
RESEARCH ARTICLE

Distributed Storage Algorithm for Geospatial
Image Data Based on Data Access Patterns
Shaoming Pan1,3, Yongkai Li2, Zhengquan Xu1,3*, Yanwen Chong1

1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan
University, Wuhan, Hubei, China, 2 Computer School of Wuhan University, Wuhan, Hubei, China,
3 Collaborative Innovation Center for Geospatial Technology, Wuhan, Hubei, China

* xuzq@whu.edu.cn

Abstract
Declustering techniques are widely used in distributed environments to reduce query

response time through parallel I/O by splitting large files into several small blocks and then

distributing those blocks among multiple storage nodes. Unfortunately, however, many

small geospatial image data files cannot be further split for distributed storage. In this paper,

we propose a complete theoretical system for the distributed storage of small geospatial

image data files based on mining the access patterns of geospatial image data using their

historical access log information. First, an algorithm is developed to construct an access

correlation matrix based on the analysis of the log information, which reveals the patterns of

access to the geospatial image data. Then, a practical heuristic algorithm is developed to

determine a reasonable solution based on the access correlation matrix. Finally, a number

of comparative experiments are presented, demonstrating that our algorithm displays a

higher total parallel access probability than those of other algorithms by approximately 10–

15% and that the performance can be further improved by more than 20% by simulta-

neously applying a copy storage strategy. These experiments show that the algorithm can

be applied in distributed environments to help realize parallel I/O and thereby improve sys-

tem performance.

Introduction
Declustering is one of the most effective methods in the field of parallel I/O and can be widely
used to improve system performance by splitting and distributing large files among multiple
storage nodes to speed up access to data. The Google file system (GFS) is a well-known distrib-
uted file system in which each large file is divided into several blocks of fixed size. Each block
(approximately 64 megabytes (MB)) is then stored in multiple different storage nodes to
enhance concurrency and system performance [1]. Moreover, a number of other similar sys-
tems, such as RAID (Redundant Array of Independent Disks) systems [2] and geospatial infor-
mation systems (GISs) [3], have been developed, all of which use declustering technologies for
the distributed storage of large files.
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However, it is clearly imperative that we be able to store not only large files but also small
files. With the rapid development of geospatial information technology and the widespread
application of the Digital Earth system [4], an increasing number of small image files, most less
than 64 MB in size, are being produced [5].

In fact, large amounts of small geospatial image files are currently stored in the Digital Earth
system. Based on the multi-resolution pyramid approach to global satellite remote sensing
images, remote sensing images are divided into image files of different resolution ratios, and
each file is typically less than 64 MB. Examples of such systems include World Wind, Google
Earth, Microsoft TerraServer [6], and the NASA Earth Observing System [7]. World Wind
divides remote sensing images into small files, and these files are typically less than 1 MB in
size [8,9]. Google Earth performs a similar type of processing; it splits files into slightly larger
files, but the file sizes remain below 64 MB [10,11].

However, conventional declustering technologies, which play an important role in the field
of distributed storage, still encounter difficulties in handling large numbers of small files [12],
and further research on this issue is required [13]. To this end, a technology for the merging of
small files has been proposed [14]. In the field of data storage, merging technologies are pri-
marily used to reduce the numbers of files and the size of their metadata. HDWebGIS (WebGIS
based on Hadoop) [15] is one typical example that is based on a proposed merging method
that organizes and merges small files that are associated with similar spatial locations together
into a single large file and then creates an index that is used to access the individual small files
through middleware. Likewise, with the diffusion and application of cloud technology, the
Hadoop distributed file system (HDFS), as one of the most prominent distributed file systems
currently extant, must solve the problem of small file storage. Dong divides the small files that
are stored on HDFS into three categories: structurally related, logically related and independent
files [16]. Structurally related or logically related small files can be merged together and stored
as a single large file to improve the performance of HDFS. Unfortunately, however, the cited
study provides only a basic criterion for such merging; no specific method for merging small
files based on their relationship is proposed.

Most previous studies have considered only the combination of small files into larger ones,
followed by the distributed storage of each merged large file base on RAID technology. In fact,
however, a particular block must be found and read from storage when a certain small file is
requested, and this block cannot be prefetched when many requests for small files that belong
to different merged files are issued simultaneously. Moreover, this process cannot be run in
parallel, even when the small files are stored in the same storage node.

Given these challenges, this paper employs several strategies to organize and store small
geospatial image data files into storage nodes in an attempt to optimize I/O parallelism perfor-
mance in distributed environments. In this context, it is very important to understand, analyze
and estimate the relationships among geospatial image data files that have a high probability of
being requested simultaneously. To accomplish this goal, we analyze the data access patterns
(DAPs) of geospatial image data files, which imply the relationships among these files, and
then propose a new method of distribution on these DAPs to ensure that related small files
(files with a higher probability of being requested simultaneously) are stored in different stor-
age nodes to facilitate parallel requests.

Overview of DAPs
DAPs are widely used in various fields for prefetching and caching [17]. James designed and
implemented a Probability Graph (PG) to automatically predict future accesses based on
DAPs, thereby greatly reducing the required cache size [18]. Thomas also proposed a
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Partitioned Context Modeling (PCM) approach, which was developed based on graph-based
modeling, to improve the accuracy of predicting the next file to be accessed [19].

Hotmap is a typical DAP analysis system that is designed to analyze geospatial data access
patterns (G-DAPs) based on the historical access log information produced by a GIS after a
long period of operation (the server records the information related to geospatial image data
files, such as the file name and image location, in chronological order when end users (clients)
request image files from the server) [20]. According to the Hotmap model, a G-DAP satisfies
Zipf’s law [21], which is described by Eq (1):

Fi ¼ y=ia ð1Þ
where Fi is the number of accesses to the ith geospatial data file, θ is a constant and α is a
parameter of Zipf’s law. Zipf’s law indicates which geospatial data files will be accessed more
frequently. A number of advancements in caching and prefetching based on G-DAP utilization
have been reported [22–24].

As mentioned by Thomas, DAPs can also be used to organize and adjust disk layouts [19].
Therefore, a new algorithm must be developed to solve the problem of small file storage in GIS
applications.

Distributed Storage of Geospatial Data Based on DAPs
By analogy with the Random distributed Storage Algorithm (RSA) and the Location-based dis-
tributed Storage Algorithm (LSA), which have been employed by several researchers [15,16],
we refer to the algorithm proposed in this paper as the Access Pattern-based distributed Stor-
age Algorithm (APSA). Table 1 summarizes the different storage strategies used in these
algorithms.

3.1 Description of APSA
We first provide some basic definitions of objects used by the algorithm.

First, let F = {f1, f2,. . ., fN} be the set of natural files, which includes all of the original small
geospatial image data files (for brevity, we henceforth refer to small geospatial image data files
simply as small files). Each element in F is labeled with a natural number [1, N], and N is the
total number of small files. The natural numbers [1, N] can then be defined as a natural file vec-
tor Io = (1,2,� � �, N) based on the natural sequence of these files.

Let C = {c1, c2,. . ., cm} denote the set of storage nodes, wherem is the total number of all
storage nodes. For simplicity, each of the N small files is stored inm storage nodes on average
(an uneven grouping can be transformed into an even grouping by copying select small files
that have higher request rates; this process is demonstrated in section 4, and a related experi-
ment is detailed in section 5.4).

Finally, let ~F ¼ f~F 1; ~F 2; . . . ; ~Fmg be the set of grouped storage files. Each group of small
files will be stored in one of the storage nodes, and each small file in F will belong to one and

only one group. In other words, the element ~Fi ¼ f~f i1; ~f i2; . . . ; ~f ing in ~F is a group of n small

Table 1. Storage strategies used by various algorithms.

Algorithms Storage strategies

RSA Randomly

LAS Based on their locations

APSA Based on their relationships

doi:10.1371/journal.pone.0133029.t001
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files that will be stored in the ith storage node, ci. Here,m × n = N, and n is called the storage
length.

Furthermore, for 8~F i 2 ~F (i 2 [1,m]), if we assume that the small files ~f i1; ~f i2; . . . ; ~f in are
labeled by ti1, ti2,� � �, tin in F and are denoted by Ti = (ti1, ti2,� � �, tin) (tij 2 [1, N], i 2 [1,m], j 2
[1, n]), then T = (T1, T2, � � �, Tm)T = (tij)m×n defines the map from set F to set ~F , and each Ti is a

restriction of T on ffti1 ; fti2 ; . . . ; fting. Therefore, the map T : F ) ~F denotes a storage distribu-

tion rule that defines how the small files are assigned to storage nodes on average. If the storage
distribution vector is denoted by I=(t11,t12,� � �,t1n,t21,t22,� � �,t2n,� � �,tm1,tm2,� � �,tmn), then the
APSA key can be converted to construct an N × N permutation matrix, B, that satisfies the con-
dition I = IoB. We can then achieve our goal of distributing all small files across all storage
nodes on average.

3.2 Access correlation matrix
To construct B (or to find an optimal T), we must analyze the historical access log information
[20], which reflects the small files’ access patterns and can be used to compute the relationships
among the small files.

Let R ¼ ffa1 ; fa2 ; . . . ; faMg denote the chronological access sequence of small files that is

obtained from the historical access log information recorded by the server of the Digital Earth
system. The vector A = (a1, a2,� � �, aM) can then be defined as the geospatial data file access vec-
tor. Here,M is the total number of accesses to all small files in F, and the natural number ai 2
[1, N] (i = 1,2,� � �,M) denotes the label of the ith requested file from F (i.e., ai = k (i = 1,. . .,M),
which indicates that the ith requested file is fk (k 2 [1, N])).

Because the storage length is n, we divide A into several n-element sub-vectors; then, A can
be written as A = (S1, S2, � � �, Sl), where Si = (ai1, ai2, � � �, ain) (aij 2 [1, N], 1� i� l, 1� j� n) is
an n-element sub-vector in A and l is the total number of n-element sub-vectors. The set of all

sub-vectors of vector length n is denoted by S = {Sk: k 2 [1, l]}. For 8Sk 2 S, let ~Sk ¼
fak1; ak2; � � � ; akng denote the set of all n elements of sub-vector Sk. We can then define the
access correlation function for all small files as shown in Eq (2); this function represents the
relationship between any pair of small files:

RSk
ði; jÞ ¼ 1 i 2 ~Sk; j 2 ~Sk; i 6¼ j

0 Others
1 � i � N; 1 � j � N; 1 � k � l ð2Þ

(

Here, RSk
ði; jÞ denotes the access correlation between fi and fj during a short period of access

time. Therefore, RSk
ði; jÞ indicates whether the geospatial data files fi and fj are both likely to be

requested within a short period of time. If RSk
ði; jÞ = 1, then we consider that fi and fj have one

storage conflict, and we define the following:

RSði; jÞ ¼
Xl

k¼1

RSk
ði; jÞ 1 � i � N; 1 � j � N ð3Þ

RS(i, j) represents the total number of storage conflicts between fi and fj. A larger value of RS(i,
j) indicates a higher level of storage conflict or a higher total concurrent access probability
(TCAP) between the small files fi and fj, corresponding to a higher probability that these files
will be assigned to different storage nodes to achieve a higher total parallel access probability
(TPAP) in the case that they are requested simultaneously.
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For all small files in F, we can obtain an N × Nmatrix based on S as follows:

RS ¼ ðRSði; jÞÞN�N 1 � i � N; 1 � j � N ð4Þ

Here, RS is called the access correlation matrix and represents the concurrent access correla-
tions among the small files. This matrix has the following properties (as proven in the
appendices):

1. RS is a symmetric matrix, i.e., RS
T = RS;

2.
XN
i¼1

XN
j¼1

RSði; jÞ ¼ ðn� 1ÞM � KS ;

3. PðfiÞ ffi
XN
j¼1

RSði; jÞ=
XN
i¼1

XN
j¼1

RSði; jÞ ¼
XN
j¼1

RSði; jÞ=KS i 2 ½1;N �; and

4. PSðfjjfiÞ ffi RSði; jÞ=
XN
j¼1

RSði; jÞ ¼ KSRSði; jÞ=PðfiÞ i; j 2 ½1;N �.

Here, P(fi) is the concurrent access probability of fi in S, and PS(fj|fi) is the conditional prob-
ability that fj will belong to the same S to which fi belongs.

3.3 Mathematical model of APSA
Let Ti = (ti1, ti2, � � �, tin) be an arbitrary row vector in T. Then, according to Ti, we can store n

geospatial data files ~Fi ¼ f Ti
¼ ffti1 ; fti2 ; . . . ; fting in the ith storage node ci. If any file in fTi is

requested, then fTi is requested (in other words, the storage node ci is busy and is unable to

serve any other clients), and PðfTiÞ denotes the concurrent access probability of the set of small

files fTi . On the basis of the 3rd property of RS stated in section 3.2, we can define the following:

PðfTiÞ ¼
Xn

j¼1

PðftijÞ ¼
Xn

j¼1

ð
XN
k¼1

RSðtij; kÞ=KS Þ ¼
1

KS

Xn

j¼1

XN
k¼1

RSðtij; kÞ i 2 ½1;m� ð5Þ

Similarly, ifHðfTiÞ denotes the conditional probability of the set of small files fTi (represent-

ing the probability that if any file in fTi is requested, the other files in fTi will be requested within

a short period of time), then on the basis of the 4th property of RS stated in section 3.2, we can
define the following:

HðfTiÞ ¼
Xn

j¼1

½Pðftij jfTiÞ
Xn

p¼1

Pðftip jftijÞ�

¼
Xn

j¼1

½

XN
k¼1

RSðtij; kÞ
Xn

j¼1

XN
k¼1

RSðtij; kÞ

Xn

p¼1

RSðtij; tipÞ

XN
k¼1

RSðtij; kÞ
� ¼

Xn

j¼1

Xn

p¼1

RSðtij; tipÞ

Xn

j¼1

XN
k¼1

RSðtij; kÞ
i 2 ½1;m�

ð6Þ

Eqs (5) and (6) define the relationship among RS, the access patterns and the concurrent

access probabilities of the small files. For simplicity, let PðRS;TiÞ ¼
Xn

j¼1

XN
k¼1

RSðtij; kÞ and
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HðRS;TiÞ ¼
Xn

j¼1

Xn

p¼1

RSðtij; tipÞ; then, Eqs (5) and (6) can be rewritten as follows:

PðfTiÞ ¼ PðRS;TiÞ=KS ð7Þ

HðfTiÞ ¼ HðRS;TiÞ=PðRS;TiÞ ð8Þ

Furthermore, according to the definition of the map T : F ) ~F , the TCAPHð~FÞ can be
defined as in Eq (9):

Hð~FÞ ¼
Xm
i¼1

Pð~F iÞHð~F iÞ ¼
Xm
i¼1

PðfTiÞHðfTiÞ ð9Þ

By combining (7), (8) and (9), we obtain the following:

Hð~FÞ ¼
Xm
i¼1

PðRS;TiÞ
KS

HðRS;TiÞ
PðRS;TiÞ

¼ 1

KS

Xm
i¼1

HðRS;TiÞ ¼
1

KS

HðRS;T Þ ð10Þ

where

HðRS;TÞ ¼
Xm
i¼1

HðRS;TiÞ ¼
Xm
i¼1

Xn

j¼1

Xn

p¼1

RSðtij; tipÞ ð11Þ

Eq (10) describes the explicit relationship between the objective function Hð~FÞ and both RS

and T. As mentioned above, the goal of APSA is to achieve parallel access to geospatial data
files, which requires a TPAP that is as high as possible. Therefore, the goal of APSA can be

restated as the attempt to obtain the lowest possible TCAP, and we can conclude that Hð~FÞ is
proportional to H(RS, T). Therefore, the mathematical model of APSA can be defined as fol-
lows:

T	 ¼ arg min
T

ðHðRS;TÞÞ ð12Þ

If we obtain an optimal T according to Eq (12), then we also obtain an optimal B. However,
this is a typical NP-hard problem, and the traversal search method is impractical because of the
extremely large amount of calculation time required. Therefore, the goal of the algorithm must
be modified to obtain a reasonable solution. This modification is discussed in the next section.

Practical Heuristic Algorithm for APSA

According to the APSA description given in section 3, the orders in and among the groups of ~F
are meaningless, and thus, the underlying problem is typical of unordered average combina-
tions. Therefore, we can develop a heuristic algorithm to obtain an optimal T using Eq (12).
This process includes 3 main steps: 1) obtain F from the historical access log information, 2)
generate RS using the algorithm proposed in section 3.2 and reorder RS to reduce the scale of
the search; and 3) employ a locally approaching search method to find the optimal T.

4.1 Preprocessing of F
Large numbers of small files are stored in the Digital Earth system, and therefore, we must pro-
cess a large collection of natural files. For example, for the 90-meter-resolution global terrain
data files from the Shuttle Radar Topography Mission (SRTM90), the length of Io will be
3,538,890 and the size of RS will be 3538890×3538890. However, as indicated by the geospatial
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DAP, only approximately 20% of these files will be requested [21–23]. Therefore, we only need
to process a subset of the data, which allows us to reduce the size of RS.

To satisfy the requirements for storing all N small files inm storage nodes on average, we
can copy certain geospatial data files that have higher request rates and assign new labels to the
copies (to expand the scale of F and Io).

4.2 Preprocessing and reordering of RS

The historical access log information is produced by the Digital Earth system after a long
period of operation, and from this information, we can obtain A. Then, we can generate RS

using the algorithm described in section 3.2.
To reduce the search scale, we must concentrate non-related elements together to allow the

storage distribution rule T to be rapidly sought and obtained. Thus, we can reorder RS using
the RCM ordering algorithm, which was developed based on the CM ordering algorithm [25–
26]. We can then obtain a new P, in which most of the nonzero elements are concentrated
along the diagonal.

The objective of APSA is to generate grouped geospatial data files and to ensure that these
groups have the smallest possible storage conflict, meaning that the value of RS is zero or near
zero. To employ the RCM ordering algorithm to concentrate the non-related elements along
the diagonal, we must first preprocess RS in two steps: 1) denote the largest value of RS by Rmax

and search for and obtain Rmax from RS, and 2) 8RS(i, j), set RS(i, j) = Rmax – RS(i, j) (i< j� N).
Afterward, we can use the RCM algorithm to reorder RS, export the resulting permutation P

in reverse order and then export the corresponding matrix PS (the standard RCM algorithm is
used in this paper; therefore, a description of this process is omitted).

4.3 Determination of the optimal T using a locally approaching search
algorithm
Several steps are required to obtain the optimal T:

1. Initialize T = (0)m×n and set k = 1.

2. Let i be the label of the first row in PS; then, a non-zero length can be obtained: non_zero_len
= max{|i − j|, Aij 6¼ 0}.

3. If non_zero_len� n, then for every j 2 [1, n], let T[k][j] = P(j). Then, delete the n top rows
of PS and delete the first n elements of P. Go to 7).

4. If non_zero_len> n, then take the upper triangular matrix UTMm = {Aij, 1� i� j� non_-
zero_len}. Let X = (x1, x2,� � �� � �, xn) denote an n-dimensional temporary vector and initialize
x1 = 1, i1 = 1, and j = 2. Set the basis vector of the local search to B = UTMm(i1).

5. While j� n, search for the largest element B(ij) in B. Then, the label of the jth file is ij; set
xj = ij. Update the basis vector of the local search as follows: B = B + UTMm(ij). Set B(ij) =
-KS and j = j + 1.

6. For 1� j� n, set T[k][j] = P(xj). Then, delete the n rows of PS that are defined in the tempo-
rary vector X and delete the corresponding n elements of P.

7. Set k = k + 1. If k�m, then return to 2); otherwise, stop.

For the optimal T, n small files are included in each group, i.e., the ith group includes small
files labeled as T[i][1], T[i][2], $#x2026;$#x2026;, T[i][n], and the relationship among the files

Geospatial Data Storage Based on Data Access Patterns
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in a given group is as weak as possible. Therefore, the ith group of files can be stored in the ith
storage node ci.

Experimental Results and Analysis
To evaluate the performance of the algorithm, several tasks were experimentally investigated:
1) selecting the geospatial image dataset to be stored in distributed storage nodes; 2) finding
the optimal T based on the historical access log information recorded by the Digital Earth
server [20] using the heuristic algorithm proposed in section 4; 3) requesting the same dataset
simultaneously based on other historical access log information; and 4) computing the TPAP
performance and comparing it with those of LSA and RSA.

We define the TPAP performance as follows:

TPAP ¼

XL

i¼1

Xm
j¼1

xij

L�m
ð13Þ

where L×m denotes the total number of requests for small files over a long period and xij
denotes whether the jth storage node is accessed during a short period. Specifically, 8i 2 [1, L],
if cj is accessed during this short period, then xij = 1; otherwise, xij = 0. Therefore, the value of
TPAP cannot exceed 1.

The simulation algorithm was implemented using Microsoft Visual C++6.0, and the
sequences were accessed and processed using MATLAB R2009a (Version 7.8.0.347) in accor-
dance with the rules specified in section 4. All datasets are summarized in Table 2. Two types
of datasets were included: geospatial image datasets produced by our own simulation system
[27] and an INS (Instructional Workload) dataset obtained from the University of California at
Berkeley [28].

5.1 Contrasting experiments on different algorithms
From the 30-m-resolution global terrain data files from the Shuttle Radar Topography Mission
(SRTM30), we selected 10,000 geospatial image data files from a given spatial region for use as
the experimental dataset. All available sequences of access log information for the considered
SRTM30 datasets are summarized in Table 2 (category 1 and category 2). We determined the
optimal T using the first access log information file in category 1, and we then assessed the per-
formance of the various algorithms using the second log file in category 1. Fig 1 presents the
results of the comparison at different scales ofm.

Table 2. The datasets used in this analysis.

Category Dataset Number of access sequences Dataset sizea Access sequence lengthb

1 SRTM30 5 10,000 180,000~204,000*

2 SRTM30 10 2,000~10,000 180,000~204,000*

3 SRTM90 2 10,000 200,000*

4 Landsat7 2 10,000 200,000*

5 INS 3 20,000 244,339~712,605**

aAll data were relabeled with natural numbers ranging from zero to the length of the dataset.
bEach access sequence recorded only the labels of the data in chronological order.
* As stated in section 4.1, only of the 20% files will be requested.
** All files will be requested.

doi:10.1371/journal.pone.0133029.t002
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As shown in Fig 1, APSA and LSA exhibit comparable performance in a small-scale envi-
ronment, especially whenm is less than 8. In this case, only a small number of storage nodes
are available, and most of the small files must be stored in the same storage node. Moreover,
the majority of clients will request small files according to their navigation paths [22–24], and
therefore, LSA, which stores small files in different storage nodes depending on their spatial
locations, can satisfy the requirements of parallel I/O.

For a larger number of storage nodes, however, APSA performs better than RSA or LSA,
especially whenm is larger than 22. The performance of APSA is higher than that of LSA by
approximately 10% and higher than that of RSA by approximately 15%, especially for a large
number of servers.

Furthermore, we tested the performance of APSA using all log files in category 2, which rep-
resented various scales of small files. Fig 2 displays the results of the comparison for various
values of N.

As shown in Fig 2, as the scale of the geospatial data increases, the performance of LSA
exhibits almost no change, and the performance of RSA becomes considerably more unstable
and fragmented and even decreases to some extent. By contrast, the performance of APSA
improves, exhibiting a sustained increase. The experimental results show that the proposed

Fig 1. Comparison of TPAP results at various scales ofm (N = 10,000).

doi:10.1371/journal.pone.0133029.g001
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algorithm offers greater advantages in a large-scale environment (i.e., for a large number of
storage nodes).

5.2 Experiments using different types of access log information
It is important to determine whether an algorithm can always provide high performance. To
assess the adaptability of the algorithm, we selected four typical access log information files rep-
resenting the access behavior of end users (clients) at different times. As in the first experiment,
we used the first log file from category 1 to determine the optimal T and then used the 2nd
through 5th log files of category 1 to test the performance of APSA. The experimental results
are shown in Fig 3A–3D).

As shown in Fig 3, comparable performances were obtained when different access log files
were used to obtain a feasible solution. In addition, the rate of change in TPAP did not exceed
6%. Thus, this experiment demonstrated that APSA exhibits stable parallel access performance
under different conditions.

Fig 2. Comparison of TPAP results for various values ofN (m = 10).

doi:10.1371/journal.pone.0133029.g002
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5.3 Experiments using different geospatial image datasets
To assess the adaptability of the algorithm to different geospatial image datasets, we selected
three typical geospatial datasets: SRTM30, SRTM90 and Landsat7 ETM+[29]. In this experi-
ment, the first two log files from categories 1, 3 and 4 were used.

Let TPAPSRTM 30 be the performance indicator for SRTM30, let TPAPSRTM 90 be the perfor-
mance indicator for SRTM90, and let TPAPLandsat7 be the performance indicator for Landsat7.
Then, the TPAP change rate (CCAR) can be calculated using Eq (14). The experimental results
are shown in Fig 4.

CCARSRTM 90 ¼ ðTPAPSRTM 90 � TPAPSRTM 30Þ=TPAPSRTM 30

CCARLandsat7 ¼ ðTPAPLandsat7 � TPAPSRTM 30Þ=TPAPSRTM 30

ð14Þ
(

As shown in Fig 4, CCAR exhibits essentially no change, and the highest rate of change does
not exceed 0.4% and thus is generally negligible. Therefore, the experiment shows that APSA
demonstrates broad adaptability to different geospatial datasets.

Fig 3. Comparison of TPAP results for different access log files (N = 10,000) (each plot, A-D, represents a different access log file).

doi:10.1371/journal.pone.0133029.g003
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5.4 Experiments based on redundant data storage
To simplify data processing and enhance the efficiency of the algorithm, we assume (as noted
in the Appendix (Property 2)) that any given small file will not be repeatedly requested within
a short period of time. Nevertheless, in actuality, certain small files do exist that are repeatedly
requested within short periods of time.

However, most storage solutions adopt a copy storage strategy for data security; examples of
such systems include RAID, which copies and stores each datum to backup disks, and RADOS
(Reliable, Autonomic Distributed Object Store), which manages a number of copies on
demand [30].

Inspired by this approach, we can copy select geospatial data files that have higher request
rates, and then we can store them in different storage nodes with new labels. Let CR be the
ratio of the number of copies to the total number of geospatial data files; next, a larger CR obvi-
ously implies the generation of more copies. Based on the results of the first experiment, Fig 5
displays a comparison between the original APSA and APSAb, for which CR is 6.3% (the geos-
patial data files with the highest access rates are each copied only once). Furthermore, compari-
sons between the original APSA and variants of APSAb with different CRs are shown in Fig 6.

Fig 4. The adaptability of APSA to different datasets (N = 10,000).

doi:10.1371/journal.pone.0133029.g004
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As shown in Fig 5, the performance of APSAb is essentially identical to that of APSA for
small numbers of storage nodes, especially whenm is less than 8. In this case, only a small
number of clients can access the system simultaneously (for simplicity, we assume that one
storage node can provide service to only one client at a time; in fact, all clients share the
resources of the storage node, including CPUs and bandwidth, when they simultaneously
request service from the same storage node, but the server may require the same amount of
time to serve all end users simultaneously as it does to serve each client sequentially). There-
fore, there is only a very small probability that more than one client will attempt to access the
same geospatial data file simultaneously, and therefore, the copy storage strategy will not func-
tion effectively. However, as the scale of the system increases, the performance improves con-
siderably, especially for anm greater than 22; indeed, the performance can be improved by
more than 20%.

Obviously, larger CRs mean more copies, and more copies result in a higher probability that
different clients can simultaneously access the same geospatial data files in parallel. Fig 6 shows
the corresponding improvement in performance as CR increases. However, achieving continu-
ous improvement in the system performance is difficult once CR reaches a certain size, because
some of the small files will be simultaneously accessed at certain times and accessed in a

Fig 5. The performance improvement achieved using the copy storage strategy (N = 10,000,CR = 6.3%).

doi:10.1371/journal.pone.0133029.g005
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staggered manner at others. This situation cannot be fully resolved using a copy storage strat-
egy alone, and it can only be partially resolved through algorithm optimization to obtain a bet-
ter solution than that identified by the method introduced in section 4. Such algorithm
optimization will be a focus of our future studies.

5.5 Adaptability experiments based on another type of dataset
In this section, we consider another typical type of log file, namely, INS (Instructional Work-
load) files, to test the adaptability and flexibility of our solution. The INS files used in this
experiment were obtained from separate distributed file system application environments at
the University of California at Berkeley. Roselli [28] traced two groups of Hewlett-Packard
series 700 workstations running HP-UX 9.05. INS data were collected from twenty machines
in these groups, which were located in laboratories for undergraduate classes.

As in the experiments presented in section 5.1, we selected 20,000 files for use as the experi-
mental datasets and employed different access log information files to obtain the optimal T
and to simulate file access. Thus, we were able to compute TPAP at various storage node scales.

Fig 6. The performance improvement achieved using the copy storage strategy with variousCRs (N = 10,000).

doi:10.1371/journal.pone.0133029.g006
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All log files for the INS dataset are summarized in Table 2 (category 5). Fig 7 presents the
results of a comparison between APSA and RSA on these files (LSA was not used because there
was no location relationship among the INS files).

As shown in Fig 7, APSA demonstrates higher performance than does RSA (by approxi-
mately 18%) when applied to this type of general dataset. However, INS datasets include not
only small files but also several large files. Therefore, when end users (clients) access these large
files, they will occupy storage node resources for a longer time, and therefore, the performance
of APSA will decline sharply (as shown in Fig 8). Nevertheless, the performance of APSA is
still higher than that of RSA, by approximately 10%. Furthermore, if we ignore accesses to
large files, where LR is the ratio between the minimum length of the ignored sequences and the
total sequence length, then the results are as shown in Fig 9 for various LRs. From this figure, it
is evident that the performance of APSA can be effectively improved by increasing LR. Recall
that, as mentioned in section 1, declustering technologies can be used to satisfy the require-
ments of parallel I/O in distributed environments; therefore, hybrid storage strategies are
required to satisfy the requirements for both small and large files. The development of such a
hybrid strategy will be a focus of our future investigations.

Fig 7. Adaptability experiment based on the INS dataset (N = 20,000).

doi:10.1371/journal.pone.0133029.g007
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Conclusions
In this paper, we investigated the challenges associated with the distributed storage of small
files and proposed a complete theoretical system for distributing small geospatial data files for
storage. First, we discussed the patterns of access to geospatial data files and created a theoreti-
cal mathematical model to express the relationship among geospatial data files. Then, we devel-
oped a practical heuristic algorithm to find an acceptable optimization solution.

To verify the developed mathematical model, a series of comparative experiments was per-
formed, as described in section 5. All of these comparative experiments demonstrate that our
method can achieve a higher TPAP than other algorithms can (by approximately 10–15%) and
that its performance can be further improved by more than 20% using a copy storage strategy.
Most importantly, all experiments show that APSA can satisfy the requirements for the storage
of a large amount of small files in a distributed environment.

Although our algorithm exhibits higher performance than any of the other tested strategies,
it is based solely on historical access log information; there is no provision for dynamically
updating the strategies, even when the hotspots change (i.e., when the relationship among the
small files changes) [31]. Thus, the establishment of a rapid and efficient updating mechanism

Fig 8. Experimental results for another access log file (N = 20,000).

doi:10.1371/journal.pone.0133029.g008
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that considers and tracks such changes in hotspots is worth further investigation. Moreover,
hybrid storage strategies that satisfy the requirements for the storage of both large and small
files should also be further investigated.

However, our paper only considers how small geospatial image data files can be separately
stored into different storage nodes to improve system I/O performance. The nodes also include
many very tiny files, some of which must be merged together to avoid storage fragments. One
such example is sport activity files, which include a significant amount of information such as
GPS locations, distance, speed, calories, and heart-rate; these files are widely used to optimize
athletes’ training [32]. Due to differences in duration and GPS distance, the sizes of sport activ-
ity files will vary substantially, as some may only require a few kilobytes (KB), while others may
reach a size of 10 MB [33]. Thus, a type of integrated storage strategy that can satisfy the
requirements of very tiny files, small files and large files should also be considered.

Fig 9. The performance improvement at various LRs (N = 20,000).

doi:10.1371/journal.pone.0133029.g009
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Appendix: Proof of the Properties of RS

Property 1
From Eq (3), it is clear that RSk

ði; jÞ ¼ RSk
ðj; iÞ. Then, we can obtain the following:

RSði; jÞ ¼
Xl

k¼1

RSk
ði; jÞ ¼

Xl

k¼1

RSk
ðj; iÞ ¼ RSðj; iÞ ðA� 1Þ

Therefore, RS(i, j) = RS(j, i); that is, RS
T = RS, indicating that RS is a symmetric matrix.

Property 2
Several studies have shown that a chronological access sequence of small files, R, follows a Mar-
kov process; such processes are widely used in predictive models [21, 34–35]. In accordance
with this model, A = (a1, a2,� � �, aM) can be treated as a Markov chain with a state space I0 = [1,
N], where the number of states is N. Moreover, based on the G-DAPs, we can assume that the
service system has been running for a sufficiently long time before we obtain its access log
information R that the distribution of the small files in R is stationary. Therefore, A can be
regarded as a stationary Markov chain.

LetP = {πi: i 2 I0} denote the stationary distribution of the pattern of access to F = {f1, f2,. . .,
fN}, let P = (pij)N×N denote the transition matrix, and let pij = P(ak+1 = j|ak = i) (i, j 2 I0, k 2 [1,

M]) be the (i,j)th element of P. We then haveP =PP. Thus, 8j 2 I0, we have pj ¼
XN
i¼1

pipij,

and πi exhibits no relationship with its location. Therefore, for any set ~S of all sub-vectors Sk, 8i
2 I0, the probability that the ith state appears in ~S is as follows:

Pði 2 ~SÞ ¼ 1� ð1� piÞn ðA� 2Þ

Because of the large number of small files stored in the system, N>> 1, and thus, πi << 1.
Therefore, we find that (1 − πi)

n 
 1 – nπi, and thus, Eq (A-2) can be rewritten as follows:

Pði 2 ~SÞ ffi npi ðA� 3Þ

Let Pð1Þði 2 ~SÞ denote the probability that the ith state appears in ~S only once; then, Pð1Þði 2
~SÞ can be defined as in Eq (A–4):

Pð1Þði 2 ~SÞ ¼ C1
npið1� piÞn�1 
 npi � nðn� 1Þp2

i ðA� 4Þ

If Pð>1Þði 2 ~SÞ denotes the probability that the ith state occurs in ~S more than once, then we
obtain the following:

Pð>1Þði 2 ~SÞ ¼ Pði 2 ~SÞ � Pð1Þði 2 ~SÞ ðA� 5Þ

By combining (A-2), (A-3) and (A-4), we find that

Pð>1Þði 2 ~SÞ ¼ nðn� 1Þp2
i ðA� 6Þ

Based on the above analysis, πi<< 1, and thus, Pð>1Þði 2 ~SÞ is negligible. Therefore, the one
broad conclusion that can be drawn from this result is that all elements of ~S are different; this
conclusion is consistent with actual observations of G-DAPs, which indicate that a given small
file will not be requested repeatedly within a short period of time. We can then write the
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following:

XN
i¼1

XN
j¼1

R~Sði; jÞ ¼
X
i;j2Sk

R~Sði; jÞ ¼ 2C2
n ¼ nðn� 1Þ ðA� 7Þ

Therefore,

XN
i¼1

XN
j¼1

RSði; jÞ ¼
XN
i¼1

XN
j¼1

Xl

k¼1

RSk
ði; jÞ ¼

Xl

k¼1

XN
i¼1

XN
j¼1

RSk
ði; jÞ

¼
Xl

k¼1

nðn� 1Þ ¼ nðn� 1Þl ¼ ðn� 1ÞM
ðA� 8Þ

Eq (A–8) shows that the sum of all elements in RS is a constant that is equal to (n-1)M.
Therefore, if we let KS = (n − 1)M, then we can write the following:

XN
i¼1

XN
j¼1

RSði; jÞ ¼ ðn� 1ÞM � KS ðA� 9Þ

Property 3
According to the analysis presented for Property 2 and Eq (A–3), 8i 2 [1, N] and k 2 [1, l], we
can write the following:

PðfiÞ ¼ pi ¼
1

n
P

Sk2S
ði 2 SkÞ ðA� 10Þ

Let ~Si ¼ fSk : k 2 ½1; l�; i 2 Skg and let Ci ¼ cardð~SiÞ; then, the frequency of Sk 2 ~Si in S is
as follows:

�P
Sk2S

ðSk 2 ~SiÞ ¼ Ci=l ðA� 11Þ

Note that
XN

i2Sk ;j¼1

RSk
ði; jÞ ¼ n� 1 and

XN
i=2Sk ; j¼1

RSk
ði; jÞ ¼ 0. Then, we can write the following:

XN
j¼1

RSði; jÞ ¼
XN
j¼1

Xl

k¼1

RSk
ði; jÞ ¼

Xl

k¼1

XN
j¼1

RSk
ði; jÞ

¼
Xl

i2~Sk ;k¼1

ðn� 1Þ ¼ Ciðn� 1Þ
ðA� 12Þ

Therefore,

Ci ¼
1

n� 1

XN
j¼1

RSði; jÞ ðA� 13Þ

According to the assumption described with regard to Property 2, namely, that the geospa-
tial information service system has been running for a sufficiently long time, we know that l is
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also sufficiently large and that P
Sk2S

ði 2 SkÞ ffi �P
Sk2S

ðSk 2 ~SiÞÞ. Therefore, we find that

P
Sk2S

ði 2 SkÞ ffi �P
Sk2S

ðSk 2 ~SiÞÞ ¼ Ci=l ¼
1

ðn� 1Þl
XN
j¼1

RSði; jÞ ðA� 14Þ

Thus,

PðfiÞ ¼
1

n
P

Sk2S
ði 2 SkÞ ffi

1

nðn� 1Þl
XN
j¼1

RSði; jÞ

¼ 1

ðn� 1ÞM
XN
j¼1

RSði; jÞ ¼
1

KS

XN
j¼1

RSði; jÞ
ðA� 15Þ

Eq (A–15) shows that the access probability of one small file is proportional to the sum of
the elements in the corresponding row (column) of RS.

Property 4
According to Eq (A–10), we can also write the following:

PSðfjjfiÞ ¼
P

Sk2S
ðj 2 Skji 2 SkÞ

n� 1
¼

P
Sk2S

ðj 2 Sk; i 2 SkÞ
ðn� 1ÞP

Sk2S
ði 2 SkÞ

ðA� 16Þ

As in the proof of Property 3, because of the large value of l, we have
P
Sk2S

ði 2 Sk; j 2 SkÞ ffi �P
Sk2S

ði 2 Sk; j 2 SkÞ. Using the same analysis presented for Eq (A–11), we

can write the following:

�P
Sk2S

ði 2 Sk; j 2 SkÞ ¼
RSði; jÞ

l
ðA� 17Þ

In combination with Eqs (A–14) and (A–17), Eq (A–16) can be rewritten as follows:

PSðfjjfiÞ ¼
P

Sk2S
ðj 2 Sk; i 2 SkÞ

ðn� 1Þ P
Sk2S

ði 2 SkÞ
¼ RSði; jÞ

l
1

ðn� 1ÞP
Sk2S

ði 2 SkÞ

¼ RSði; jÞ
ðn� 1Þl

ðn� 1ÞlXN
j¼1

RSði; jÞ
¼ RSði; jÞXN

j¼1

RSði; jÞ

¼ KSRSði; jÞ=PðfiÞ

ðA� 18Þ
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