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Abstract: Exact throughput analysis of unslotted carrier sense multiple access (CSMA) protocols for channels supporting
multi-packet reception (MPR) is carried out. The protocols considered include (i) non-persistent and (ii) 1-persistent CSMA.
An adaptive non-persistent CSMA protocol for channels supporting MPR has been proposed and evaluated. A Markov
chain model with states representing the transmission period of the 1-persistent CSMA is used in the analysis.
Analytical results are validated using simulation. The authors show that for CSMA protocols supporting MPR the
throughput is crucially dependent on the carrier sensing delay.

1 Introduction

Traditional medium access control (MAC) protocols assume the
‘collision channel model’, wherein the packet reception is
successful only when there is exactly one transmission. Newer
physical (PHY) layer technologies such as multi-user multiple-
input multiple-output (MU-MIMO) supports multi-packet
reception (MPR), wherein more than one simultaneous
transmission can be successfully decoded at the receiver [1]. The
support for MU-MIMO and hence MPR in WLAN is now
available, through the recent WLAN standard IEEE 802.11ac. The
IEEE 802.11ac aims to provide throughputs of the order of gigabit
per second [2] supporting applications such as wireless display,
domestic HDTV distribution and large file transfer.

Traditional MAC protocols when used in channels supporting
MPR grossly underestimate the channel capacity leading to
inefficiency. Therefore MAC protocols need to be redesigned to
leverage MPR capability. For a survey of MAC protocols
supporting MPR please refer [3] and references therein. Recently
modifications to IEEE 802.11 DCF protocol to support MPR have
been proposed which include threshold based protocol [4],
Ack-aware protocol [5] and adaptive backoff scheme [6].

It is of fundamental importance to rederive the performance
metrics of the basic MAC protocols under MPR. Ghez et al. [7]
have introduced a MPR channel model and studied the stability
issues of slotted Aloha under MPR. Naware et al. [8] have studied
the stability and delay of finite user slotted aloha under a
symmetric MPR channel. Nagaraj et al. [9] derived an exact
formula for the throughput of Aloha for channels having MPR
capability K = 2 and approximate expression for the case of K > 2.
An exact expression for the throughput of pure Aloha valid for all
K has been derived in [10] using an order statistics based analysis.
Chan et al. [11] have analysed the performance of carrier sense
multiple access (CSMA) under MPR and has evaluated through
simulation the early specification of IEEE 802.11ac standard for
MPR enabled MU-MIMO capable PHY layer. Further
enhancements to IEEE 802.11ac protocols to support QoS through
adaptive backoff mechanism leveraging the MPR nature of
channel have been proposed [12].

In [13] Chan and Berger proposed a cross-layer solution for MPR
known as cross layer CSMA (XL-CSMA). Other previous studies on
CSMA over MPR channel either focused on closed feedback CSMA
[11, 14] or on slotted version of CSMA [15]. However the
performance analysis of classic CSMA protocols for channels
supporting MPR and an analytical expression for throughput valid

for arbitrary K (MPR capability) is still an open problem. The
purpose of the present paper is to fill this gap.

The paper is organised as follows. In Section 2 we provide the
system and the channel model adopted by us. Analysis of the
non-persistent CSMA (NP-CSMA) is taken up in Section 3. In
Section 3 an expression for the throughput of NP-CSMA is
derived and theoretical results are compared against simulation.
This is followed by a discussion on the maximum achievable
throughput of NP-CSMA. Subsequently an adaptive MPR
NP-CSMA protocol is proposed. The Section 4 is devoted to the
analysis of the 1-persistent CSMA (1P-CSMA). A Markov chain
whose states capture the transmission periods (TPs) of the
1P-CSMA is proposed. Throughput of the 1P-CSMA is obtained
by solving for the stationary state occupancy probability of the
Markov chain. Throughput is then computed and compared against
simulation results. Our conclusions are drawn in Section 5.

2 System and channel model

To proceed with the analysis we need to assume a channel model.
We consider the case of a multiple access system wherein all
nodes are in the reception range of each other. In the K-MPR
channel model [3], a node will be able to receive all packets
successfully as long as the number of packets transmitted in the
channel is not greater than the MPR capability ‘K’. In case the
number of packets transmitted in the channel exceeds K, collision
occurs and none of the transmitted packets can be received by the
node. In the generalised MPR channel model, the channel is
specified using a matrix whose elements indicate the probability of
reception for different cases [7]. In our work we follow the
K-MPR channel model with MPR capability K. The present work
does not consider the effect of ‘Capture’.

We assume the infinite user model. Let t = t denote the time of
arrival of the packet in consideration. Let the transmission time of
a packet be 1 unit. Let a be the carrier sensing delay, assumed to
be same for all nodes. That is, all other nodes will be able to sense
the start of a transmission by a given node only after a seconds
has elapsed. Let Λ be the aggregate arrival rate to the channel
(new as well as rescheduled). In accordance with the infinite user
model, the aggregate arrival process is assumed to be Poisson.

We now give an overview of the CSMA protocols before
analysing them. The basic idea behind carrier sensing protocols is
to ‘listen before transmit’. Variants of the CSMA protocols include
the non-persistent, p-persistent and 1-persistent [16]. Each of these
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protocols can operate in either slotted or unslotted mode. We confine
our analysis to then unslotted versions of CSMA protocols. In carrier
sensing protocols, collisions happen because of the delay in sensing
the channel. The carrier sensing delay is a manifestation of the finite
propagation delay of the signal. In general, throughput of carrier
sensing protocol will be functions of the carrier sensing delay.

3 Non-persistent CSMA

In this section, we derive the throughput of NP-CSMA under MPR.
In NP-CSMA, a node senses the channel and if the channel is free,
the packet is transmitted immediately. If the channel is not free, the
node reschedules the packet to a later random time.

3.1 Analysis of NP-CSMA with MPR

We extend the analysis of CSMA (for non-MPR) by Kleinrock and
Tobagi [17] to the MPR channel. In this renewal theoretic analysis,
first we identify the renewal intervals consisting of an idle period
followed by a busy period. In an idle period, no transmission goes
on in the channel. A busy period of NP-CSMA is defined as the
time in which the channel is occupied with one or more
transmissions followed by a duration a, wherein the idleness of the
channel is not yet sensed by the nodes. A typical way of
occurrence of the idle and busy periods is shown in Fig. 1. Since a
number of transmissions can begin immediately after t (the start
time of the first transmission) but within a (the duration of the
carrier sensing time), we can infer that there can be more than one
transmission in a single busy period. In such a case, a busy period
ends, when the last of such packets (initiated during the first a
seconds) finishes its transmission.

In a K-MPR channel model, a transmission is successful if the
number of additional transmissions initiated in the first a seconds of
the busy period (vulnerable interval), is less than or equal to K− 1
where K is the MPR capability of the channel. Therefore given a
transmission, the probability that it becomes successful is given by

Pr (success) =
∑K−1

i=0

(La)ie−La

i!
(1)

We note that the average duration of the idle time is (1/Λ), which
follows from the memory less property of inter arrival times. Let Y
be the random variable denoting the time interval between the
beginning of the first transmission (t) and the last arrival in the
interval (t, t + a).

The cumulative distribution function of Y, FY(y) = Pr(Y≤ y) is the
probability of no arrivals in time duration t + y to t + a. It is given by

FY (y) = exp [− L(a− y)] (2)

Also, the mean of Y, �Y is given by

�Y = a− 1

L
(1− e−aL)

The average duration of the busy interval is 1+ �Y + a (refer Fig. 1)
and is equal to

1+ 2a− 1

L
(1− e−aL)

A cycle (renewal interval) consists of consecutive idle and busy
times. The mean renewal cycle length is therefore

1+ 2a− 1

L
(1− e−aL)+ 1

L

Let the reward during the renewal cycle equal the number of
successfully transmitted packets in that cycle. The long run
expected reward equals the normalised throughput. The throughput
is normalised since the packet transmission time is unity. Then,
using renewal reward theorem [18], the normalised throughput is
given by

S =
∑K−1

i=0 (i+ 1) (La)ie−La
( )

/(i!)
( )

(1/L)+ 1+ 2a− (1/L)(1− e−aL)
(3)

3.2 NP-CSMA results and discussions

The throughput of NP-CSMA given by (3) is plotted in Fig. 2 for
different values of a with the MPR limit K = 4. The theoretical
computation was carried out in Mathematica [19]. To validate the
theoretical results, simulation of NP-CSMA was carried out using
Python [20]. Theoretical results are compared with that of
simulation results in Fig. 2.

We have used an ideal PHY layer model for the simulation. We
have simulated the aggregated arrival process as a Poisson process
following infinite user model. A packet transmission is successful,
whenever the number of transmissions overlapping with the
current transmission is less than or equal to the MPR capability K.
In an ideal PHY, all packets which do not encounter a collision
will be successfully received. In our simulation, we assume that all
nodes will be able to sense the channel after a delay of a. Finally,
the throughput is calculated as the number of successful packet
transmissions per unit time. All packets are of same length taking
1 unit of time for transmission. All these assumptions are in line
with the assumptions used in our theoretical derivations. The
simulation were done for 105 packet transmissions.

The simulation results are found to be in good agreement with the
theoretical results (Fig. 2). The results indicate that the throughput is
very sensitive to the value of a and exhibits a peak. As a is decreased

Fig. 1 Illustrating the state of the channel against time of NP-CSMA

Arrivals to a busy period are scheduled for transmission after a ‘random’ time
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from 1, the peak value of the throughput increases. Further the peak
occurs at higher values of arrival rate and flattens out for a tending to
zero. Following is the explanation for the behaviour of the
throughput of NP-CSMA for a MPR channel.

Assume for the sake of understanding that the carrier sensing
delay a can be varied. First consider the case of traditional
collision channel model with MPR capability K as 1. The
throughput of the NP-CSMA for K = 1 is maximised under the
following condition. As soon as a transmission is started in an idle
channel, all other nodes should differ their attempt to avoid a
collision. This would happen if the carrier sensing delay a is 0
(for all arrival rates). However for K > 1, the channel can support
concurrent transmissions. Hence throughput increases as a
increases from 0 for a given arrival rate. It reaches the peak when
the expected number of transmission in the interval (t to t + a) is
around K. Further for smaller values of a, the peak in throughput
should occur at higher arrival rates in order to make the expected
number of transmissions to be the fixed value K.

The exact value at which the peak in throughput occurs depends
upon the trade-off between the time wasted in idle period (1/Λ)

and the time wasted because of collision (mean packet duration).
However for a practical system a depends upon the nature of the
multi access communication system. Therefore for a given a
and MPR limit K the throughput curve exhibits a peak as the
arrival rate is varied. We can also note from the curves
corresponding to a = 1, 0.1, 0.01, 0.001 and 0.0001, that the peaks
in the throughput occur at higher and higher arrival rates for
systems with lower a.

3.3 Maximum achievable throughput of NP-CSMA

The expression for throughput given by (3) can be rewritten using
the incomplete Gamma function [21] as below

S = L eaL(aL+ 1)G(K, aL)− L(aL)K

(2a+ 1)L eaLG(K)+ G(K)
(4)

For K, the MPR capability being an integer the Gamma function is
given by Γ(K ) = (K− 1)!, and the incomplete Gamma function is
given by

G(K, aL) = (K − 1)! e−aL
∑K−1

i=0

(aL)i

i!
(5)

We are interested in finding the value of ‘a’ that maximises the
throughput for a given arrival rate and K. For the same, the
differential of S (given by (4)) with respect to a should be set to
zero. Since the differential is complex, finding the maximum of
the expression analytically and deriving a closed form expression
is difficult. Therefore we have used Mathematica [19] to compute
the maximum throughput which is plotted in Fig. 3.

Fig. 3a shows that for a given MPR limit the maximum achievable
throughput decreases with a, which is also exhibited as flattening of
the throughput curve as a tends to zero in Fig. 2. Fig. 3b shows that
the arrival rates at which the maximum throughput occurs decreases
exponentially with a. This means that if the carrier sensing delay is
small, the arrival rates need to be increased to obtain higher
throughput.

3.4 Adaptive MPR CSMA protocol

The insight obtained through the above discussions prompts us to
propose a CSMA protocol for MPR channels described as follows.
If an estimate of the arrival rate to the system is known the system

Fig. 2 Normalised throughput of NP-CSMA against normalised aggregate
arrival rate in packets per unit time on log scale for different values of carrier
sensing delay (a)

MPR limit is fixed at K = 4
Theory (lines) against simulation (symbols)

Fig. 3 Effect of carrier sensing delay on

a Maximum throughput
b Arrival rate at which throughput is maximum
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can calculate the value of a at which the throughput is maximised.
Call this as â. If this desirable value of vulnerable period â is
more than the physical carrier sensing delay a then we can
artificially extend the vulnerable period by allowing the nodes to
continue transmitting packets even after sensing the channel to be
busy for an additional duration of â− a.

The adaptive MPR CSMA protocol can be implemented as
follows. Let a = fk(Λ) denote a polynomial function which is the
best fit for the curve Λ against a (for a given K ) shown in Fig. 3b.
The protocol estimates the arrival rate Λ at regular intervals and
calculates the desired value of vulnerable period â as fk(Λ). If
â , a, then the transmission attempts are stopped as soon the
carrier is sensed to be busy, else the transmission is continued for
an additional duration of â− a. Our numerical computation has
shown that the function a = fk(Λ) is a one to one function, that
allows us to compute a unique value of â for the estimated arrival
rate Λ.

The throughput of adaptive CSMA and NP-CSMA are
compared in Fig. 4. Throughput is plotted against arrival rates
for three different values of carrier sensing delays. Adaptive
CSMA shows throughput improvements over NP-CSMA for
small values of a. The throughput improvements is more and is
over a larger range for the case of a = 0.01 than that of for the
case of a = 0.1. For the case of a = 1, with the given simulation
parameters adaptive CSMA performs same as NP CSMA as
adaptation is rarely invoked. This is because of the fact that the
physical carrier sensing delay a is more as compared with the
desired vulnerable period â over the range of arrival rate
considered.

4 1-persistent CSMA with MPR

In 1-persistent CSMA, nodes sense the channel before transmission.
If the channel is idle, the packet is transmitted right away.
1-persistent CSMA differs from NP-CSMA when the channel is
sensed to be busy. When the channel is sensed to be busy, in a
1P-CSMA, the node waits for the channel to be idle and then
transmit the packet as soon as the channel becomes idle.

4.1 Markov chain based analysis

We now analyse the 1P-CSMA under MPR conditions and derive its
throughput using a Markov chain model. The analysis of the
1P-CSMA proceeds by extending the analysis of Sohraby et al.
[22] for the non-MPR case of CSMA. The analysis proceeds by
identifying three kinds of TP as the states of a Markov chain. The
transition probabilities of the chain are computed, using which the
stationary probabilities as well as the throughput is computed. The
three kinds of TPs are

(i) An idle TP called Type 0.
(ii) A type 1 TP which follows the type-0 TP and starts with the
transmission of a single packet.
(iii) A type 2 TP follows an arrival into a busy channel. A type-2
transmission may begin with more than one packet transmission.

The types of TPs are illustrated in Fig. 5, which is explained in the
following. In Fig. 5 the busy period indicates the duration that is
sensed to be busy by all nodes. Initially we have an idle (type 0)
period. An arrival of a packet in an idle channel marks the
beginning of type 1 period which extends for a duration 1 + a,
after which the channel is perceived as idle by all nodes. Note that
the busy period (sensed as busy by all nodes) starts a time unit
after the beginning of the first transmission and ends a time after
the end of the last transmission. It so happens that after the first
arrival, there are no further arrival in the vulnerable duration a.
Further there are no arrivals in the first busy period. Therefore a
type 0 or Idle period starts after the first busy period.

The second arrival takes place when the channel is idle and it starts
transmitting. Since the third and fourth arrivals that occur in the
vulnerable period have not yet sensed the transmission of 2, they
also starts transmitting. The busy period starts from t2 + a. The
time of arrival of the last packet in the vulnerable period is
denoted as y and it is t4− t2 in the above case. The busy period
extends for a duration of 1 + a from the time of last arrival t4.
Arrivals numbered 5–8 occurs during the second busy period.
Therefore the second busy period is followed by a type 2 period.
The duration of type 1 and type 2 periods are 1 + Y + a.

Packets 5–8 will start their transmission as soon as they sense the
channel to be idle, that is at the end of the second busy period.
Packets 9–11 arriving during the vulnerable period would not
sense the transmissions made by 5–8 and hence they also start
their transmissions as soon as they arrive.

Fig. 4 Normalised throughput of adaptive CSMA with MPR: NP-CSMA
(lines) against Adaptive CSMA (symbols) for K = 4

Fig. 5 Illustrating the channel and time: 1P-CSMA

Arrivals to a busy period are scheduled for transmission at the end of the current TP
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The state transition diagram with the TPs as states is shown in
Fig. 6. We will shortly prove that Fig. 6 is a Markov chain. We
derive the transitions probabilities and the dwell time for each state
in the subsequent subsections. The results for non-MPR 1P-CSMA
[22] is valid here because apart from the effect on the probability
of collision, MPR and non-MPR CSMA protocols behave
identically.

4.2 State transition probabilities of the Markov chain

The transition probabilities of the chain are indicated in Fig. 6. From
the nature of the 1P-CSMA under MPR, the transition probabilities
can be derived as follows. Every idle period (type 0) is always
followed by a type 1 TP (ie) P01 = 1. It is also true that type 1 TPs
can occur only at the end of an idle period. Now during a type 1
or type 2 TP, if no arrival takes place it is followed by a type 0
TP. Let the probability of occurrence of this event be p0. If in TP1
or TP2 one or more packet(s) arrive (with a probability say p2),
they will find the channel to be busy and wait for the channel to
become idle and then transmit together. Thus the next TP may
start with the transmission of one or more packets (type 2).

Type 2, occurs whenever a packet arrives to a busy channel. In
other words it can happen only at the end of a busy period (Type
1 or 2). Also, for both type 1 and type 2 the next state depends
only on the number of arrivals in the current TP, which in turn
depends only on the length of the interval (Poisson process). Since
the length T1 and T2 are identically distributed we see that the
transition probabilities to any state does not depend on the current
state (for states 1 and 2). This justifies the Markovian nature of the
chain shown in Fig. 6. This observation greatly reduces the
number of transition probabilities to be found. Let us denote Pj0 as
p0 for ( j = 1, 2) and Pj2 as p2 for ( j = 1, 2), and use it in further
calculations of steady state occupancy probability.

4.3 Calculation of the steady state occupancy probability

Let us denote the steady state occupancy probabilities of states 0, 1
and 2 as π0, π1 and π2, respectively. From local balance equation of
the Markov chain, it immediately follows that

p1 = p0

p0 = p1p0 + p2p0

⇒ p2 =
1− p0
p0

p0

Normalising condition yields

p0 = p1 =
p0

1+ p0
(6)

p2 =
1− p0
1+ p0

(7)

Also for finding the transition probabilities, Sohraby et al. [22]
identifies busy states to be success or collision states. However for
MPR, even multiple transmissions does not necessarily result in
collision. Therefore we do not consider the success/collision
separately. Instead we condition on the value of the random
variable Y, without requiring the success/collision information.

From the cdf of Y given in (2), it follows that the pdf of Y is given
by

fY (y) = d(y) Pr (Y = 0)+ L e−L(a−y)

= d(y) e−aL + L e−L(a−y); 0 ≤ y , a
(8)

The random variable Y has a mixture distribution since it has
non-zero probability at Y = 0. p0 is given by

p0 = EY [ Pr {no arrival in(1+ y)}]

=
∫a
y=0

e−L(1+y)fY (y) dy

=
∫a
y=0

e−L(1+y)(d(y) e−aL + L e−L(a−y)) dy

We obtain

p0 = (1+ aL) e−L(1+a) (9)

Finally the equations of π0, π1 and π2 can be written as

p0 = p1 =
(1+ aL) e−L(1+a)

1+ (1+ aL) e−L(1+a)
(10)

p2 =
1− (1+ aL) e−L(1+a)

1+ (1+ aL) e−L(1+a)
(11)

4.4 Dwell time in different states of the Markov chain

Let E[Ti], be the average dwell time in the state i. First we note that,
E[T0], the average idle duration is (1/Λ). Now the duration of type 1
and type 2 periods (E[T1] and E[T2]) are identically distributed as it
depends only on Y. Thus we have

E[T1] = E[T2]

To find dwell times at each slot

E[T1|Y = y] = 1+ a+ y

⇒ E[T1] = 1+ a+ E[Y ]

Thus, we have, using value of E[Y] derived in Section 3.1

E[T1] = E[T2] = 1+ 2a− 1− e−aL

L
(12)

4.5 Throughput during different TPs

Let Ŝi indicate the throughput in the TP numbered i. In a type 0 TP,
during which the channel is idle, the throughput will be 0. That is
Ŝ0 = 0.

In a type 1 period, the throughput depends on the number of
successful packet transmissions during that period. Thus the
throughput is equal to the number of packets arriving in the

Fig. 6 Markov chain for the TP of 1-persistent CSMA Protocol with MPR
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vulnerable period (first a seconds) in case of success and zero for the
case of collision. If we denote the expected value of the number of
successful packets during a type 1 TP by Ŝ1, then we have

Ŝ1 =
∑K−1

i=0

(i+ 1)(aL)i
e−aL

i!
(13)

The case of a type 2 TP is different. Here, the number of
transmissions initiated is dependent on the number of arrivals that
has taken place during the previous TP. The length of the TP is
dependent on the value of the random variable Y (time of arrival
of the last packet in the vulnerable period). Now, if we condition
on the value of random variable Y = y for the preceding TP, it will
have a length of a + 1 + y. Any packet arriving in the interval of
length 1 + y, will be transmitted in the next TP (at the end of the
current TP).

Further the arrivals during the first a seconds of the type-2
transmission will also be transmitted in the same TP. Let i denote
the number of arrivals in the interval 1 + y, and let j denote the
number of arrivals in the vulnerable period a. In the example
illustrated in Fig. 5 the value of i = 4 (t5 to t8) and j = 3 (t9 to t11).
Note that i + j packets will be successful if i + j≤K. Type 2 period
is conditioned by the fact that there has to be at least one arrival in
the interval 1 + y. The throughput in a type-2 period, Ŝ2
conditioned by Y = y is given by

E[Ŝ2|Y = y] =
∑K
i=1

∑K−i

j=0

(i+ j)

Pr(i arrivals in 1+ y, j arrivals in a)

Pr(at least one arrival in 1+ y)

(14)

Since Poisson arrivals in non-overlapping intervals (1 + y) and a are
independent and having the same arrival rate Λ, we have

E[Ŝ2|Y = y] =
∑K
i=1

∑K−i

j=0

(i+ j)

[(1+ y)L]i e−(1+y)L
( )

/(i!)
( )

(aL)j (e−aL)/(j!)
( )

1− e−(1+y)L

=
∑K
i=1

∑K−i

j=0

(i+ j)
ajLi+j(1+ y)i (e−(1+y)L)/(i!)

( )
(e−aL)/(j!)

( )
1− e−(1+y)L

(15)

Now, unconditioning on Y, and noting that Y has mixture distribution
with a non-zero probability at Y = 0, we obtain

E[Ŝ2]=Pr(Y =0)
∑K
i=1

∑K−i

j=0

(i+ j)
ajLi+j e−L/i!

( )
e−aL/j!

( )
1−e−L

+
∫a
y=0

∑K
i=1

∑K−i

j=0

(i+ j)
ajLi+j(1+y)i (e−(1+y)L)/(i!)

( )
e−aL/j!

( )
1−e−(1+y)L

fY (y)dy

=e−aL
∑K
i=1

∑K−i

j=0

(i+ j)
ajLi+j e−L/i!

( )
e−aL/j!

( )
1−e−L

+
∑K
i=1

∑K−i

j=0

(i+ j)ajLi+j e−(1+2a)L

i!j!

∫a
y=0

(1+y)i

1−e−(1+y)L
dy

(16)

The throughput can be written as (17). The (17) follows from the
renewal-reward theorem. Identify the beginning of the TPs as
renewal points. The expected duration of renewal cycle is obtained

by the sum of product of expected dwell time in each state
(transition periods) multiplied by the steady state occupancy
probability. The expected reward in a renewal cycle is the
weighted average of the throughput in each state

S=
∑2

i=0piŜi∑2
i=0piE[Ti]

(17)

Finally, the throughput is obtained by, substituting the stationary
probabilities (10) to (11) in (17). For a general K (17) has to be
computed numerically because of the complex nature of various
terms involved and because of the presence of an integral in Ŝ2.
However for the simpler case of K = 1, one can obtain an
approximate but closed form expression for S. We carry out this
exercise in Appendix.

1P-CSMA protocol is simulated with infinite user model and the
throughput performance is plotted in Fig. 7. The Fig. 7 shows that
the performance characteristics of 1P-CSMA are different from
that of NP-CSMA protocol. It can be noted that for the range of a
from 0 to 0.1 (a ≪ 1) the 1P-CSMA throughput is not very
sensitive to variation in the sensing delay. When the arrival rates
of relatively larger, Type 2 TPs are more probable. E[T2] = 1 + a +
E[y] and hence the throughput is not very sensitive to the value of
a. The case of a = 1 is an extreme case where the packet
transmission time is equal to the propagation delay. Although the
case of a = 1 is uncommon in WLANs, it may be encountered in
satellite network.

The persistent CSMA performance is inferior to the NP-CSMA
for moderate to high values of arrival rates. This is expected since
the persistent transmissions in the case of 1P-CSMA protocol
increases the probability of collisions. The maximum throughput
of 1P-CSMA remains however, close to the maximum throughput
of NP-CSMA. Compared with the NP-CSMA, in the low arrival
rate region, 1P-CSMA has higher throughput (see 0.1 to 1 range
of arrival rate in Figs. 2 and 7) since the number of transmission
opportunities wasted will be lesser in the case of 1P CSMA as
compared with NP CSMA.

5 Conclusion

A clear understanding of the role of MPR on the performance of
basic MAC protocols (Aloha, CSMA etc.) is fundamental to the
design of MAC protocols for next generation WLANs. In this
paper, we have analysed the carrier sensing protocols for MPR
channels. The throughput performance of NP-CSMA and

Fig. 7 Normalised throughput of 1P-CSMA with MPR: Analysis (lines)
against simulation (symbols) for K = 4
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1P-CSMA were computed for an infinite user model. This study
sheds light on the general nature of performance characteristics of
carrier sensing protocols in MPR channels. One difference from
traditional channels is that the throughput does not monotonically
decrease with the increase in sensing delay. In fact throughput is
critically dependent upon arrival rates, MPR capability and the
carrier sensing delay.
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7 Appendix

7.1 Throughput of 1-P CSMA for collision channel

In this appendix we derive a closed form expression for the
throughput of 1P-CSMA for the case of classical collision channel
model. The classical collision channel model is equivalent to the
k-MPR channel model with K = 1.

Equation (17) for S holds good for K = 1 with appropriate values
for the terms πi, Ŝi and E[Ti] for i = 1, 2 and 3. The equations for π0,
π1, π2 are given by (10) and (11). E[T1] and E[T2] are given by (12)
while E[T0] = (1/Λ). Further, Ŝ0 = 0. Only Ŝ1 and Ŝ2 remains to be

derived for K = 1. From (13), for K = 1 we obtain

Ŝ1 =
∑K−1

i=0

(i+ 1)(aL)i
e−aL

i!
= e−aL (18)

To obtain a closed form expression for Ŝ2, instead of using (16), we
use an alternate derivation. Recall that Ŝ2 is the throughput in type-2
TP, which occurs as a result of one or more arrivals in a busy period.

Pr (i transmission are made at the beginning of type−2 TP|Y = y)

= [(1+ y)L]i e−(1+y)L

i!(1− e−(1+y)L)

(19)

Equation (19) follows from the fact that type-2 TP implies that there
is atleast one arrival during the preceding TP. Unconditioning on Y in
(19) we obtain

Pr (i transmissions are made at the beginning of type−2 TP)

=
∫a
0

[(1+ y)L]i e−(1+y)L

i!(1− e−(1+y)L)
fY (y) dy (20)

Let there be i arrivals in the duration 1 + y, and j arrivals during the
vulnerable duration a. Then

E[Ŝ2] =
∑K
i=1

∑K−i

j=0

Pr (i in 1+ y) Pr (j arrivals in duration a) (21)

=
∑K
i=1

∑K−i

j=0

∫a
0

[(1+ y)L]i e−(1+y)L

i!(1− e−(1+y)L)

e−aL(aL)j

j!
fY (y) dy (22)

For K = 1, substituting i = 1 and j = 0

E[Ŝ2] =
a(a+ 2)L2

2 e(a+1)L − 1
( )+ L e−(a+1)L

1− e−(a+1)L

{ }
e−aL (23)

To compute the integral in (22), we have made an approximation
y = a in the denominator of the integral. Substituting (18), (23) and
other known values in (17), the value of S after approximation and

Fig. 8 Normalised arrival rate against normalised throughput of 1P-CSMA
with K = 1 and a = 0.1

Our analysis, results of [17] and simulation
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simplification with the help of Mathematica yields (see (25))
The form of throughput given by (24) differs in the function from

the formula given in [17]. However the correctness of the analytical
results is verified by its close match with both the formulas and the

simulation as shown in Fig. 8. The slight deviation of our result (25)
in Fig. 8 is because of the approximation invoked in the calculation
of the integral.

SK=1 =
e−aL L e(a+1)L(L(a((a+ 2)L+ 2)+ 2)+ 2)− L(aL+ 1)(L(a(a+ 2)L+ 2)+ 2)

( )
2 e(a+1)L − 1
( )

aL+ e(a+1)L(2aL+ L− 1)+ eL + 1
( ) (24)
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