 ))a2k34 − a22k13

n3 = rs2 − (1− a1r(1− 2−2R2 ))(1− a2r(1− 2−2R1 ))

k34 − a1a2k34 − (1− a1r(1− 2−2R2 ))a2k13

− (1− a2r(1− 2−2R1 ))a1k24

b′
1 = a1 1− r22−2R1 (1− 2−2R2 )

1− r̃2

( )
+ b1 +

a2r2
−2R2

1− r̃2

b′
2 = a2 1− r22−2R2 (1− 2−2R1 )

1− r̃2

( )
+ b2 +

a1r2
−2R1

1− r̃2
a1

a2 =
r2−2R2 (1− 2−2R1 )

h2

h1 = (1− 2−2R2 )− 2r̃2
�������������������������
(1− 2−2R1 )(1− 2−2R2 )

√
+ r̃2(1− 2−2R1 )

h2 = (1− 2−2R1 )− 2r̃2
�������������������������
(1− 2−2R1 )(1− 2−2R2 )

√
+ r̃2(1− 2−2R2 )

Remark 3: If we assume that the eavesdropper is neutral, that is, the
secrecy constraints are omitted from the model, then the conditions
of Corollary 2 reduce to the conditions of [22, Theorem IV.6].
In the symmetric case where P1 = P2 = P, R1 = R2 = R, D1 =D2 =Dh,
α1 = α2 = α, β1 = β2 = β, Re1 = Re2 = Rh

e and Re12 = Rh
et , the matrix K

and other coefficients reduce to

K =

k1 rk1 k2 rk2 k4 k4
rk1 k1 rk2 k2 k4 k4
k2 rk2 k2 k3 k5 k5
rk2 k2 k3 k2 k5 k5
k4 k4 k5 k5 k7 k6
k4 k4 k5 k5 k6 k8

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦ (82)

where

k1 = s2

k2 = s2(1− 2−2R)

k3 = rs2(1− 2−2R)2

k4 = (1+ r)(bk2 + as2)

k5 = (a+ b+ ar)k2 + bk3

k6 = 2b(b+ 2a(1+ r))k2 + 2b2k3 + 2a2(1+ r)s2

k7 = k6 + s2
y

k8 = k6 + s2
z

Therefore, for the symmetric GMAC-WT, Corollary 2 simplifies as
follows.

Corollary 3: The tuple (Dh, Rh
e , R

h
et) is achievable if (see (83))

such that

R ,
1

4
log

2b′2(1+ r̃)k2 + N ′

N ′(1− r̃2)

( )
(84)

where

c1 = k2, c2 = rk2, c3 = (1+ r)bk2 + (1+ r)as2

e1
e2
e3

⎡
⎢⎣

⎤
⎥⎦ =

k2 k3 k5
k3 k2 k5
k5 k5 k7

⎡
⎢⎣

⎤
⎥⎦

−1
c1
c2
c3

⎡
⎢⎣

⎤
⎥⎦

and

r̃ = r(1− 2−2R)

rx = (a2(1+ r)s2 + b(b+ 2a(1+ r))k2 + b2rk3)
2

N ′ = 2a2(n1 + n3)+ s2
y

Ne = a2(1− r2)s2 + b(1− r2(1− 2−2R2 )

+ 2a(1− r2))k2 + s2
z

Dh . s2 − e1c1 − e2c2 − e3c3

Rh
e ,

1

2
log (s2)− R− 1

2
log 1+ rx

Pk8 − rx

( )
+

min
1

2
log

b′2k2(1− r̃2)+ N ′

N ′(1− r̃2)

( )
,
1

2
log

b2k2 + 22RNe

Ne

( ){ }

Rh
et ,

1

2
log (s4(1− r2))− 2R− 1

2
log 1+ k8 − s2

z

s2
z

( )
+

min
1

2
log

2b′2k2(1+ r̃)+ N ′

N ′(1− r̃2)

( )
,
1

2
log

(1− r̃2)(24Rs2
z + 2b222Rk2)

s2
z

( ){ }

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(83)
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n1 = s22−2R 1− rr̃

1− r̃2

n3 = s2r
2−4R

1− r̃2

b′ = a 1+ r2−2R

1+ r̃

( )
+ b

for some α∈ [0, (P / σ2)] and

b =
����������������
P − a2s22−2R

s2(1− 2−2R)

√
− a

Fig. 8 illustrates the separate, uncoded and hybrid schemes for
ρ = 0.5. As shown in Fig. 8, the term Ds

e is larger than Du
e and Dh

e
with a significant difference. The term Ds

e does not depend on the
source correlation coefficient ρ. Also, at high signal-to-noise ratio,
this term increases to its maximum value.

6 Conclusion

In this paper, we considered lossy communication of correlated
sources over the MAC-WT. We proposed an achievable scheme
for the MAC-WT based on the separation. A joint source-channel
coding strategy based on the hybrid scheme of [17] was also
found. We studied lossy transmission of a bivariate Gaussian
source over the GMAC-WT. We found inner bounds to the
rate-distortion-equivocation region of the GMAC-WT using three
approaches: separation, uncoded transmission and hybrid schemes.
The separate, uncoded and hybrid schemes were compared with
each other for the symmetric GMAC-WT and different values of
the source correlation. We derived outer bounds to the
rate-distortion-equivocation region of the degraded MAC-WT and
the symmetric GMAC-WT. Optimal regions for some special cases
were established.
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9 Appendix

9.1 Appendix 1: Proof of Theorem 3

We use the fact that a stochastic encoder p(xnj |snj ), j = 1:2, can be
treated as a deterministic mapping from Smj and an independent
variable Tj onto Xn

j . First, consider the following term

I(Sm1 ; Y
n|Sm2 , T2)

= H(Sm1 |Sm2 , T2)− H(Sm1 |Yn, Sm2 , T2)

=(a) H(Sm1 |Sm2 )− H(Sm1 |Yn, Sm2 , T2)

=(b) H(Sm1 |Sm2 )− H(Sm1 |Yn, Ŝm1 , S
m
2 , T2)

≥ H(Sm1 |Sm2 )− H(Sm1 |Ŝm1 , Sm2 )
= I(Sm1 ; Ŝ

m
1 |Sm2 )

=
∑m
i=1

H(S1,i|Si−1
1 , Sm2 )−

∑m
i=1

H(S1,i|Si−1
1 , Sm2 , Ŝ

m
1 )

=(c)
∑m
i=1

H(S1,i|S2,i)−
∑m
i=1

H(S1,i|Si−1
1 , Sm2 , Ŝ

m
1 )

≥
∑m
i=1

H(S1,i|S2,i)−
∑m
i=1

H(S1,i|S2,i, Ŝ1,i)

=
∑m
i=1

I(S1,i; Ŝ1,i|S2,i)

where (a) follows because T2 is independent of (S
m
1 , S

m
2 ), (b) follows

because Ŝm1 is a deterministic function of Yn, (c) follows from the
independence of random variables S1,i and S2,i over time. Also, we
have

I(Sm1 ; Y
n|Sm2 , T2)

=
∑n
i=1

I(Sm1 ; Yi|Sm2 , T2, Y i−1)

=(a)
∑n
i=1

I(Sm1 ; Yi|Sm2 , T2, Xn
2 , Y

i−1)

=
∑n
i=1

H(Yi|Sm2 , T2, Xn
2 , Y

i−1)

−
∑n
i=1

H(Yi|Sm1 , Sm2 , T2, Xn
2 , Y

i−1)

≤
∑n
i=1

H(Yi|X2,i)−
∑n
i=1

H(Yi|Sm1 , Sm2 , T2, Xn
2 , Y

i−1)

≤
∑n
i=1

H(Yi|X2,i)−
∑n
i=1

H(Yi|Sm1 , Xn
1 , S

m
2 , T2, X

n
2 , Y

i−1)

=(b)
∑n
i=1

H(Yi|X2,i)−
∑n
i=1

H(Yi|X1,i, X2,i)

=
∑n
i=1

I(X1,i; Yi|X2,i)

where (a) follows because Xn
2 is a deterministic function of (Sm2 , T2),

(b) follows because given (X1,i, X2,i), Yi is independent of other
variables. Similarly, we have

I(Sm2 ; Y
n|Sm1 , T1) ≥

∑m
i=1

I(S2,i; Ŝ2,i|S1,i) (85)

I(Sm1 , S
m
2 ; Y

n) ≥
∑m
i=1

I(S1,i, S2,i; Ŝ1,i, Ŝ2,i) (86)

and

I(Sm2 ; Y
n|Sm1 , T1) ≤

∑m
i=1

I(X2,i; Yi|X1,i) (87)

I(Sm1 , S
m
2 ; Y

n) ≤
∑m
i=1

I(X1,i, X2,i; Y1,i) (88)

Now, consider the following

H(Sm1 , S
m
2 |Zn) = H(Sm1 , S

m
2 )− I(Sm1 , S

m
2 ; Z

n)

= H(Sm1 , S
m
2 )︸3333︷︷3333︸

D1

− I(Sm1 , S
m
2 ; Y

n)︸3333333︷︷3333333︸
D2

+ I(Sm1 , S
m
2 ; Y

n)− I(Sm1 , S
m
2 ; Z

n)︸33333333333333333︷︷33333333333333333︸
D3

(89)

Each term is studied separately. First, consider the term Δ1

D1 = H(Sm1 , S
m
2 )

=
∑m
i=1

H(S1,i, S2,i|Si−1
1 , Si−1

2 )

=
∑m
i=1

H(S1,i, S2,i)a

From (86), we have the following bound on Δ2

D2 = I(Sm1 , S
m
2 ; Y

n) ≥
∑m
i=1

I(S1,i, S2,i; Ŝ1,i, Ŝ2,i)
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Finally, consider the term Δ3

D3 = I(Sm1 , S
m
2 ; Y

n)− I(Sm1 , S
m
2 ; Z

n)

=(a) I(Sm1 , Sm2 ; Yn|Zn)

≤(b) I(Xn
1 , X

n
2 ; Y

n|Zn)

=
∑n
i=1

I(Xn
1 , X

n
2 ; Yi|Zn, Y i−1)

=
∑n
i=1

[H(Yi|Zn, Y i−1)− H(Yi|Zn, Y i−1, Xn
1 , X

n
2 )]

≤
∑n
i=1

[H(Yi|Zi)− H(Yi|Zn, Y i−1, Xn
1 , X

n
2 )]

=(c)
∑n
i=1

[H(Yi|Zi)− H(Yi|Zi, X1,i, X2,i)]

=
∑n
i=1

I(X1,i, X2,i; Yi|Zi)

where (a) follows because (Sm1 , S
m
2 ) � (Xn

1 , X
n
2 ) � Yn � Zn forms

a Markov chain from degradedness condition, (b) follows because
(Sm1 , S

m
2 ) � (Xn

1 , X
n
2 , Z

n) � Yn forms a Markov chain, (c) follows
because given (X1,i, X2,i), Yi is independent of other variables. By
introducing a time-sharing random variable, we obtain the terms in
the theorem.

9.2 Appendix 2: Proof of Theorem 4

Consider the terms in Theorem 3 with κ = 1 and independent
sources, that is, ρ = 0 for the GMAC-WT. We have the following
sequence of inequalities

22H(S1|Ŝ1,S2)/(2pe) ≤ 22H(S1|Ŝ1)/(2pe) ≤ Var[S1|Ŝ1]
≤ E[d1(S1, Ŝ1)] (90)

Therefore we have

22I(S1;Ŝ1|S2) = 22H(S1|S2)

22H (S1|Ŝ1,S2)
=(a) 22H(S1)

22H(S1|Ŝ1,S2)
= s2

22H(S1|Ŝ1,S2)
≥(b) s

2

D1

where (a) follows from the independence of S1 and S2, (b) follows
from the inequality in (90). Similarly, we obtain

22I (S2;Ŝ2|S1) ≥ s2

D2
, 22I (S1,S2;Ŝ1,Ŝ2) ≥ s2

D1.D2

Note that the independence of sources S1 and S2 implies
independence of codewords X1 and X2, because X1 (resp. X2) is a
stochastic function S1 (resp. S2). Thus, we have

I(X1; Y |X2) ≤
1

2
log 1+ P1

s2
y

( )

I(X2; Y |X1) ≤
1

2
log 1+ P2

s2
y

( )

I(X1, X2; Y ) ≤
1

2
log 1+ P1 + P2

s2
y

( )

From the Markov chain (X1, X2)→ Y→ Z, there exists a random

variable N � N (0, s2
z − s2

y ) such that Z = Y + N. Thus, we have

I(X1,X2;Y |Z)=H(Y )−H(Y |X1,X2)−H(Z)+H(Z|X1,X2)

≤(a)H(Y )−H(Y |X1,X2)−
1

2
log(22H (Y )+22H(N ))+H(Nz)

≤(b) 1
2
log

1

1+ s2
z −s2

y

( )
/ P1+P2+s2

y

( )( )s2
z

s2
y

⎛
⎝

⎞
⎠

=1

2
log

1+ P1+P2

( )
/s2

y

( )
1+ P1+P2

( )
/s2

z

( )
⎛
⎝

⎞
⎠

where (a) follows from the Entropy Power Inequality (EPI) [25,
Lecture Note 2], that is, 22H(Z )≥ 22H(Y ) + 22H(N ), (b) follows
because Var[Y ] ≤ P1 + P2 + s2

y . Now, consider the following
equivocation rate

H(Sn1 |Zn) = H(Sn1)− I(Sn1 ; Z
n)

= H(Sn1)− I(Sn1 ; Y
n)︸3333︷︷3333︸

D1

+ I(Sn1 ; Y
n)− I(Sn1 ; Z

n)︸333333333333︷︷333333333333︸
D2

(91)

Consider the term Δ1

D1 = I(Sn1 ; Y
n)

=(a) I(Sn1 ; Yn, Ŝn1)

≥ I(Sn1 ; Ŝ
n
1)

=
∑n
i=1

I(S1,i; Ŝ
n
1 |Si−1

1 )

=
∑n
i=1

[H(S1,i|Si−1
1 )− H(S1,i|Ŝn1 , Si−1

1 )]

=(b)
∑n
i=1

[H(S1,i)− H(S1,i|Ŝn1 , Si−1
1 )]

≥
∑n
i=1

[H(S1,i)− H(S1,i|Ŝ1,i)]

=
∑n
i=1

I(S1,i; Ŝ1,i)

where (a) follows because Ŝn1 is a function of Y
n and (b) follows from

the independence of source sequences over time. Consider the
following set of inequalities

22H(S1|Ŝ1)/(2pe) ≤ Var[S1|Ŝ1] ≤ E[d1(S1, Ŝ1)]

Thus, we obtain

22I(S1;Ŝ1) = 22H(S1)

22H(S1|Ŝ1)
≥ s2

D1

Next, consider the term Δ2

D2 = I(Sn1 ; Y
n)− I(Sn1 ; Z

n)

=(a) I(Sn1 ; Yn|Zn)

≤(b) I(Xn
1 ; Y

n|Zn)

=(c) I(Xn
1 ; Y

n)− I(Xn
1 ; Z

n)

= H(Yn)− H(Yn|Xn
1 )− H(Zn)+ H(Zn|Xn

1 )
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=(d) H(Yn)− H(Xn
2 + Nn

y )− H(Zn)+ H(Xn
2 + Nn

z )

≤(e) H(Yn)− H(Xn
2 + Nn

y )

− n

2
log (22H(Y ) + 22H(N ))+ H(Xn

2 + Nn
z )

=(f ) H(Yn)− n

2
log (b1P2 + s2

y )

− n

2
log (22H(Y ) + 22H(N ))+ H(Xn

2 + Nn
z )

≤(g) n
2
log

1

1+ s2
z − s2

y

( )
/ P1 + P2 + s2

y

( )( ) P2 + s2
z

b1P2 + s2
y

⎛
⎝

⎞
⎠

= n

2
log

1+ P1 + (1− b1)P2

( )
/ b1P2 + s2

y

( )( )
1+ P1/ P2 + s2

z

( )( )
⎛
⎝

⎞
⎠

where (a) and (c) follow from the degradedness condition, that is,
Sn1 � Xn

1 � Yn � Zn forms a Markov chain, (b) follows because
Sn1 � Xn

1 � Yn forms a Markov chain when X1 and X2 are
independent, (d ) follows from the independence of codewords X1

and X2, (e) follows from the EPI [25, Lecture Note 2] and ( f )
follows from the following inequality

n

2
log (s2

y ) ≤ H(Xn
2 + Nn

y ) ≤
n

2
log (P2 + s2

y )

Thus, there exists β1∈ [0, 1] such that H(Xn
2 + Nn

y ) = (n/2)
log (b1P2 + s2

y ), (g) follows because Var[Yn] ≤ n(P1 + P2 + s2
y ).

In summary, we obtain the following bound on H(Sn1 |Zn)

H(Sn1 |Zn) ≤ n

2
log D1 ·

1+ P1 + (1− b1)P2

( )
/ b1P2 + s2

y

( )( )
1+ P1/ P2 + s2

z

( )( )
⎛
⎝

⎞
⎠

for some β1∈ [0, 1]. Similarly, we have

H(Sn2 |Zn) ≤ n

2
log D2 ·

1+ P2 + (1− b2)P1

( )
/ b2P1 + s2

y

( )( )
1+ P2/ P1 + s2

z

( )( )
⎛
⎝

⎞
⎠

for some β2∈ [0, 1]. In summary, we obtain the terms in the theorem.
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