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Abstract: In this study, the authors consider a peak-to-average power ratio (PAPR) reduction for orthogonal frequency-
division multiplexing systems based on the decomposition of the set of subcarriers in subsets of subcarriers, denoted
resource blocks, each one weighted by a different complex factor. They present a new iterative sphere-geodesic
descent method for obtaining these weighting factors so as to minimise the PAPR of the transmitted signals. This
method, which they term geodesic descent method, efficiently makes use of the Riemannian structure of the power
constraint. The authors’ performance results show that the proposed technique provides good trade-off between the
PAPR reduction and the bit error rate performance, for both uncoded and coded scenarios.

1 Introduction

Orthogonal frequency-division multiplexing (OFDM) schemes [1]
are the key modulation for broadband wireless communications
over severely time-dispersive channels. However, OFDM signals
have high envelope fluctuations and high peak-to-average power
ratio (PAPR), which leads to amplification difficulties since linear
amplifiers with high backoff are required, which reduces the
amplification efficiency [2]. Since the amplifier backoff is
lower-bounded by the PAPR, it is desirable to reduce the PAPR of
OFDM signals so as to improve the amplification efficiency.

Over the last decades, countless techniques were proposed to
reduce the PAPR of OFDM signals from the simpler clipping
techniques [3–6] to more complex techniques involving different
levels of optimisation [7, 8]. Selected mapping (SLM) and partial
transmit sequences are among the most popular techniques [9–11].
However, generalisation of these techniques to multiple-input
multiple-output (MIMO) systems is not straightforward. Combined
precoding and PAPR reduction for multiuser MIMO systems have
been addressed in [12]. Siegl and Fischer introduced in [12] a
combination of the simplified SLM [13] with lattice-reduction
aided Tomlinson-Harashima precoding [14].

In general, the PAPR minimisation of OFDM signals is a complex
optimisation problem. To overcome these difficulties, convex
optimisation methods were recently proposed as an efficient tool
for reducing the PAPR of OFDM signals [15–19]. Although
allowing substantial complexity gains, these techniques are still
too complex for practical implementations, since the number of
subcarriers is usually in the order of several hundreds, which
means an optimisation problem with a large number of variables.

A promising technique to reduce the optimisation complexity was
proposed in [20] where an OFDM block with a large number of
subcarriers is divided into resource blocks (RBs), each one with
several subcarriers. A different complex weighting is assigned to
each RB and these weighting factors are optimised to minimise the
PAPR of the transmitted signals, either employing a constant

modulus approach or a steepest descent algorithm. However,
Khademi and Veen [20] considered only uncoded OFDM schemes.

In this paper, we consider the PAPR reduction of OFDM schemes
and we employ RBs’ weighting approach of [20]. We propose a
geodesic descent method (GDM) which, in sharp contrast to [20],
generates a sequence of feasible precoding weights, not requiring
projections onto the feasible set and feasibility checks. Moreover,
different techniques are compared taking into account
frequency-selective channel and appropriate channel coding
schemes.

The remainder of this paper is organised as follows. The design of
precoding weights for PAPR reduction is formulated as an
optimisation problem in Section 2. Our approach for solving this
optimisation problem is described in Section 3. The performance
results are presented in Section 4. Section 5 is concerned with the
conclusions of this paper.

2 System model

Similar to [20], a MIMO OFDM/A downlink scenario with one base
station using Mt antennas is considered. An N-subcarrier OFDM
block is transmitted from each antenna. The N subcarriers are
divided into three disjoint sets: data subcarriers, pilot subcarriers
and guard subcarriers, with cardinalities Nd, Np and Ng,
respectively, so that Nd +Np + Ng = N. To prevent intersymbol
interference at the receiver caused by multipath delay spread in the
radio channel, the Nd +Np useful subcarriers are surrounded by
two guard bands with zero energy. Each RB contains pilot
subcarriers which are used for synchronisation and channel
estimation. The data and pilot subcarriers are grouped into M RBs,
each of them comprising Nb = (N−Ng)/M subcarriers.

In what follows, we present the MIMO transmit model in the
frequency domain. Without loss of generality, in the remainder of
this paper, only a single time block is considered. The transmit
sequence in the qth RB, X(q), is given by X (q) = WH

(q)D(q), where
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W(q) is an orthonormal Mt ×Mt beamforming matrix and D(q) is a
Mt × Nb data matrix. Let X = [X(1), X(2), …, X(M )] be the
beamformed data matrix in the frequency domain. Then, we can
write

X = WHD,

where W = [
WH

(1), W
H
(2), . . . , W

H
(M )

]H
is the beamforming matrix

and D∈CMMt×N is a block-diagonal matrix with D(q) at the
position of the qth block. See [20] for more details. The

corresponding time-domain MIMO-OFDM transmit data model
can be obtained by taking the inverse fast Fourier transform
(IFFT), i.e.

Y = XFH = WHB,

where FH ∈CN×N denotes the IFFT matrix, B =DFH and Y contains
the transmit OFDM sequences [20].

The PAPR is defined as the ratio of the peak power of the signal to
its average power. Mathematically, the PAPR of an OFDM block Y

Fig. 1 Geodesic descent method
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can be written as

PAPR(Y ) = aNt

vec(Y )
∣∣ ∣∣∣∣ ∣∣2

1
vec(Y )
∣∣ ∣∣∣∣ ∣∣2 , (1)

where vec (Y) stacks all columns of Y on the top of each other (from
left to right), Nt =NMt and α is defined as the average transmit power
per sample. Actually, αNt denotes the total power in the data matrix
D [20].

Precoding is an effective way for reducing the PAPR [15, 19, 20].
The idea behind the approaches in [15, 19, 20] is to design a diagonal
precoding matrix V to transform Y to a new signal T with lower
PAPR. More precisely, the precoding matrix V [ CMMt×MMt is
applied to the data matrix D to generate the new MIMO-OFDM

transmit matrix

T = WHVDFH.

If w = diag(V), the PAPR reduction problem is formulated as

minimise
w [ CMMt

vec(T)
∣∣ ∣∣∣∣ ∣∣21 (2)

subject to

vec(T)
∣∣ ∣∣∣∣ ∣∣2 = aNt. (3)

The operator diag(V) creates a vector containing the elements of the
principal diagonal of V. It is not difficult to show that the PAPR
reduction problems (2) and (3) are equivalent to

minimise
w [ C

MMt
Aw| || |21 (4)

subject to

‖Aw‖2 = aNt , (5)

where A = (�B ◦W )H, �B denotes the complex conjugate of B and °
denotes the column-wise Kronecker product. For more details see
[20]. It is straightforward to see that the optimisation problems (4)
and (5) can be rewritten as

minimise
s [ C

MMt
A(AHA)

−1/2
s

∣∣∣ ∣∣∣∣∣∣ ∣∣∣2
1

(6)

Fig. 2 Geodesic s̃( k)( t) and a tangent vector d on a smooth manifold M.
Tangent vector lies in the tangent space at a point s̃( k)

Fig. 3 CCDF of the PAPR with different algorithms
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subject to

‖s‖2 = aNt , (7)

where s = (AHA)1/2w. The PAPR optimisation frameworks (6) and
(7) result in a non-convex optimisation problem since the
constraint (7) is non-convex [21]. As most non-convex problems,
(6) and (7) are NP-hard and, hence, difficult to solve [21].

3 Proposed GDM

In this section, we present an iterative method to generate precoding
vectors which transform the OFDM symbols in Y to a signal T with
lower PAPR. Without loss of generality, in this section, for the sake
of presentation, we set αNt = 1. The problem defined in (6) and (7) is
a high-dimensional, non-linear, non-convex and non-smooth min–
max optimisation problem. Problems (6) and (7) require the
optimisation of a non-smooth function over the smooth manifold
S2MMt−1 (the symbol Sn−1 denotes the unit sphere in Rn). The
method, which we call a geodesic descent method, is explained in
Fig. 1 in more detail.

Let s(k) be the kth iterate (the initialisation s(0) is generated
randomly). Note that the power constraint ‖s(k)‖2 = 1, can
be equivalently written as

‖s̃(k)‖2 = 1,

where

s̃(k) =
<{s(k)}
ℑ{s(k)}

[ ]
[ R2MMt ,

and < ·{ } and ℑ ·{ } denote the real and imaginary parts of a complex
number, respectively. In step 3, s̃(k) is used to construct the vector
s̃(k). In step 4, the index set A of ‘active’ entries i is identified, i.e.
A = {i: cost− fi ≤ e}, where cost = ||A(AHA)

−1/2
s(k)||21, fi(s(k)) =

|(A(AHA)−1/2s(k))i|
2, (p)i denotes the ith entry of the vector p and e is

arbitrary small positive constant. In step 7, we check if there is an
descent direction d simultaneously for all functions fi with i [ A. If
it exists d such that ∇T fia (s(k))d , 0, for 1≤ ia≤MMt, a= 1, 2, …, z,
where z denotes the number of active functions fi, we can try to
improve the objective function locally. To solve the optimisation
problem in step 7 we need to determine the gradient ∇ fia . In the
Appendix, we give its respective expression. This descent direction
d is searched within the tangent space at s̃(k), and consists in
solving a linear program. To ensure that d belongs to the tangent
space, the constraint dTs̃(k) = 0 in step 7 is introduced. The constraint
−12MMt×1 ≤ d ≤ +12MMt×1 bounds the solution of the linear
program in step 7. If there is no such descent direction, the algorithm
stops. Otherwise, an Armijo search along the geodesic s̃(k)(t) which
originates from s̃(k) in the direction d is performed; see Fig. 2. This
search determines s̃(k+1) and the loop is repeated.

A geodesic is nothing, but the analogue of a straight line in the
Euclidean space to a curved manifold [22]. In other words, a
geodesic is the shortest path between two points on a curved
surface. The constant e in step 2 determines the complexity of the
optimisation problem in step 7; if e is too small the convergence
of the GDM is slow in general, whereas too big e implies
increased complexity of the linear program.

From the expression for the geodesic in step 10, it is easy to see
that we move along the surface of S2MMt−1, i.e. ‖s̃(k)(t)‖2 = 1, for
∀k and ∀t. Hence, in sharp contrast to [20], a sequence of feasible
precoding weights is generated, not requiring projections onto the
feasible set and feasibility checks.

Fig. 4 Uncoded BER performance for an AWGN channel
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4 Performance results

In this section, computer simulations are performed in order to
compare the performance of the new approach with the
state-of-the-art RB’s weighting approaches [20]. We focus on a
10 MHz WiMAX system [23], although our techniques could easily
be extended to other scenarios. In this system, a RB extends across 2
OFDM symbols in time, containing 24 data symbols and 4 pilots.
The number of RBs is M = 60, the number of subcarriers is N = 1024,
the number of guard subcarriers is Ng = 184 (92 at each end of the
band) and, consequently, Nb = 14. Unless stated otherwise, the data
and pilot subcarriers are generated from quadrature phase shift
keying and the oversampling factor is assumed to be 4.

We use the complementary cumulative density function (CCDF)
or the PAPR to evaluate the PAPR-reduction potential of different
techniques. This CCDF is the probability that an arbitrary OFDM
block has PAPR greater than a given threshold. The new
algorithms described above, denoted here by ‘GDM’, will be
compared with the steepest descent constant modulus algorithm,
denoted here by ‘SDCMA’ and unit circle constant modulus
algorithm, denoted here by ‘UC–CMA’, both proposed in [20].
The number of iterations, kmax, is set to 500 and e is set to 0.1.
For each block, the beamforming matrices W(q), q = 1, …, M, are
chosen as the right singular vectors of randomly generated channel
matrices. We also present the performance of the new algorithm
with clipping, called here ‘C–GDM’, for different values of the
clipping level Amin. In this case, if the absolute value of (w)i is
smaller than Amin, it is set to Amin, while maintaining the phase
(clearly, having Amin = 0 reduces to the ‘unclipped GDM’).

Fig. 3 shows the PAPR’s CCDF for different algorithms. From
Fig. 3, we can see that all four methods reduce the PAPR. We also
observe that GDM outperforms significantly the existing approaches.

Furthermore, when compared to SDCMA and UC–CMA, we note
that GDM has sharper cutoff, demonstrating reduced variation in the
PAPR of our optimised OFDM blocks. Fig. 3 also presents the effect
of the number of transmit antennas on the PAPR performance. We
observe that the PAPR performance of our approach, in huge contrast
to SDCMA and UC–CMA, improves with the increase of Mt. This
implies that the new approach exploits additional degrees of freedom
offered by an extra transmit antenna more efficient than the existing
approaches. Fig. 3 further illustrates the effect of the clipping on the
PAPR performance of the new approach. As expected, when the
clipping is performed, the PAPR increases as the clipping level Amin
increases; an increase of Amin from 0 to 0.4 and 0.6 leads to increases
in the PAPR of 1.5 and 3 dB, respectively.

Clearly a proper selection of the weights w allows substantial gains
in the PAPR. However, if the absolute value of (w)i have fluctuations
this leads to performance degradation, in a similar way to channel
fading. To evaluate this performance degradation we study the bit
error rate (BER) with the different PAPR-reduction techniques.

Figs. 4 and 5 show the BER performance with different
PAPR-reduction techniques for both ideal AWGN and
frequency-selective multipath Raleigh fading channels. The BER
values are expressed as a function of Eb/N0, where Eb denotes the
average bit energy and N0 is the one-sided power spectral density of
the noise component. As expected, the performance is worse when
we have fluctuations on the absolute value of (w)i (i.e. for our GDM
algorithms and the SDCMA) than conventional OFDM and
UC–CMA (which have identical performance). In fact, the BER of
GDM and SDCMA in AWGN channels has a behaviour similar to
the BER of conventional OFDM and UC–CMA in frequency
selective fading channels. By performing the clipping in the
absolute value of (w)i we reduce their ‘inherent fades’, improving
the BER performance (the higher the clipping level the better the

Fig. 5 Uncoded BER performance for a frequency selective fading channel
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Fig. 7 As in Fig. 6, but as a function of the peak Eb/N0

Fig. 6 Coded BER performance for a frequency selective fading channel
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performance, although at the expense of increased PAPR, as shown in
Fig. 3). Actually, the situation is more serious than conventional fading
effects, since the equivalent fading is the combined effects of ‘inherent
fading’ effects associated with the weighting and channel fading.

It is well-known that appropriate channel coding schemes are very
effective to improve the performance of conventional OFDM schemes
in frequency selective fading channels. Therefore, we compared
different PAPR-reduction techniques in coded conditions. We
considered a rate-1/2, 64-state convolutional code, although similar
conclusions could be drawn with other coding schemes.

Fig. 6 shows the coded BER performance for frequency selective
fading channels with different PAPR-reduction techniques. Clearly,
our GDM methods outperform SDCMA for all values of Amin (even
without clipping). As expected, the BER performance improves as
we increase Amin, approaching the performance of conventional
OFDM and UC–CMA.

A simple way of combining the PAPR values on the BER
performance is by expressing the BER as a function of the ‘peak
Eb/N0’, given by ‘PAPR + Eb/N0 (dB)’. These results are depicted in
Fig. 7. From this figure, it is clear that GDM and UC–CMA have
similar performances, significantly outperforming conventional
OFDM and SDCMA, although the PAPR values of GDM are much
lower than UC–CMA, which simplifies the power amplification.

Regarding the computational complexity analysis, the situation is
the following. Whereas the computational complexity of SDCMA is
O(M ), the computational complexity of the method in [19] is O(M3);
see [19, 20], respectively, for the exact expressions. Hence, the
computational complexity of GDM is somewhat higher than that
of SDCMA, since GDM involves solving a linear program. At the
same time, the computational complexity of GDM is lower than
that of the method proposed in [19], since the latter involves
solving a convex quadratic optimisation problem.

5 Conclusions

We have addressed the PAPR reduction problem in OFDM systems.
The OFDM blocks are divided into several RBs with different
weighting factors which are selected to minimise the PAPR. We
formulated the PAPR minimisation problem as a constrained
non-convex optimisation problem. This problem was addressed by
a geodesic descent iterative method which efficiently exploits the
Riemannian structure of the constraint. The simulation results
showed that the new method outperforms significantly the existing
ones in terms of PAPR performance, thus providing a lower bound
on the achievable PAPR performance, while at the same time, the
proposed method replicates the existing methods in terms of the
overall BER performance. This shows the relevance of the PAPR
reduction tool presented herein.
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8 Appendix: calculating gradients

In this section, we calculate gradient to be used in step 7. Although
the function fi assumes complex valued entries, i.e. fi:C

MMt →R,
fi(s(k)) = |(A(AHA)−1/2s(k))i|

2, we shall treat fi as a function of the
real and imaginary components of s(k), i.e.

fi: R
MMt × RMMt � R,

fi <{s(k)}, ℑ{s(k)}
( )

= A AHA
( )−1/2

s(k)

( )
i

∣∣∣ ∣∣∣2.
It is straightforward to show that fi can be equivalently written as
fi(s(k)) = sH(k)Ãis(k), where

Ãi = AHA
( )−1/2

AHeie
T
i A AHA

( )−1/2
,

and ei denotes the ith column of the MMt ×MMt identity matrix. The
differential dfi, computed at the point s(k), is given by [24]

d fi = ds(k)

( )H
Ãis(k) + sH(k)Ãids(k) = <{(ds(k))H2Ãis(k)}.

Now, it is straightforward to identify the gradient. Hence, the
gradient is given by [24]

∇ fi s(k)

( )
= <{2Ãis(k)}

ℑ{2Ãis(k)}

[ ]
.
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