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Abstract

Background: Continuous Glucose Monitoring (CGM) has become an increasingly
investigated tool, especially with regards to monitoring of diabetic and critical care
patients. The continuous glucose data allows the calculation of several glucose
variability parameters, however, without specific application the interpretation of the
results is time-consuming, utilizing extreme efforts. Our aim was to create an open
access software [Glycemic Variability Analyzer Program (GVAP)], readily available to
calculate the most common parameters of the glucose variability and to test its us-
ability.

Methods: The GVAP was developed in MATLAB® 2010b environment. The calculated
parameters were the following: average area above/below the target range (Avg.
AUC-H/L); Percentage Spent Above/Below the Target Range (PATR/PBTR); Continuous
Overall Net Glycemic Action (CONGA); Mean of Daily Differences (MODD); Mean
Amplitude of Glycemic Excursions (MAGE). For verification purposes we selected 14
CGM curves of pediatric critical care patients. Medtronic® Guardian® Real-Time with
Enlite® sensor was used. The reference values were obtained from Medtronic®’s own
software for Avg. AUC-H/L and PATR/PBTR, from GlyCulator for MODD and CONGA,
and using manual calculation for MAGE.

Results: The Pearson and Spearman correlation coefficients were above 0.99 for all
parameters. The initial execution took 30 minutes, for further analysis with the
Windows® Standalone Application approximately 1 minute was needed.

Conclusions: The GVAP is a reliable open access program for analyzing different
glycemic variability parameters, hence it could be a useful tool for the study of
glycemic control among critically ill patients.
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Background
Continuous glucose monitoring (CGM) is primarily applied in diabetes care for both

clinical investigations and decision making. There are several promising studies sug-

gesting that CGM could be a useful method for monitoring of critically ill patients

[1-5]. However, the current guideline does not recommend CGM-based therapeutic de-

cisions under intensive care circumstances without surveillance. This guideline also ad-

vocates further investigations about the reliability of CGM devices in clinical settings

[6]. The final goal of monitoring glucose changes in critically ill patients is to maintain

blood glucose levels within a narrow range, i.e. avoiding fluctuations of glycemia. This

goal could be achieved in many cases by insulin therapy, or even by cortisone supple-

mentation. Intensive care glucose changes are resultant of multiple interactions of

glucose load, insulin secretion, and stress conditions mediated by cortisone or catechol-

amine secretion or autonomic nervous system activity. There are several models to de-

scribe glucose-insulin interaction taking into account many factors such as insulin

sensitivity, insulin clearance, endogenous glucose production etc. Common feature of

all the insulin-glucose models from the minimal model [7] through the pharmacoki-

netic model [8] to the most complex Sorensen model [9] is the consideration of glucose

concentrations in the interstitial compartment, being the interstitial fluid the field of

cellular insulin action. In the process of developing an appropriate algorithm for glu-

cose regulation in the intensive care unit, the variability of interstitial glucose changes

could not be neglected.

Applying CGM devices in the clinical practice or research needs appropriate, goal

oriented data handling methods. For instance Medtronic® CGM device can be evaluated

by a Windows- or Web-based program (Medtronic® CareLink® Professional/Personal),

which are widely used applications by physicians and diabetic patients. The main ad-

vantage of the above programs is that they provide clinically important graphical re-

ports, trends, areas and different parameters of glucose homeostasis with individually

adjustable threshold values. Reports contain, however, limited information as far as gly-

cemic variability is concerned; most accepted parameters, such as Mean of Daily Differ-

ences (MODD), Mean Amplitude of Glycemic Excursions (MAGE) and Continuous

Overall Net Glycemic Action (CONGA) are not available, raising an issue for re-

searchers. Raw data can be retrieved from both Medtronic® CareLink® Professional and

Personal, thus separate calculation of these parameters is possible. Recently, softwares

have been developed and found useful for the calculation of glycemic variability. The

GlyCulator is an application designed for the evaluation of glycemic variability based

on data collected by means of a CGM device and the program has been made access-

ible in a web-based, interface independent version [10]. Unfortunately, in this tool glu-

cose thresholds are not adjustable representing a disadvantage for research purposes.

Another application called CGM-GUIDE© (Continuous Glucose Monitoring-Graphical

User Interface for Diabetes Evaluation) calculates the most extensively used glucose

homeostasis parameters and variability metrics, exported from the CGM device in a

standard Excel data format [11]. It provides a user-friendly graphical interface, but it is

not widely available.

Recent studies suggested a linkage between glycemic variability and critical care mor-

tality. Elevated MAGE and standard deviation (SD) were found to be associated with

increased in-hospital mortality [12]. Signal et al. demonstrated that the odds of living
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had been higher for those patients who had spent more time in the normoglycemic

range of 72–126 mg/dL [13]. On the basis of the above observations we carried out a

clinical study at a pediatric intensive care unit (PICU) setting with the aim to investi-

gate glycemic variability. For this purpose our team designed a CGM data handling and

analyzer program called Glycemic Variability Analyzer Program (GVAP). In this study

we evaluated the reliability of GVAP, compared to reference values and determined the

applicability of the software based on its user documentation. In the near future we will

make the software available for open access usage, with the advantages of open access

source code, adjustable thresholds and graphical user interface.

Methods
CGM system

Interstitial glucose level was monitored by Guardian® REAL-Time (Medtronic®, USA)

CGM. The flexible platinum Enlite® sensor was inserted in the subcutaneous tissue of the

left or right lateral thigh and covered by transparent dressing. The calibration protocol

can be found in our previous publication [14]. The study was approved by the Research

Ethical Committee (number: TUKEB 2012/4) of the Semmelweis University, Budapest.

Developmental model and software testing

Our applied software designed for special application has several different outputs and

mathematical algorithms as for certain data source. For the purposes of the develop-

ment, incremental method was applied and each algorithm was written and tested in

decomposed way. Following the algorithm design the next step involved the program-

ming environment selection. Our choice was influenced by the main task being rather

mathematical, therefore special software package application seemed to be optimal. Ac-

cordingly, MATLAB® (MathWorks®, USA) software was chosen. The GVAP program

was tested in three consecutive steps: during the (1) static test an expert programmer

read the source code row by row; (2) dynamic test addressed the evaluated data and al-

gorithm precision during process, throughout this step the source code was considered

as a black-box; (3) verification.

Algorithm

In this application the main input was data on glucose concentration. The data chart

contained a sequential series of glucose concentrations at 5 minute intervals. Taking

into consideration the occasionally missing values, (e.g. secondary to late calibration) a

calculation of the missing data with linear interpolation was incorporated into the ini-

tial steps, when applicable. During the processing the following parameters were calcu-

lated based on their formulas (Table 1): Average area above/below the target range

(Avg. AUC-H/L); Percentage spent Above/Below the Target Range (PATR/PBTR);

CONGA; MODD; MAGE; Excursion Frequency (EF).

Within the whole programming process, the formulation of MAGE was found to be

the biggest challenge. Previously published algorithms were studied [15,16] and one of

them (Baghurst’s algorithm, Approach 1) was opted for use with minor modifications.

The MAGE algorithm embraced three main steps. The first element was the identifica-

tion of the turning points of the glucose data. Then, the turning points that were
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associated with uncountable excursions on both sides were deleted, while those whom

adjacent maxima/minima were lower/higher (‘W’ and ‘M’ pattern) on both sides, were

retained. The third step comprised of the deletion of the turning points with countable

excursions on only one side. While keeping the backbone of the Baghurst’s algorithm

[15] two modifications were applied in our study design, as follows. In some cases, tak-

ing the first point of the glucose data as reference, the program could not identify a

meaningful excursion (ME), although the data set itself contained MEs. For this context

the program identified a new starting point. Moreover, when the program recognized

the first ME, it rechecked the glucose curve whether within the starting point and the

first identified ME any MEs were missed (Figure 1). The second modification affected

the turning points. Our algorithm retained the “W” and “M” patterns throughout the

calculation in contrary to the original method, which deleted them during the second

step. As a result of retaining certain turning points, the theoretical situation could arise,

when the final “MAGE” curve contained excursions below the threshold of ME. For

this latter scenario the program was designed to alert the users as follows, “Visual ana-

lysis should be performed, see User Documentation”. It should be noted, though that

this scenario occurred only in test circumstances. Figure 2 shows the entire algorithm

and Figure 3 presents the control panel of the GVAP.

Validation of the program

For validation of the program we used 14 CGM curves of clinical patients, and further

6 self-edited curves were evaluated for MAGE control with the aim to analyze extreme

Table 1 Definition of the calculated parameters of the GVAP

Name Formula Symbols

Avg. AUC-H 1
T

Z T

0
G tð Þ−TRHð Þdt; IF G tð Þ > TRH

G (t) - Glucose–time function

Target Range-High - TRH

Avg. AUC-H - Average exposure to hyperglycemia.

Avg. AUC-H = 10 mg/dL means that during the
observation, on average the CGM glucose exceeded
TRH limit by 10 mg/dL [23].

Avg. AUC-L 1
T

Z T

0
TRL−G tð Þð Þdt; IF G tð Þ < TRL

G (t) Glucose - time function

Target Range-Low - TRL

MAGE +/−

P λ
n IF λ > v

λ = amplitude of each glucose increase or decrease
(nadir to peak / peak to nadir)

n = number of observations

ν = meaningful excursion (ME)MAGE avg.

EF

MAGE+/−: mean of the upward/downward excursions

MAGE avg.: average of MAGEs

EF sum of all excursions [15,24,16]

MODD

Xtk

t¼t1
BGt−BGt−1440j j

k

BG: Blood Glucose

k = number of observations where there is an
observation at the same time 24 h (1,440 min)
ago [25,26]

CONGA (n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPtk
t¼t1

Dt−�Dð Þ2
k−1

r
k = number of observations where there is an
observation n × 60 min ago

where Dt = BGt-BGt-m and
m = n × 60, in our program n = 1 [27,26]

�D ¼
Ptk

t¼t1
Dt

k
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situations. CGM measurements were carried out at the PICU of the 1st Department

of Pediatrics, Semmelweis University, Budapest, between 2011 February and 2013

December. Our study was approved by the local research ethical committee. The CGM

data were collected by CareLink® Professional/Personal software in .xls file format. For

Figure 1 An example of a CGM curve with its MAGE curve. A represents a CGM curve. In some cases from
the first glucose concentration (G (t1)) both the glucose maximum (G (t) MAX) and the minimum glucose
values (G (t) MIN) did not exceed the meaningful excursion (ME = 45 mg/dL) [G (t) MAX - G (t1) and
G (t1)-G (t) MIN≤ME], however, the entire curve contained MEs. On these occasions the program set the
new starting point - in this case G (t) MAX. B shows the MAGE curve.
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the analysis 48-hour long periods were selected, where the Avg. AUC-H and/or the

Avg. AUC-L was > 0. Missing data was not an exclusion criterion, data interpolation

was permitted.

Glucose variability parameters calculated by our software were compared with the re-

sults of validated programs: 1. CareLink® Professional/Personal (Avg. AUC-H/L, PATR,

PBTR), 2. GlyCulator (CONGA, MODD). For MAGE (MAGE avg.) calculation manual

method was applied, as reference. Manual calculation followed the definition of MAGE

by Peter Baghurst [15]. In our study instead of standard deviation (SD) of the sample

we counted excursions exceeding 45 mg/dL in both directions. However, GVAP can

calculate the SD of the glucose data as well, and the user can overwrite the default

value of ME (45 mg/dL) when required for certain research purposes.

Statistical analysis

The accuracy of the GVAP was evaluated by using correlation and Bland-Altman ana-

lysis, Pearson or Spearman correlation, as appropriate. Statistical analysis was carried

out by SPSS® 13.0 software (SPSS® Inc., Chicago, IL, USA) and Microsoft® Excel 2010.

User documentation

In addition to the source code we also provided a brief user documentation (Additional

files 1 and 2), which had been tested by two independent users (DZ, CsH) without any

knowledge of the GVAP or MATLAB®.

Figure 2 The algorithm. A and B show the entire algorithm of the Glycemic Variability Analyzer Program.
The MAGE algorithm was evolved based on a previous report by Baghurst et al. [15].
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Results and discussion
CGM system

An average of 3.3 calibrations per 24 hours (range: 2–6) were performed in the selected

48-hour long periods. At the implantation site of the platinum sensor no undesirable

events (bleeding, irritation, decubitus and infection) occurred.

Verification of the program

Among the 14 patients 7 had missing data. The average amount of missing data per

24-hour recordings was 1.9 (range: 0–9), and glucose flow contained 286.1 (range:

279–288) points daily, on average. Correlation analysis between GVAP and validated

programs was performed. Pearson analysis (MAGE avg.), Pearson analysis after loga-

rithmic transformation (Avg. AUC-H, PATR) and Spearman analysis (Avg. AUC-L,

PBTR) were applied. Correlation coefficient was above 0.99 for all measured parameters

(Table 2). Compatibility of the methods was investigated by Bland-Altman analysis that

found outliers (above 2 SD) for 5 variables (Table 3, Figure 4).

User documentation

Taking into account the feedback from the examiners the user documentation was ad-

equately edited. Without any previous MATLAB experience the initial executions of

the program lasted approximately 30 minutes. The duration of further examinations

carried out with the Windows® Standalone Application was 1 minute, on average. The

most frequent practical default was identified as typing mismatch, when selecting the

excel-file to run the analysis.

Clinical implementation

For clinical consideration we demonstrate two CGM curves from a patient with severe

symptomatic hypoglycemia (glucose < 40 mg/dL) due to dumping syndrome. With the

Figure 3 The control panel of the program. The control panel allows the users to set the required target
range and meaningful excursions. The coherent results are in separate boxes. The user documentation
provides more details.
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usage of conventional fractionated oral feeding, CGM revealed several hypoglycemic

episodes. On the basis of CGM results, continuous feeding regime was introduced,

resulting in significantly decreased variability metrics of the glucose curve (Figure 5). In

the above case the CONGA seemed to be the most representative parameter that eval-

uated the glucose difference hour by hour, being sensitive for the short term variability.

Its value decreased from 74 to 20 mg/dL after adjustment of treatment as rapid excur-

sions were significantly reduced. Furthermore, in a group of 21 PICU patients we have

found significant correlation of the mortality outcome index PRISM III and of MAGE

avg. (r = 0,55; p < 0.05, unpublished observation by our group).

Discussion
The last decade emerged an expanding interest on glucose homeostasis disorders in pa-

tients needing intensive care. Recently, glucose variability has been pointed out to play

a significant role in intensive care morbidity and mortality [12,13]. However, there has

been lack of evidence of which variability parameters could best characterize the sever-

ity of illness. The demand for more accurate clinical follow up (incorporating more fre-

quent glucose sampling) has led to the introduction of several glucose variability

parameters. The CONGA and MODD were usually derived from CGM measurement,

while others such as Avg. AUC, MAGE, PATR/PBTR, SD and glycemic lability index

(GLI) not. Initially for research purposes, then for clinical monitoring it is essential to

create a complex tool of parameters that could be analyzed by a suitable program. Our

aim in the present study was to unify the most commonly used parameters of glucose

variability in a freely accessible application. Prior to further research practices or intro-

duction to clinical use, we felt it necessary to describe the development process and

publish the first pilot test results.

In 2001 Van den Berghe demonstrated that tight glycemic control (TGC) reduced

mortality in critically ill cardiac surgical patients, however, subsequent investigations

did not confirm this benefit consequently [17-19]. The major disadvantage of TGC is

the more frequent occurrence of hypoglycemia, nevertheless, TGC, based on STAR-

Liege or SPRINT protocol could diminish the prevalence of hypoglycemic episodes

[20,21]. In the future the routine use of CGM with sophisticated glucose-insulin algo-

rithms might contribute to safer implementation of TGC among critically ill pediatric

and adult patients. However, further research is needed to identify more factors, which

can potentially contribute to the elevated glucose variability. CONGA refers mainly

to the within day variability, while MODD reflects on the interday variability. MAGE,

Avg. AUC-H/L and PATR/PBTR provide general interpretation on the glycemic

Table 2 Validation results of the GVAP

Method Parameter N GVAP (r values) p level

GlyCulator CONGA 14 1 p < 0.001

MODD 14 1 p < 0.001

Medtronic® Avg. AUC-H 14 1 p < 0.001

PATR 14 0.995 p < 0.001

Avg. AUC-L 14 0.999 p < 0.001

PBTR 14 0.992 p < 0.001

Manual MAGE avg. 20 0.997 p < 0.001
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homeostasis. GVAP can give explanation to so far unresolved queries, e.g.: (1) how do

the most common critical care diagnostic or therapeutic procedures [e.g. bronchoscopy,

necrectomy in burned patients, epidural analgesia] affect the short term glucose vari-

ability (CONGA); (2) how do the perioperative fluid and feeding management influence

the MODD, (3) what common pitfalls of the different intravenous insulin protocols can

be justified (MAGE, Avg. AUC-H/L, PATR, PBTR).

On comparison of our program with two existing programs for glucose variability

analysis we have found a good correlation between the results of all tested parameters.

Literature data varies slightly with regards to MAGE definitions and programming of

MAGE calculation. Therefore, we applied manual calculation based on Baghurst’s def-

inition and not compared GVAP with the MAGE calculations of GlyCulator.

Agreement between the reference programs and GVAP was investigated with Pear-

son, Spearman correlation and Bland-Altman analysis. We have found strong correl-

ation, but outliers were identified in 5 variables. In the MAGE avg. group we observed

Table 3 Descriptive statistics on the accuracy of the GVAP

Reference Difference (Reference-GVAP )

N Max. Min. Mean SD Max. Min. Mean SD Outliers

CONGA (mg/dL) 14 43 9 20.4 11.6 0.7 -0.1 0.1 0.2 1

MODD (mg/dL) 14 90.7 11.3 29.5 20.7 1.7 -0.5 0.2 0.5 1

Avg. AUC-H (mg/dL) 14 27.5 0 3.4 7.6 0.4 0 0 0.1 1

PATR (%) 14 48.5 0 8.8 14.2 0 -1.6 -0.5 0.6 0

Avg. AUC-L (mg/dL) 14 3.3 0 1.3 1.8 0.1 0 0 0.1 0

PBTR (%) 14 24.5 0 14 15 1.9 -0.2 0.3 0.6 1

MAGE avg. (mg/dL) 20 128.3 0 78.9 33.1 9.3 -5.1 0.2 2.4 2

Difference: difference of the reference measurement and GVAP, Outliers: number of points out of 2 SD. Time of the
observation was 48 hours.

Figure 4 Bland-Altman plot. Average glucose concentration versus MAGE (Manual) – MAGE (GVAP)
glucose difference.
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two considerable alterations (9,3 and 5,1 mg/dL) between GVAP and manual calcula-

tion, as reference, due to error of manual calculation (Figure 4). It seemed that the ana-

lysis of high variability recordings were more reliable and simple with GVAP, compared

to the traditional manual way. As for the other variables outliers were not clinically signifi-

cant despite of the statistical difference. Possible explanations for the differences were data

loss at unit conversion (mmol/L to mg/dL), missing values, or linear interpolation.

It should not be ignored that both the interpolation and the calibration may have sig-

nificant effect on glucose variability. In case of missing data the linear interpolation can

falsely decrease the variability as a result of the filling process of the unknown points.

The calibration is the other crucial point. For example, if there is a 50 mg/dL difference

Figure 5 Sample days of a patient with dumping syndrome. A, during conventional feeding the patient
presented severe hypoglycemic episodes. B, after introduction of continuous enteral feeding the glycemic
variability parameters and severity of hypoglycemia reduced. The sample curves represent a 24-hours long
period; the dots are the calibration points.
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between the reference and the subcutaneous glucose concentration, the CGM proces-

sor evaluates the calibration value and the parallel subcutaneous glucose concentration,

then corrects the actual subcutaneous concentration. In this theoretical case it may

cause a sudden step in the subcutaneous glucose curve, resulting in falsely elevated glu-

cose variability. These phenomenon unfortunately accompany CGM measurements,

however, their frequency could be reduced by more frequent calibration [22]. In view of

the above, in clinical trials the researchers should calculate the general accuracy of the

CGM with Pearson correlation, Clarke’s error grid and Bland-Altman analysis. More-

over, the number of interpolated data should also be added. GVAP gives the total num-

ber of glucose concentrations and the numbers of interpolated data (Figure 3). In one

section up to 21 glucose values can be interpolated.

Several advantages of the program designed by us can be highlighted. The adjustable

threshold can be useful in the investigation of various clinical questions; on the other

hand the graphical representation of the glucose curves can help the interpretation of

the variability parameters. Minor limitations can also be spotted: GLI was not taken

into account during the developing process, GVAP does not give any information about

the accuracy of the CGM measurement, and the installation of MATLAB software is

required for running of GVAP.

Conclusions
Our program provides a user-friendly option for researchers who require detailed ana-

lysis of the continuous glucose monitoring glucose curve. In the future, this application

may help to present more detailed information on glucose homeostasis disorders of pa-

tients in the intensive care setting.

Additional files

Additional file 1: Contains the full source code of the GVAP (GlyVar_Script.zip - http://sourceforge.net/
projects/glyvariab/files/?source=navbar).

Additional file 2: Contains the user documentation (User documentation for GVAP.doc - http://sourceforge.net/
projects/glyvariab/files/?source=navbar).

Abbreviations
Avg. AUC-H: Average area above the target range; Avg. AUC-L: Average area below the target range; avg.: Average;
CGM: Continuous Glucose Monitoring; CGM-GUIDE: Continuous Glucose Monitoring-Graphical User Interface for
Diabetes Evaluation; CONGA: Continuous Overall Net Glycemic Action; EF: Excursion Frequency; GLI: Glycemic Lability
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