
Journal of Computer Security 22 (2014) 961–996 961
DOI 10.3233/JCS-140510
IOS Press

Security analysis for temporal role based access control

Emre Uzun a, Vijayalakshmi Atluri a, Jaideep Vaidya a,∗, Shamik Sural b,
Anna Lisa Ferrara c, Gennaro Parlato d and P. Madhusudan e

a Rutgers University, Newark, NJ, USA
b Indian Institute of Technology, Kharagpur, India
c University of Bristol, Bristol, UK
d University of Southampton, Southampton, UK
e University of Illinois at Urbana-Champaign, IL, USA

Providing restrictive and secure access to resources is a challenging and socially important problem.
Among the many formal security models, Role Based Access Control (RBAC) has become the norm in
many of today’s organizations for enforcing security. For every model, it is necessary to analyze and
prove that the corresponding system is secure. Such analysis helps understand the implications of security
policies and helps organizations gain confidence on the control they have on resources while providing
access, and devise and maintain policies.

In this paper, we consider security analysis for the Temporal RBAC (TRBAC), one of the extensions
of RBAC. The TRBAC considered in this paper allows temporal restrictions on roles themselves, user-
permission assignments (UA), permission-role assignments (PA), as well as role hierarchies (RH). To-
wards this end, we first propose a suitable administrative model that governs changes to temporal policies.
Then we propose our security analysis strategy, that essentially decomposes the temporal security analysis
problem into smaller and more manageable RBAC security analysis sub-problems for which the existing
RBAC security analysis tools can be employed. We then evaluate them from a practical perspective by
evaluating their performance using simulated data sets.

Keywords: Access control, temporal RBAC, safety analysis, temporal role hierarchy

1. Introduction

Access control facilitates controlled sharing and protection of resources in an en-
terprise. Today, there exist a variety of formal authorization models to meet the wide
needs of requirements in specifying access control policies. These include, but not
limited to, Discretionary Access Control (DAC), Mandatory Access Control (MAC)
and Role Based Access Control (RBAC). Due to its flexibility, ease of administration
and intuitiveness, RBAC has been successfully adopted as a means to enforce secu-
rity by many organizations. Recognizing the industry needs, RBAC has been widely
deployed in most commercial software including operating systems, database sys-
tems, enterprise resource planning and workflow systems. Under RBAC, roles rep-
resent organizational agents that perform certain job functions, and permissions to

*Corresponding author. E-mail: jsvaidya@business.rutgers.edu.

0926-227X/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved

962 E. Uzun et al. / Security analysis for temporal role based access control

access objects are grouped as roles. Users, in turn, are assigned appropriate roles
based on their responsibilities and qualifications [10,24]. This feature immediately
reduces the operational costs of the system since the number of roles is usually much
smaller than that of the permissions.

The success of RBAC led the development of some useful extensions to satisfy
new application domains. In particular, researchers preserve the basic idea of having
roles in the model and add some additional dimensions, like time and space. Tempo-
ral RBAC (TRBAC) [8], Generalized Temporal RBAC [20], Spatio-Temporal RBAC
[2] are some examples of these extensions.

Analysis is essential to understand the implications of security policies. Although
each policy may appear innocent in isolation, their cumulative effect may lead to an
undesirable authorization state [27]. A study of the formal behavior of RBAC models
helps organizations gain confidence on the level of control they have on the resources
they own. Moreover, security analysis helps them set policies so that owners do not
unknowingly lose their control on resources, and aids them make changes to the
policies only if the analysis yields no security property violations.

One major advantage with RBAC is that, unlike in DAC where users can grant ac-
cess privileges at their own discretion, organizations have central control over their
resources. Since the security configuration need not be changed when users leave or
join the organization, RBAC simplifies security administration. Administrative ac-
tivities include user to role assignment (UA), permission to role assignment (PA)
and role to role assignment (RH, the role hierarchies). Such administration is typ-
ically performed by a system security officer (SSO). For large organizations, it is
normal to have roles in the order of thousands and users in the order of tens of
thousands [28]. Typically, security administration is decentralized by delegating ad-
ministrative activities, as it is overwhelming for a single SSO to administer all roles.
While decentralized RBAC administration enhances the flexibility and scalability, an
obvious side effect of it is reduced organizational control over its resources. There-
fore, certain security guarantees are essential to ensure controlled delegation and to
retain the desired level of control. Such guarantees can only be ensured through a
formal security analysis of the properties of the RBAC system.

An RBAC system can be viewed as a state transition system where state changes
occur via administrative operations. Given an initial authorization state and a set
of security policies specified by authorization rules, a security analysis is a query
the administrator makes on the set of reachable authorization states. Oftentimes, a
security analysis is a simple query that asks whether there is an unintended reachable
state, and hence requires determining the set of reachable authorization states. Such
a query allows the administrator to determine if any of a set of unintended states
could possibly occur as the system evolves, and is extremely important to determine
if the system meets its security policies.

Exclusion of unintended authorization states, known as the safety problem, was
first identified by Harrison, Ruzzo and Ullman [14], and can be formulated as testing

E. Uzun et al. / Security analysis for temporal role based access control 963

the following: “Whether there exists a reachable authorization state in which a partic-
ular subject possesses a particular privilege for a specific object.” (Note that subjects
include users as well as processes (invoked by users).) While safety is one of the
fundamental requirements to be analyzed, the security properties to be analyzed in
this paper will be more comprehensive than those studied in prior literature. We will
study several security properties: safety, availability, liveness, and mutual exclusion
of privileges for TRBAC.

Specifically, in this paper, we develop a security analysis methodology for Tem-
poral RBAC. The analysis deals with the reachability problem, which seeks to deter-
mine whether a potentially untrusted user will ever get access to confidential objects.
Protecting the confidentiality of the data and the integrity of the system requires this
analysis. In our model we have user to role, permission to role and role to role as-
signments (role hierarchy) defined as temporal relations. The extent of the temporal
notion in the role to role assignment relation is unique in terms of the flexibility
that is achieved in the role hierarchy structure. We propose an administrative model
that allows us to modify the above mentioned temporal relations. This administrative
model is extensive in terms of its ability to modify the more flexible role hierarchy
structure. In addition to our proposed administrative model, we provide a 3-stage
analysis approach that is capable of conducting the reachability analysis for a given
TRBAC configuration. The analysis is customizable in order to fit the specific needs
of the security question of interest. We propose a novel approach for security anal-
ysis of TRBAC. The main strategy we use while performing the security analysis
is to decompose the TRBAC analysis problem into multiple subproblems similar to
RBAC. Essentially, we decompose the problem into simpler RBAC subproblems so
that deciding whether a particular target state is reachable or not can be potentially
simpler. Additionally, it lends itself to employ the analysis techniques developed for
traditional RBAC. We propose decomposition based on the type of the relations as
well as based on time. We present two different strategies for decomposition based
on time – (1) Decomposition using rule schedules and (2) Decomposition using role
schedules. We perform computational experiments using the proposed analysis to
demonstrate its run time performance. We also provide a discussion about how our
newly defined role hierarchy structure should physically be kept in order to achieve
maximum performance in terms of access decisions and hierarchy modifications.

The rest of the paper is organized as follows: in Section 2, we provide background
information necessary to follow the models and analysis strategies proposed in the
paper. In Section 3 we provide our Temporal RBAC model, along with its admin-
istrative model and in Section 4 we present our security analysis methodology. In
Section 5, we demonstrate the runtime performance of our proposed approach. In
Section 6, we provide an insight about the data structure that the dynamic temporal
role hierarchies should be kept to improve the performance. In Section 7, we briefly
review the related work done in the literature. Finally in Section 8, we summarize
our contributions in this paper and discuss our future work.

964 E. Uzun et al. / Security analysis for temporal role based access control

2. Preliminaries

In this section, we introduce the preliminary definitions and concepts that are
needed to develop the approaches presented in this paper. Specifically, we present
the definitions for Role Based Access Control model, the extensions and the admin-
istrative model of RBAC, and the reachability problem.

Definition 1 (Role Based Access Control configuration). An RBAC configuration
[11] is a tuple 〈U ,R, PRMS, UA, PA, RH〉 where U , R and PRMS are finite sets of
users, roles, and permissions, respectively, UA ⊆ U×R is the user to role assignment
relation, PA ⊆ PRMS × R is the permission to role assignment relation and RH ⊆
R×R is the role to role assignment (role hierarchy) relation.

A tuple (u, r) ∈ UA represents that user u belongs to role r. Similarly, (p, r) ∈
PA represents that members of role r are granted permission p. A tuple (r1, r2) ∈
RH denotes r1 is superior to r2, so that any user who has r1 assigned, also has r2
assigned, and hence the permissions that are assigned to r2.

The Administrative RBAC (ARBAC97) [25] model specifies rules to modify an
RBAC configuration. It is composed of three modules URA user to role administra-
tion, PRA permission to role administration, and RRA role hierarchy administration.

The URA module allows to make changes to UA by using assignment/revocation
rules performed by administrators. Administrators are those users that belong to ad-
ministrative roles. We denote the set of administrative roles as AR. Some policies
consider the set AR to be disjoint from the set of roles R. Those policies are said to
meet the separate administration constraint [30]. A user can be assigned to a role if
she satisfies the precondition associated to that role. A precondition is a conjunction
of literals, where each literal is either in positive form r or in negative form ¬r, for
some role r ∈ R. Following [12], we represent preconditions by two sets of roles
Pos and Neg. A user u satisfies a precondition (Pos, Neg) if u is member of all roles
in Pos and does not belong to any role of Neg.

Rules to assign users to roles are specified by the set [25]:

can_assign ⊆ AR × 2R × 2R ×R.

A can_assign tuple (admin, Pos, Neg, r) ∈ can_assign allows a member of
the administrative role admin to assign a user u to roles r provided u’s current role
memberships satisfies the precondition (Pos, Neg).

Rules to revoke users from roles are specified as follows:

can_revoke ⊆ AR ×R.

If (admin, r) ∈ can_revoke, a member of the administrative role admin ∈ AR,
can revoke the membership of any user from role r ∈ R.

E. Uzun et al. / Security analysis for temporal role based access control 965

PRA is the module to control the permission to role assignments. The rules are
similar to those in URA. These are defined as follows:

can_assignp ⊆ AR × 2R × 2R ×R,

can_revokep ⊆ AR ×R.

Finally the ARBAC97 has RRA component to perform operations on roles and role
hierarchies. The rule defined for this context is the following:

can_modify ⊆ AR × 2R.

Using this rule, authorized administrators can create and remove roles and also
they can modify the relationships between the roles.

A URA can be seen as a state-transition system defined by the tuple S =
〈U ,R, UA,can_assign,can_revoke〉. A configuration of S is any user to role
assignment relation UR ⊆ U × R. A configuration UR is initial if UR = UA. Given
two S configurations c = UR and c′ = UR′, there is a transition (or move) from c to
c′ with rule m ∈ (can_assign ∪ can_revoke), denoted c

τm−→ c′, if there exists
an administrative user ad and administrative role admin with (ad, admin) ∈ UR and
a user u ∈ U , and one of the following holds:

can-assign move: m = (admin,P ,N , r), P ⊆ {r′ | (u, r′) ∈ UR}, N ⊆ R \ {r′ |
(u, r′) ∈ UR}, and UR′ = UR ∪ {(u, r)};

can-revoke move: m = (admin, r), (u, r) ∈ UR, and UR′ = UR \ {(u, r)}.

A run (or computation) of S is any finite sequence of S transitions π = c1
τm1−→

c2
τm2−→ . . .

τmn−1−→ cn
τmn−→ cn+1 for some n � 0, where c1 is the initial configuration

of S . An S configuration c is reachable if c is the last configuration of a run of S .

Definition 2 (Reachability problem). Given a URA system S over the set of roles R
and a role goal ∈ R and a user u, the role-reachability problem asks whether a
configuration c with (u,goal) ∈ c is reachable in S .

The reachability problem seeks to answer certain questions including and not lim-
ited to the following [22]:

• Simple safety: Is there a reachable state in which user u belongs to a user set s?
Eventually, this can also be stated as: Can user u ever get access to the roles
assigned to users that belong to set s?

• Simple availability: In each reachable state, does a user u always belong to
a user set s? Hence this analysis questions whether user u will lose his/her
privileges in the future.

966 E. Uzun et al. / Security analysis for temporal role based access control

• Bounded safety: In each reachable state, is the user set s always bounded by
{u1,u2, . . . ,un}?

• Liveness: In every reachable state, does user set s always have at least one user?
• Containment: In every reachable state, does a user set s1 always cover user

set s2.

For example, if the analysis of interest is Simple safety, then one should set the
goal to the target role and check whether that state is reachable, whereas, if the anal-
ysis of interest is Simple availability, then the goal should be set to the state where
the desired roles are unavailable. A Liveness query can be handled by performing a
Simple availability check on the users in set s to see whether there exist at least one
user in s always remain assigned to the particular role(s). Similar queries can be set
for the other analysis questions.

Temporal RBAC: The basis of the temporal RBAC models in the literature relies
on a Calendar definition, which is a periodic and duration expression given in terms
of some calendars as follows [7]:

P =

n∑

i=1

Oi · Ci � r · Cd.

This expression is composed of two different calendar expressions split by �. The
first part is the periodic expression which denotes the starting points of the time inter-
vals represented by the expression. Each Ci,Ci � Ci−1 is a calendar that represents
a different time unit (days, weeks, minutes) so that for each Ci � Ci−1 Ci−1 can be
covered by a finite number of intervals of Ci (for instance 24 hours is 1 day). The
Oi’s are the frequency components associated with the calendars, which are defined
as O1 = all, Oi ∈ 2N ∪ {all}. The second part of the expression is the duration con-
straint which describes the time interval that the expression covers once stared with
the periodic expression given in the first part. Here, r ∈ N and Cd � Cn, meaning
that the duration cannot exceed the maximum periodic time interval. An example
for this expression is that all.Years + {3, 7}.Months � 2.Months means a two month
interval that starts every year at the beginning of the third and the seventh months.

The TRBAC model [8] supports role enabling, which is a tuple composed of roles
and calendar expression. In GTRBAC model [20], user to role and permission to
role assignments are also proposed to be temporal with the calendar expression in
addition to some other components like role triggers.

Previous studies propose temporal role hierarchies [18–20] that focus on the per-
mission and activation inheritance in the presence of temporal constraints on role
enabling and disabling. Particularly, the role hierarchy is still static, but the other
temporal components of the system have a governing effect on whether the hierar-
chies will provide inheritance relation at a given time. These studies propose three
different types of hierarchies for temporal domain:

E. Uzun et al. / Security analysis for temporal role based access control 967

(1) Inheritance-Only Hierarchy (�): In this relation, the permissions in the junior
role can be acquired by any user who activated a senior role, without activating
the junior role. This hierarchy becomes restricted, if the enabling times of the
roles are taken into account. There are two types of restrictions possible: Weak
and Strong. When a hierarchy is weakly restricted, then the permission acqui-
sition through the junior role is possible regardless of that role being enabled at
that time. However, in the case of strongly restricted hierarchy, the junior role
must be enabled to perform permission acquisition.

(2) Activation-Only Hierarchy (): In this relation, a user who activated a senior
role can activate a junior role even if she is not explicitly assigned to it. This
hierarchy becomes restricted, if the enabling times of the roles are taken into
account. Similar to the Inheritance-Only case, there are two types of restrictions
possible: Weak and Strong. When a hierarchy is weakly restricted, then the role
activation of the junior role is possible regardless of that role being enabled at
that time. However, in the case of strongly restricted hierarchy, the junior role
must be enabled in order to be activated through the senior role.

(3) Inheritance and Activation (General Inheritance) Hierarchy (
): This relation
is a combination of above two hierarchies. Senior roles can activate junior roles
or just inherit some of the permissions of them. Lastly, a Hybrid Hierarchy
exists when the pairwise relations among different roles are of different types.
Hence, there can be an inheritance only relation between two roles, and an
activation only relation between two other roles in the same hierarchy.

3. Temporal RBAC model and security questions

The security analysis in temporal domain requires determining how the time is
embedded into the model and which components of the model are affected by this.
Furthermore, an administrative model is necessary to allow certain changes in the
role assignments. Then, a security analysis is possible for the TRBAC model.

3.1. Temporal components in Temporal RBAC model

In RBAC models with temporal components that are proposed in the literature, the
majority of them focus extensively on the temporal user to role assignment relation
and role enabling and the benefits of having temporal constraints on them. In this
paper, we not only cover these two relations, but also focus on two other relations,
namely, permission to role assignment and role hierarchies, as well. Now, we discuss
potential benefits of having temporal permission to role assignments and temporal
role hierarchies.

Temporal Permission to Role Assignments, captures the changes in PA with re-
spect to time, hence, a role can have different permission assignments in different
time intervals. This concept, although look similar to temporal UA, can have different

968 E. Uzun et al. / Security analysis for temporal role based access control

applications in a TRBAC model, including reducing the number of roles necessary.
Let us explain this with an example:

Example 1. Consider a manufacturing company has two different production plants
in different cities, one also has the headquarters of the company. The company has
a CEO and a General Manager (GM) who works at both the plants; an Accounting
Manager (AM), a Manufacturing Manager (MM), and a Human Resources Manager
(HR) for each plant. Although the CEO works at the headquarters, GM works in both
of the plants in different days of the week. When he is present at a plant, he manages
the operations and audits the actions of the AM of that plant. However, when he
is away (at the other plant), MM has the responsibility to audit the operations of
AM without completely assuming the GM role, which is considered to have many
additional permissions. In this case a TRBAC model without Temporal PA must have
two different roles for each MM: Regular MM and Extended MM, and in Temporal
UA the necessary assignments are done. However, presence of Temporal PA allows
the model to have only one MM role that has different permission assignments that
captures the auditing process whenever necessary.

In the Temporal RBAC model, role hierarchies can also be temporal in nature, in
other words, they may change with time. Although role hierarchies in prior temporal
extensions of RBAC have been specified, they do not allow temporal constraints to
be specified on RH that not only restrict the time during which the hierarchy is valid,
but also change its structure by shifting the position of the roles in the hierarchy.
An immediate effect of this is that permission inheritance does not always hold.
Essentially this means that a senior level role cannot always inherit the permissions
of a junior level role. Furthermore, a role may change its level in the hierarchy, for
example, a junior level role may be elevated to a higher level role during certain time
periods.

Although enterprises usually specify a static hierarchy, a dynamic temporal role
hierarchy (DTRH) comes into play in some temporary or periodical exceptional sit-
uations that are required for operational purposes. In the following, we provide such
a motivating example.

Example 2. Consider once again the manufacturing company given in the previ-
ous example. The auditing tasks of MM can be modeled with DTRH, if the tasks
required for auditing can be acquired through the role hierarchy given in Fig. 1.
A policy which makes the Manufacturing Manager move to the second level, on top
of the Accounting Manager only on the days when the General Manager is away will
provide permissions needed for auditing the AM to MM.

Nevertheless, it is still possible to represent the scenario in the example above us-
ing a static role hierarchy. However, lack of temporal role hierarchies will force the
system administrators to create a dummy role, like “Manager and Auditor”, that is

E. Uzun et al. / Security analysis for temporal role based access control 969

Fig. 1. The role hierarchy of the manufacturing company. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/JCS-140510.)

only enabled when necessary. Also, this role should have the required permission
and hierarchy assignments that Manufacturing Manager needs. This newly created
role does not essentially represent a regular job function since the Manufacturing
Manager cannot assume this role all the time. Moreover, the Manufacturing Man-
ager should be assigned to two separate roles which are enabled and disabled in
regular time intervals. The situation might get even more complicated in the case of
temporary changes in the system. Suppose that this auditing position is applied only
when the General Manager is on vacation. Then the newly created dummy role and
the necessary permission assignments are performed just for a single and temporary
occurrence. Even worse, the administrators must undo the changes in the system, by
revoking and deleting this role when the General Manager returns. Skipping this step
would create serious safety problems. Clearly, creation of these redundant dummy
roles increases the administrative burden [13].

Role delegation, which has been studied extensively in the literature [1,5,6,9,17,
33–35], is another way of handling scenarios like this. Users are delegated to the
necessary roles of the users that are away. Even though our example scenario can
be modeled using role delegation without imposing significant overhead, using tem-
poral role hierarchies has still an advantage in terms of performing safety analysis.
Whether handling the temporal role hierarchies is done using the specification of
DTRH, using dummy roles or delegation, none of the prior work on safety analysis
considers RBAC models with temporal constraints on role hierarchies.

3.2. TRBAC and its administrative model

Although temporal role based access control models have been proposed in the
literature, none of them addresses the security analysis of policies. The temporal di-
mension of the model makes it even harder to perform security analysis, which is al-
ready proved to be intractable for the nontemporal case. Therefore, while preserving
the core idea of having the temporal notion embedded into the RBAC components
as in [8,20], we simplify the model to allow for a manageable security analysis.
Although, our simplified model does not completely represent the previous tempo-
ral models, such as TRBAC or GTRBAC as a whole, we call this model Temporal
RBAC (or TRBAC, in short) for notational simplicity. Therefore, the model referred

970 E. Uzun et al. / Security analysis for temporal role based access control

as TRBAC for the remainder of the paper represents our simplified model, unless
otherwise noted. Now, we explain our TRBAC model in detail. We first define how
the time is represented in the model:

Let TMAX be a positive integer. A time slot of Times is a pair (a, a + 1), where a
is an integer, and 0 � a < a + 1 � TMAX . A time slot (a, a + 1) represents the set
of all times in the set [a, b), i.e., {t | a � t < b}. We use a time interval, consisting
of a pair (a, b) where a, b are two integers and 0 � a < b � TMAX , to represent the
set of corresponding time slots {(a, a+ 1), (a+ 1, a+ 2), . . . , (b− 1, b)} succinctly.
A schedule over TMAX is a set of time slots.

For instance, consider a hospital that works for 24 hours with three shifts (be-
tween 9 am and 5 pm, between 5 pm and 1 am, and between 1 am and 9 am). If
we want to have the precision of hours, we choose TMAX = 24, and a schedule s
that covers shifts 9 am–5 pm and 5 pm–1 am is represented as s = {(9, 10), (10, 11),
. . . , (23, 24), (24, 1)}. The schedule definition is a simplified version of the Calendar
definition in Bertino et al. [8], where we have simpler periodic constraints and do not
have duration constraints.

We assume that the system is periodic, thus the schedules repeat themselves after
any TMAX ; in the hospital example above, time intervals are repeated each 24 h.
Given a schedule s over TMAX and an real number t, we say that t belongs to s,
denoted t ∈ s, if there is a time interval (a, b) ∈ s such that t′ ∈ [a, b), where
t′ = tmodTMAX .

Definition 3 (TRBAC configuration). Let S be the set of all possible schedules over
TMAX . A TRBAC configuration over TMAX is a tuple M = 〈U ,R, PRMS, TUA, TPA,
RS, DTRH〉 where U , R and PRMS are finite sets of users, roles and permissions,
respectively, TUA ⊆ (U × R × S) is the temporal user to role assignment relation,
TPA ⊆ (PRMS × R × S) is the temporal permission to role assignment relation,
RS ⊆ (R × S) is the role–status relation and DTRH is the dynamic temporal role
hierarchy relation.

A tuple (u, r, s) ∈ TUA represents that user u is a member of the role r only
during the time intervals of schedule s. During the life time of the system, a role can
be either enabled or disabled. A tuple (r, s) ∈ RS imposes that role r is enabled only
during the time intervals of s (and therefore it can be assumed to be a member of
r only at these times), and disabled otherwise. A tuple (p, r, s) ∈ TPA means that
permission p is associated to role r only in the time intervals denoted by s. Thus, a
user u is granted permission p at time t ∈ [0,TMAX] provided that there exists a role
r ∈ R such that (u, r, s1) ∈ TUA, (r, s2) ∈ RS, (p, r, s3) ∈ PA, and t ∈ (s1∩s2∩s3),
for some time intervals s1, s2 and s3.

We assume that relation RS for each role r ∈ R contains always exactly one pair
with first component r. Similarly, the relation TUA contains exactly one tuple for
each pair in U ×R. Thus, if a role r is disabled in any time interval, we require that
RS relates r with the empty schedule. Similarly, if a user u does not belong to a role r

E. Uzun et al. / Security analysis for temporal role based access control 971

in any time interval, the pair (u, r) is associated to the empty schedule by the relation
TUA.

Permission inheritance and role activation through role hierarchies require addi-
tional definitions. In our model, DTRH is represented as a collection of dynamic
temporal role hierarchy policies, which are tuples consisted of a pair of roles associ-
ated with a schedule that denotes the time slots that the policy is valid. In our model,
we have dynamic temporal role hierarchy for inheritance only relation DTRHI , for
activation only relation DTRHA and for general inheritance relation DTRHIA, all
comprises as DTRH = DTRHI ∪ DTRHA ∪ DTRHIA.

Definition 4. A dynamic temporal role hierarchy policy (r1 �s,weak r2) ∈ DTRHI
between roles r1 and r2 is an inheritance-only weak temporal hierarchy relation,
that is valid in the time slots specified by a schedule s. Under this policy, a user u
who can activate r1 can inherit permissions of r2 at time t if (1) (u, r1, s1) ∈ TUA,
(2) (r1, s2) ∈ RS and (3) t ∈ (s1 ∩ s2 ∩ s), provided that there exists schedules
s1 and s2 that determine the time slots that u is assigned to r1 and r1 is enabled,
respectively.

Definition 5. A dynamic temporal role hierarchy policy (r1 	s,weak r2) ∈ DTRHA
between roles r1 and r2 is an activation-only weak temporal hierarchy relation, that
is valid in the time slots specified by a schedule s. Under this policy, a user u can
activate r2 at time t if (1) (u, r1, s1) ∈ TUA, (2) (r2, s2) ∈ RS and (3) t ∈ (s1∩s2∩s),
provided that there exists schedules s1 and s2 that determine the time slots that u is
assigned to r1, and r2 is enabled, respectively.

Definition 6. A dynamic temporal role hierarchy policy (r1
s,weak r2) ∈
DTRHIA between roles r1 and r2 is a general weak temporal hierarchy relation,
that is valid in the time slots specified by a schedule s. Under this policy, a user
u can activate r2 at time t, or inherit permissions of r2 if (1) (u, r1, s1) ∈ TUA,
(2) (r2, s2) ∈ RS and (3) t ∈ (s1 ∩ s2 ∩ s), provided that there exists schedules
s1, and s2 that determine the time slots that u is assigned to r1 and r2 is enabled,
respectively.

In the above three definitions, the relations become strong (i.e: (r1 �s,strong r2) ∈
DTRHI , (r1 	s,strong r2) ∈ DTRHA and (r1
s,strong r2) ∈ DTRHIA), when (2) is
replaced with (r1, s2), (r2, s3) ∈ RS and (3) is replaced with t ∈ (s1 ∩ s2 ∩ s3 ∩ s)
where s3 is the schedule that determine the time slots that r2 is enabled.

Presence of more than one type of relation makes DTRH a hybrid hierarchy.
Dynamic temporal role hierarchy policies (r1 �s,weak r2) ∈ DTRH satisfy the

following properties for a given schedule s:

(1) Reflexive: (r1 �s,weak r1) ∈ DTRH.
(2) Transitive: If (r1 �s,weak r2), (r2 �s,weak r3) ∈ DTRH, then (r1 �s,weak r3) ∈

DTRH.

972 E. Uzun et al. / Security analysis for temporal role based access control

(3) Asymmetric: If (r1 �s,weak r2) ∈ DTRH then (r2 �s,weak r1) /∈ DTRH. These
properties apply for both strong and the other types of relations (,
) as well.

Different policies among different roles create derived relations. As discussed in
[19] derived relations determine the scope of activation or inheritance privileges upon
activating a role. We adopt these derived relations to the case of dynamic temporal
role hierarchies in the following definition.

Definition 7. A derived relation among roles x, y1, y2, . . . , yn, z ∈ R holds under
any of the following conditions:

(1) (x〈F〉s0,typey1) ∧ (y1〈F〉s1,typey2) ∧ · · · ∧ (yn−1〈F〉sn−1,typeyn) ∧
(yn〈F〉sn,typez) → (x〈F〉s,typez) if F ∈ {�,	,
} ∧ s = s0 ∩ · · · ∩ sn,

(2) (x �s0,type y1) ∧ (y1〈F〉s1,typey2) ∧ · · · ∧ (yn−1〈F〉sn−1,typeyn) ∧
(yn〈F〉sn,typez) → (x �s,type z) if F ∈ {�,
} ∧ s = s0 ∩ · · · ∩ sn,

(3) (x
s0,type y1) ∧ (y1〈F〉s1,typey2) ∧ · · · ∧ (yn−1〈F〉sn−1,typeyn) ∧
(yn〈F〉sn,typez) → (x〈F〉s,typez) if F ∈ {�,
} ∧ s = s0 ∩ · · · ∩ sn,

(4) (x
s0,type y1) ∧ (y1 	s1,type y2) ∧ · · · ∧ (yn−1 	sn−1,type yn) ∧
(yn 	sn,type z) → (x 	s,type z) if s = s0 ∩ · · · ∩ sn.

The other rules stated in [19] hold as in the above definition provided that s =
(s1 ∩ s2 ∩ · · · ∩ sn) = ∅.

According to Definition 7, if all of the linked hierarchy policies are of same type,
the derived policy is also of the same type. If the first policy is an inheritance only
relation, then regardless of the other linked policies being activation only or general
inheritance hierarchy, the derived relation will be an inheritance-only policy. Simi-
larly, if the first policy is a general inheritance relation and the remaining policies are
activation-only, the derived relation is an activation-only policy. Finally, if the first
policy is a general inheritance relation and the other linked policies being activation
only or general inheritance relations, the derived relation will be of the type of linked
policies.

Now, we can present our administrative model that allows administrators to make
changes to the role-status relation RS, temporal user to role assignment relation TUA,
temporal permission to role assignment relation TPA and the dynamic temporal role
hierarchy relation DTRH by using enable/disable, assignment/revocation and mod-
ify rules, respectively. The goal of these rules is to update the time intervals of the
schedule s associated to the corresponding relation.

In the analysis of the TRBAC model, we assume that the analysis for TPA can be
made separately, since it is not directly related to the analysis of other components
in terms of the security questions in consideration. More specifically, the security
questions ask whether it is possible for a user to get access to a role, which requires
determining whether it is possible for the goal role to be assigned to the target user
directly, or indirectly via the role hierarchy in a time interval and if the role is en-
abled during any portion of this time interval. On the other hand, the analysis for TPA

E. Uzun et al. / Security analysis for temporal role based access control 973

is needed to discover if there is a possibility for a permission to appear in a partic-
ular goal role. Therefore, we define the Temporal URA and Temporal PRA systems
separately to observe the state transitions.

Definition 8 (Temporal User to Role Administration). A TURA system is a tuple
ST = 〈M ,can_enable,can_disable,t_can_assign,t_can_revoke,
t_can_modify〉 where M = 〈U ,R, PRMS, TUA, TPA, RS, DTRH〉 is a TRBAC
policy over TMAX , and can_enable,can_disable,t_can_assign,
t_can_revoke ⊆ (R × S × 2R × 2R × S × R) and t_can_modify ⊆
(R× S × 2R × 2R × 2R × 2R × S ×R×R× {strong, weak} × {�,	,
}).

Definition 9 (Temporal permission to role administration). A TPRA system is a tu-
ple ST = 〈M ,t_can_assignp,t_can_revokep〉 where M = 〈U ,R, PRMS,
TUA, TPA, RS, DTRH〉 is a TRBAC policy over TMAX , and t_can_assignp,
t_can_revokep ⊆ (R× S × 2R × 2R × S ×R).

A configuration of ST for TURA is a triple (RS, TUA, DTRH), which is initial
if RS = RS0, TUA = TUA0 and DTRH = DTRH0. Similarly, a configuration of
ST for TPRA is a singleton (TPA), which is initial if TPA = TPA0. Given two ST
configurations c = (RS, TUA, DTRH) and c′ = (RS′, TUA′, DTRH′) for TURA’ and
c = (TPA) and c′ = (TPA′) for TPRA, we describe below the conditions under
which there is a transition (or move) from c to c′ at time t ∈ N with rule m ∈
MALL = (can_enable∪can_disable∪t_can_assign∪t_can_revoke∪
t_can_modify ∪ t_can_assignp ∪ t_can_revokep), denoted c

(τm,t)−→ c′.
Before defining the transition relation, we first describe the components of move

m = (admin, srule, Pos, Neg, srole, r). Move m can be executed only by a user, say
ad, belonging to the administrative role admin ∈ R.

The times t in which ad can execute m are all those in which ad is assumed to
be a member of role admin, and furthermore, t must also belong to the schedule
srule which denotes the time intervals when m can be fired (or we say valid): t ∈
(sad ∩ sadmin ∩ srule) where (ad, admin, sad) ∈ TUA and (admin, sadmin) ∈ RS. In
the rest of the section we say that m can be executed at time t whenever t fulfills
the above condition. The component srole is used to update the schedule of a role,
or the membership of a user to a role, depending on the kind of rule of m. The
pair of disjoint role sets (Pos, Neg) is called the precondition of m whose fulfillment
depends by the kind of the rule m.

The fulfillment of the precondition of a can-enable and can-disable rule depends
on the current status of the other roles. Let ŝ ⊆ srole. A can-enable or can-disable
rule m = (admin, srule, Pos, Neg, srole, r) satisfies its precondition (Pos, Neg) w.r.t.
candidate schedule ŝ, if for every time slot α ∈ ŝ, if (1) for every role pos ∈ Pos,
α ⊆ spos where (pos, spos) ∈ RS, (2) for every role neg ∈ Neg, α ∩ sneg = ∅, where
(neg, sneg) ∈ RS, and (3) α satisfies all preconditions. In other words, a candidate
schedule ŝ ⊆ srole satisfies a precondition only if each time slot α ∈ ŝ satisfies the
precondition individually. Let (r, s) ∈ RS.

974 E. Uzun et al. / Security analysis for temporal role based access control

Enabling rules. A can-enable rule adds a new schedule to a specific role. A tuple
(admin, srule, Pos, Neg, srole, r) ∈ can_enable allows to update the tuple (r, s) ∈
RS to (r, s ∪ ŝ) for some schedule ŝ, provided that m can be executed at time t and
also satisfies its precondition. Formally, rule m is executable at time t, m satisfies its
precondition (Pos, Neg) w.r.t. schedule ŝ, RS′ = (RS \ {(r, s)}) ∪ {(r, s ∪ ŝ)}, and
TUA′ = TUA.

Disabling rules. A can-disable rule removes a schedule from a designed role. A tu-
ple m = (admin, srule, Pos, Neg, srole, r) ∈ can_disable allows to update the
tuple (r, s) ∈ RS to (r, s \ ŝ), for some schedule ŝ, provided that m can be executed
at time t, and satisfies its precondition. Formally, m is executable at time t, m satis-
fies its precondition (Pos, Neg) w.r.t. schedule ŝ, RS′ = (RS \ {(r, s)}) ∪ {(r, s \ ŝ)},
and TUA′ = TUA.

The next two rules are similar to those given above with the difference that we now
update the schedules associated to each element of the user to role assignment rela-
tion. Another difference is that can-assign and can-revoke rules have a different se-
mantics to fulfill their preconditions. A user u ∈ U satisfies a precondition (Pos, Neg)
w.r.t. a schedule ŝ if for every time slot α ∈ ŝ, (1) for every (u, pos, spos) ∈ TUR
with pos ∈ Pos, α ⊆ spos, (2) for every (u, neg, sneg) ∈ TUA with neg ∈ Neg,
α ∩ sneg = ∅, and (3) α satisfies all preconditions. Let (u, r, s) ∈ TUA.

Assignment rules. A tuple (admin, srule, Pos, Neg, srole, r) ∈ t_can_assign al-
lows to update the user to role assignment relation for the pair (u, r) as follows. Let
ŝ be a schedule over TMAX with ŝ ⊆ srole. Then, if m can be executed at time t, and
user u satisfies the precondition (Pos, Neg) w.r.t. schedule ŝ, then the tuple (u, r, s) is
updated to (u, r, s∪ ŝ), i.e. TUA′ = (TUA\{(u, r, s)})∪{(u, r, s∪ ŝ)} and RS′ = RS.

Revocation rules. A tuple (admin, srule, Pos, Neg, srole, r) ∈ t_can_revoke al-
lows to update the user to role assignment relation for the pair (u, r) as follows.
Let ŝ be a schedule over TMAX with ŝ ⊆ srole. Then, if m can be executed at time
t, and user u satisfies the precondition (Pos, Neg) w.r.t. schedule ŝ, then the tuple
(u, r, s) is updated to (u, r, s \ ŝ), i.e. TUA′ = (TUA \ {(u, r, s)})∪ {(u, r, s \ ŝ)} and
RS′ = RS.

The rules for updating the permission to role assignment is again similar to the user
to role assignments rules, with the difference of assigning permissions and precondi-
tions checked against the assigned permissions. The structure of the move definition
is similar to the existing model, but the assignment semantics for permissions are
different. Hence, the existing move definition, m = (admin, srule, Pos, Neg, srole, r)
remains the same, but it applies to permissions rather than users.

Intuitively, a precondition in the permission level is a verification procedure of
the existing role assignments of a given permission. For instance, a positive precon-
dition (negative, resp.) can state a permission can only be added to a given role if
it has already been (has not been, resp.) assigned to another role. More formally, a

E. Uzun et al. / Security analysis for temporal role based access control 975

permission p ∈ PRMS satisfies a precondition (Pos, Neg) w.r.t. a schedule ŝ if for
every time slot α ∈ ŝ, (1) for every (p, pos, spos) ∈ TPA with pos ∈ Pos, α ⊆ spos,
(2) for every (p, neg, sneg) ∈ TPA with neg ∈ Neg, α ∩ sneg = ∅, and (3) α satisfies
all preconditions. Let (p, r, s) ∈ TPA.

Assignment rules. A tuple (admin, srule, Pos, Neg, srole, r) ∈ t_can_assignp al-
lows to update the permission to role assignment relation for the pair (p, r) as follows.
Let ŝ be a schedule over TMAX with ŝ ⊆ srole. Then, if m can be executed at time t,
and permission p satisfies the precondition (Pos, Neg) w.r.t. schedule ŝ, then the tuple
(p, r, s) is updated to (p, r, s ∪ ŝ), i.e. TPA′ = (TPA \ {(p, r, s)}) ∪ {(p, r, s ∪ ŝ)},
TUR′ = TUR and ER′ = ER.

Revocation rules. A tuple (admin, srule, Pos, Neg, srole, r) ∈ t_can_revokep al-
lows to update the permission to role assignment relation for the pair (p, r) as follows.
Let ŝ be a schedule over TMAX with ŝ ⊆ srole. Then, if m can be executed at time
t, and permission p satisfies the precondition (Pos, Neg) w.r.t. schedule ŝ, then the
tuple (p, r, s) is updated to (p, r, s\ ŝ), i.e. TPA′ = (TPA\ {(p, r, s)})∪ {(p, r, s\ ŝ)},
TUR′ = TUR and ER′ = ER.

The rule structure for t_can_modify is different from the other rules. This rule
updates the valid time slots of the dynamic temporal role hierarchy policies. Also,
in contrast to precondition structures that have been proposed in the literature for
other administrative rules (like can_assign), it has two sets of preconditions, one
for senior and one for junior role in order to protect the integrity of the hierarchy.
The rule is composed of eight parameters that should be satisfied to execute the
rule. Three of these parameters are similar to the above mentioned moves, namely,
admin, srule and shierarchy which is declared as srole in other rules defined above, but
has similar semantics. Let t be the time slot that the rule is required to be executed.

• type ∈ {strong, weak} denotes the type of the hierarchy relation.
• rsr is the Senior Role of the hierarchy policy.
• rjr is the Junior Role of the hierarchy policy.
• SR(Pos, Neg) denotes the positive and negative preconditions of the senior role
rsr. The preconditions are satisfied in the following way: Let ŝ denote the time
slots that are intended to be modified by the rule (ŝ ⊆ shierarchy). For each
r ∈ Pos, there must be a role hierarchy policy (r �ŝ,type rsr) ∈ DTRH and for
each r ∈ Neg, there must not be a hierarchy policy (r �ŝ,type rsr) ∈ DTRH.

• JR(Pos, Neg) denotes the positive and negative preconditions of the junior role
rjr. The preconditions are satisfied in the following way. Let ŝ denote the time
slots that are intended to be modified by the rule (ŝ ⊆ shierarchy). For each
r ∈ Pos, there must be a role hierarchy policy (rjr �ŝ,type r) ∈ DTRH and for
each r ∈ Neg, there must not be a hierarchy policy (rjr �ŝ,type r) ∈ DTRH.

Modification rule. Under these parameters, a tuple: (admin, srule, SR(Pos, Neg),
JR(Pos, Neg), shierarchy, rsr, rjr, type) ∈ t_can_modify allows to update the role

976 E. Uzun et al. / Security analysis for temporal role based access control

hierarchy relation rsr �s,type rjr as follows: Let ŝ be a schedule over TMAX with
ŝ ⊆ shierarchy. Then, if this rule can be executed at time t, and the preconditions are
satisfied w.r.t. schedule ŝ, then the tuple rsr �s,type rjr is updated to rsr �s∪ŝ,type rjr

or rsr �s\ŝ,type rjr, depending on the intended modification. This definition is for
inheritance only hierarchies, but it also applies to activation only and general inheri-
tance hierarchies, by replacing � with 	 and
.

Example 3. Let us now consider an example of a TRBAC system deployed in a
hospital. Assume that there are 7 different roles, namely, Employee (EMP), Day
Doctor (DDR), Night Doctor (NDR), Practitioner (PRC), Nurse (NRS), Secretary
(SEC) and Chairman (CHR). Hospital works for 24 hours and there are three different
shifts (time slots) from 8 am to 4 pm (Time Slot 1), 4 pm to 12 am (Time Slot 2)
and 12 am to 8 am (Time Slot 3). Only the Chairman role (CHR) has administrative
privileges.

(1) (CHR, {(0, 2)}, {DDR}, ∅, {(0, 1)}, PRC) ∈ can_enable: At time slots 1
and 2, a chairman can enable the role Practitioner for the first time slot if the
role Day Doctor is also enabled during this time slot.

(2) (CHR, {(0, 3)}, {EMP, NDR}, {(2, 3)}, NRS) ∈ can_disable: At time slots
1, 2 and 3, a chairman can disable the role Nurse for the third time slot if the
roles Employee and Night Doctor are enabled at this time slot.

(3) (CHR, {(0, 2)}, {EMP}, {NRS}, {(0, 2)}, DDR) ∈ t_can_assign: At time
slots 1 and 2, a chairman can assign the role Day Doctor for the first and the
second time slots to any user that has Employee role and does not have Nurse
role during these time slots.

(4) (CHR, {(0, 3)}, ∅, ∅, {(0, 3)}, SEC) ∈ t_can_revoke: At time slots 1, 2 and
3, a chairman can revoke the role Secretary for all time slots of any user that
has Secretary role assigned in these slots.

(5) (CHR, {(2, 3)}, {EMP}, {NRS}, {(2, 3)}, NDR) ∈ t_can_assignp: At time
slot 3, a chairman can assign a permission to the role Night Doctor for the third
time slot if that permission is also assigned to Employee not assigned to Nurse
role during this time slot.

(6) (CHR, {(0, 2)}, ∅, ∅, {(0, 3)}, NRS) ∈ t_can_revokep: At time slots 1 and 2,
a chairman can revoke a permission from the role Nurse for all time slots.

(7) (CHR, {(0, 2)}, {DDR}, ∅, {(0, 1)}, PRC) ∈ t_can_assign: At time slots 1
and 2, a chairman can assign the role Practitioner for the first time slot of any
user that has Day Doctor role during this time slot.

(8) (CHR, {(0, 3)}, {NDR}, ∅, {(2, 3)}, PRC) ∈ t_can_assign: At time slots 1,
2 and 3, a chairman can assign the role Practitioner for the third time slot to
any user that has Night Doctor role during this time slot.

Reachability problems. A run (or computation) of ST is any finite sequence of ST
transitions π = c1

(τm1 ,t1)
−→ c2

(τm2 ,t2)
−→ . . .

(τmn−1 ,tn−1)
−→ cn

(τmn ,tn)−→ cn+1 for some

E. Uzun et al. / Security analysis for temporal role based access control 977

n � 0, where c1 is an initial configuration of ST , t1 = 0, and ti � ti+1 for every
i ∈ [n− 1]. An ST configuration c is reachable within time t, if there exists a run π
in which cn+1 = c and tn � t. Furthermore, c is simply reachable if c is reachable
within time t, for some t � 0.

Let ST be a TURA system over TMAX , u and r be a user and a role of ST , respec-
tively, and s be a schedule over TMAX . Given a time t, the timed reachability problem
for (ST ,u, r, s, t) asks whether there is a reachable configuration within time t of ST
in which user u is a member of role r in the schedule s either explicitly or implicitly
through the role hierarchy. Similarly, the reachability problem for (ST ,u, r, s) is de-
fined as above where there is no constraint on time t. In all of the time slots of s, r
must also be enabled.

For a TPRA system over TMAX which is identified by ST , and p and r are a permis-
sion and a role of ST , respectively, and s be a schedule over TMAX . Given a time t,
the timed reachability problem for (ST , p, r, s, t) asks whether there is a reachable
configuration within time t of ST in which user u is a member of role r in the sched-
ule s. Similarly, the reachability problem for (ST ,u, r, s) is defined as above where
there is no constraint on time t.

In our analysis, we assume Separate Administration, in which there is an admin-
istrative user who is assigned to the required administrative roles which are enabled
all the time. Hence, the times to fire a rule is only restricted by srule.

3.3. Security analysis questions

In Temporal RBAC, the security problem is slightly different than that of RBAC.
The model can have two different ranges of temporal coverage: Safety until a given
period of time (or called short term safety), and the ultimate safety (or called long
term safety). In short term safety, we are only interested in the safety of the system
until a given fixed time. Practically, this type of an analysis is useful to track users
that will have temporary presence in the system. Whereas, the long term safety is
more concerned about the regular users which are likely to be active in the system
for relatively longer periods of time. This analysis will yield an ultimate safety of the
system in the long run. Furthermore, changes allowed in the role hierarchy require
additional security questions related to implicit assignments that are possible in the
future. There is no problem of this sort in the case of static role hierarchies, however
a simple manipulation in the hierarchy could create a security breach, and should be
detected in advance to prevent any such occurrence. Considering these definitions,
some example security questions for the temporal domain can be stated as follows:

(1) Safety:

(a) (Explicit Assignment – Short Term) Will there be no reachable state in
which a user u is assigned to a role r at time t?

978 E. Uzun et al. / Security analysis for temporal role based access control

(b) (Explicit Assignment – Long Term) Will a user u ever get assigned to a
role r?

(c) (Role Enabling – Long Term) Will an enabled role r eventually be disabled?
(d) (Implicit Assignment – Short Term) Will a user u get implicitly assigned to

role r at time t?
(e) (Implicit Assignment – Long Term) Will a user u ever get implicitly as-

signed to role r in the future?
(f) (Permission Assignment – Long Term) Will a permission p ever get as-

signed to role r in the future?

(2) Liveness:

(a) (Role Enabling – Short Term) Will an enabled role remain enabled at time
t?

(b) (Implicit Assignment – Short Term) Will a user u lose privileges of any role
that he is implicitly assigned until time t?

(c) (Explicit Assignment – Long Term) Will a user u ever lose any role that he
is assigned in the future?

(d) (Permission Assignment – Short Term) Will a permission p remain assigned
to role r at time t?

(3) Mutual exclusion:

(a) (Explicit Assignment – Long Term) Will a user u be assigned to roles r1 and
r2 at the same time (i.e., do the time intervals during which u is assigned
to roles r1 and r2 overlap?)

(b) (Implicit Assignment – Short Term) Will users u1 and u2 get implicitly
assigned to role r at the same time slot until time t?

Regarding these security questions, our aim is to analyze TRBAC model to verify
that the configuration is safe in terms of the questions stated above.

4. TRBAC security analysis

Given an initial configuration c0, rules of an administrative model, MALL and
the target user u, who is being analyzed against the security questions of interest,
our proposed security analysis methodology provides answers to various security
questions outlined in Section 3.3.

Our security analysis depends on a customizable three stage decomposition strat-
egy. First we decompose the problem into four steps based on the temporal relation
that is modified (TUA, RS, TPA, DTRH). Then, we further decompose each of these
subproblems into smaller ones using the time dimension in which we have two dif-
ferent strategies to address different security questions – Rule Schedule and Role
Schedule. Finally, combining the results obtained from each of these decomposed
problems provide the complete analysis.

E. Uzun et al. / Security analysis for temporal role based access control 979

4.1. Stage 1: Relation based decomposition

The TURA and TPRA systems are composed of a set of different type of rules
that are used to generate new configurations for a security analysis. The interactions
among these rules, however, have certain properties. Consider the rules grouped ac-
cording to the relations that they modify, i.e., t_can_assign,t_can_revoke;
can_enable,can_disable; t_can_assignp,t_can_revokep; and
t_can_modify are the four groups of rules that modify different relations in
TRBAC. Assuming that the administrator role and rule schedule requirements are
satisfied, the execution of roles of each group is determined by the relations that
they modify. For instance, the preconditions to satisfy for t_can_assign and
t_can_revoke are checked against the current status of TUA, whereas, it is TPA
for t_can_assignp,t_can_revokep, RS for can_enable,can_disable
and DTRH for t_can_modify. Therefore, the execution rules of different groups
are independent of each other. However, this property does not imply that the rela-
tions that are modified with these rules are also independent semantically. For in-
stance, role assignments and revocations can be performed for a user, but these as-
signments are useful only if the roles are enabled. Similarly, an inheritance through
the role hierarchy is only possible if the senior role of the policy is enabled. There-
fore, we perform independent analysis on four different components of the TRBAC
model and then we combine the results obtained from each of these four sub-analysis
problems in order to interpret them correctly in Stage 3.

Hence, regarding this property, our security analysis procedure is composed of
four steps (Table 1). In each of these steps, the state configurations and the adminis-
trative rule sets of the analysis problems are shaped with different relations.

For each different analysis, the rule set is composed of the following rules:

(1) User Assignment: t_can_assign,t_can_revoke
(2) Role Enabling: can_enable,can_disable
(3) Role Hierarchy: t_can_modify
(4) Permission Assignment: t_can_assignp,t_can_revokep

Table 1

Subproblems, initial configurations and the relations used

Analysis State configuration Initial configuration

performed represented by of the analysis

1. User Assignment TUA TUA relation of the target user

2. Role Enabling RS RS relations of all roles

�Explicit role assignment analysis is complete

3. Role Hierarchy DTRH DTRH policies

�Implicit role assignment analysis is complete

4. Permission Assignment TPA TPA relation of the target role

�Full analysis is complete

980 E. Uzun et al. / Security analysis for temporal role based access control

This four step procedure depicted in Table 1 might be customized with respect to
the scope of the security analysis. At the end of first step, the analysis generates all
possible configurations for the target user under the administrative rules. The second
step declares the time slots that the roles can get enabled. Combining the results of
the first and the second step produces the analysis that answers the security questions
related to explicit role assignments. If the implicit assignments are also considered,
the third step should be performed. In the third step, possible role hierarchy relations
are generated. Combining these results with the ones from the earlier steps will de-
termine the possibility of an implicit assignment to a role. Finally, the fourth step
determines the possible permission assignments to a role (or roles), which could also
be conducted as an independent analysis determining whether there is a possibility
for a set of permissions to appear in a role. In summary, one can choose different
combinations of the steps outlined in Table 1. For example one can choose to carry
out steps 1 and 2, steps 1, 2 and 3, steps 1, 2 and 4, or steps 1, 2, 3 and 4, based on
the analysis they would like to perform.

4.2. Stage 2: Time Based Decomposition

Time Based Decomposition further simplifies the decomposed analysis problems
in the first stage. Since the time dimension is discrete, we decompose each of the
four security analysis problems above into multiple subproblems, so that each in-
stance can be treated similar to an RBAC model. We employ two different alternative
decomposition strategies – the rule schedule strategy and the the role schedule strat-
egy. These strategies, although can analyze the same problem, provide answers to
different security questions. Rule schedule strategy provides analysis for short term
reachability, whereas role schedule strategy provides analysis for long term reach-
ability. Each of the four steps of Stage 1 can be analyzed by these strategies under
the state configuration and administrative rule settings depicted in Table 1. The time
based decomposition strategies provide flexibility so that different RBAC analysis
procedures can be employed as given in Table 2.

Before we provide details of these two strategies, we give the steps for each stage
to be performed for some of the example security questions that we discuss in Sec-
tion 3.3 in Table 3.

Table 2

Time Based Decomposition and available analyzers

Analysis Rule Role

performed Schedule Schedule

User Assignment SA Any RBAC analyzer

Role Enabling SA Any RBAC analyzer

Role Hierarchy MSAa MSA

Permission Assignment SA Any RBAC analyzer
aDetails given in Section 4.2.3.

E. Uzun et al. / Security analysis for temporal role based access control 981

Table 3

The steps of analysis to be performed for different security questions given in Section 3.3

Security question Stage 1 Stage 2

1-a 1, 2 Rule Schedule

1-c 2 Role Schedule

1-d 1, 2, 3 Rule Schedule

1-f 4 Role Schedule

2-c 1, 2 Role Schedule

3-b 1, 2, 3 Rule Schedule

4.2.1. Rule Schedule Strategy
Rule Schedule Strategy is a state space exploration approach utilizing rule sched-

ules (srule) to decompose the analysis into smaller problems and analyze them se-
rially with respect to time. In this strategy, we use the RBAC analysis approach by
Stoller et al. [30] extensively to explore potential states reachable in different time
instances.

Let m ∈ Mc ⊆ M be a subset of the rules in the analysis problem. A constant
region C(a, b,Mc) is a bounded time interval between t = a and t = b, a � b such
that ∀m ∈ Mc, (a, b) ⊆ smrule and �m′ /∈ Mc such that sm

′
rule ⊆ (a, b). Informally,

if a rule m is included in a constant region C then it should be valid in all time slots
α ∈ (a, b), and there should not be any other rule m′ that is valid in some but not all
of the time slots of (a, b). In the rule schedule approach, we split the timeline from 0
to TMAX into nonoverlapping constant regions Ci w.r.t. the srule of the roles.

In the analysis, we trace constant regions C1, C2, . . . serially with respect to time.
These regions can be seen as separate RBAC systems. However, Ci+1 depends on
Ci,∀i, which implies the output of an RBAC reachability analysis at Ci is an input
(or initial configuration) to Ci+1. Since an RBAC analysis could result in multiple
configurations, then, in each constant region, a separate RBAC analysis should be
performed for each configuration generated by the analysis done in the previous
constant region.

Example 4. Now, let us consider the hospital example given in Section 3.2. There
are eight different administrative rules with different valid periods as depicted in
Fig. 2, where the bars indicate their respective rule schedules. As can be seen from
the figure, the set of valid rules does not change in interval (0, 2) C1 and (2, 3) (C2).
More specifically, the valid rules for C1 are 1, 2, 3, 4, 6, 7, 8 and the valid rules for
C2 are 2, 4, 5, 8. Essentially, we decompose the analysis problem of TRBAC into
two subproblems which are similar to RBAC problems pertaining to these constant
regions.

There are other issues related to role schedules that are assigned by the rules. Re-
call that all of the rules have a role schedule which denotes the time intervals that
the role can be assigned. But, according to the rule definitions, the administrators are

982 E. Uzun et al. / Security analysis for temporal role based access control

Fig. 2. Rule schedules.

free to choose a sub schedule of the role schedule and assign/revoke, enable/disable
and modify the role (hierarchy) schedules only for some of the designated time in-
tervals. This further complicates the reachability analysis, since in a serial fashion,
one should keep all of the possible schedule combinations for the subsequent time
intervals. Therefore we make the following assumption to simplify the analysis:

Sub-schedule assumption. For each rule, the role (or hierarchy) schedule modifica-
tion operations are performed using the entire schedule srole (shierarchy, resp.). This
means that an administrator may use a rule to assign the associated role r to a user
u all of the subsets of the schedule srole (as long as the preconditions are satisfied).
In our analysis, we assume that srole (shierarchy, resp.) is assigned or revoked com-
pletely – no sub schedule assignments are allowed. Hence, this assumption ensures
that a rule can only generate at most one (new) configuration.

Here we provide a sketch of the algorithm. The TRBAC reachability analysis starts
with an initial configuration c0 and constant region C1. The state space is expanded
using Stoller et al.’s algorithm [30] (we refer this algorithm as SA) and the rules that
are valid at time t = 0.1 At the end of this step, a set of reachable configurations,
S1 = {c1, c2, . . . , cm} are obtained. Afterwards, the analysis moves to C2. For each
distinct configuration obtained so far, SA is used to expand these configurations using
the valid rules in this constant region. At the end of this step, we obtain an updated set
of reachable configurations S2 ⊇ S1. The algorithm then moves to C3 and the trace
goes in this fashion for a specified number of cycles P of length TMAX (The algorithm
returns to C1 whenever TMAX is reached). Since TURA tuple ST is finite and since
the iterations are bounded by the number of cycles, the algorithm is guaranteed to
terminate. However since this approach is a greedy heuristic, we are not guaranteed
to get an optimal solution.

4.2.2. Role schedule strategy
In this approach, we split the TRBAC security analysis problem into smaller

RBAC security analysis subproblems using the role schedules of the rules. The main
idea is to generate subproblems T (α,Ms) for each time slot α ∈ (0,TMAX) with
nontemporal administrative rules, so that the system can be treated like an RBAC.

1For the analysis of Dynamic Temporal Role Hierarchies, certain modifications are required as given
in Section 4.2.3.

E. Uzun et al. / Security analysis for temporal role based access control 983

Fig. 3. Role schedules.

Example 5. Consider Fig. 3, which shows the role schedules of the rules in the
hospital example given in Section 3.2. Here, we have three distinct time slots (Time
Slot 1: (0, 1), Time Slot 2: (1, 2), Time Slot 3: (2, 3)) with different rules. The rules
for Time Slot 1 are Rule 1, 3, 4, 6 and 7; for Time Slot 2 are Rule 3, 4 and 6; for
Time Slot 3 are Rule 2, 4, 5, 6 and 8.

In order to achieve nontemporal administrative rules, (and hence an RBAC sys-
tem for each time slot), we need to remove two components: Rule Schedules and
Role Schedules (Hierarchy Schedules) and we need to show the inter-time slot inde-
pendency. The removal of the role schedules follows the definition of subproblems
T (α,Ms). For the rule schedules, we observe the Long Run Behavior property of
the administrative model that we propose.

Long Run Behavior. In the long run, rule schedules of the rules can be neglected, if
the system is periodic.

Here we give the intuition of this result. Rule schedules restrict the times that
a particular rule can be fired. This means that if a rule m is valid in at least one
time slot and if the assignment/revocation (or enabling/disabling) operation that is
going to be performed m is necessary for the other rules m′, one can wait until m
becomes valid, and perform the necessary operation. The other rules m′ can be fired
next time when the system periodically repeats itself. For example, suppose that we
have two roles, r1 and r2 and two t_can_assign rules (. . . , (4, 10), {}, r1, . . .) and
(. . . , (1, 3), {r1}, r2, . . .). The first rule states that we can use it only within (4, 10);
the second rule states that we can only use it within (1, 3). Notice that if the rules are
serially applied with respect to time, then since the second rule has a precondition of
r1, we cannot fire second rule if we do not have r1 already assigned. It means that
first we need to wait until first rule becomes valid (until t = 4) and assign r1. Then
we should wait until the system restarts from t = 0 (since it is periodic) to fire second
rule. Then the Long Run Behavior property ensures that for the reachability analysis
purposes, if one waits sufficient amount of time then the effects of these kind of rule
conflicts can safely be neglected. This property allows us to treat all of the rules valid
on the entire time line. Hence, the srule restrictions can be relaxed from the rules.

In order to handle the independency issues among different time slots, we need
to consider preconditions. Recall that we define the preconditions as (Pos, Neg) rela-
tions to be satisfied in order to execute a rule. Now consider a rule m ∈ M which

984 E. Uzun et al. / Security analysis for temporal role based access control

belongs to T (α,M), and ŝ = α. In order to execute m, the precondition relations de-
clared by (Pos, Neg) of m must be satisfied for ŝ. For each role pos ∈ Pos (neg ∈ Neg,
resp.) ŝ ⊆ spos (ŝ ∩ spos = ∅, resp.) must be satisfied, which simply depends on the
corresponding (single) time slot in spos (sneg, resp.). Then it is sufficient to check the
schedule only for time slot α for each rule. This implies that the preconditions do not
depend on other time slots, hence the time slots are independent.

So, using the Long Run Behavior property and the independency of time slots,
one can perform an RBAC reachability analysis using the rules m ∈ M for time
slot α. Then, the whole TRBAC system can be analyzed by a series of independent
RBAC systems Ti traced separately. This reduction provides usability of any RBAC
reachability analysis procedure proposed in the literature.

The computational complexity of the algorithm depends on the RBAC analyzer.
Suppose that the RBAC analyzer has the complexity O(·) then our approach yields
a complexity of O(TMAX ·) since we utilize the RBAC analyzer for each time slot
(totally we have TMAX of them). Since the algorithm runs for TMAX iterations and
given that the RBAC analyzer terminates, our algorithm is guaranteed to terminate.

4.2.3. Modified SA for hierarchy analysis
The RBAC Analysis algorithm proposed by Stoller et al. [30] is a state space

exploration algorithm which is proved to be fixed parameter tractable. In our de-
composition approach, the subproblems obtained by the decomposition can be an-
alyzed by SA for Role Enabling, User to Role and Permission to Role assignment
relations. However, due to the precondition structure and SA not capable of han-
dling the can_modify rule, SA is unable to analyze the Temporal Role Hierarchy
subproblem. In this section, we make certain modifications on SA to fit the require-
ments of the role hierarchy analysis strategy that we propose for a TURA analysis
instance. We call this modified algorithm as MSA (given in Algorithm 1), which is
still a state space exploration algorithm, specifically designed for role hierarchies.
The purpose of MSA is to generate different possible static role hierarchies given a
set of t_can_modify rules. This algorithm can be used in both Rule Schedule and
Role Schedule strategies.

The state space is composed of the TRBAC configurations c, represented by
DTRH, generated by moves m, and authorized by the rules M. In the configura-
tions, the precondition statements are crucial to determine the relationship among
different rules. A role is hierarchy negative, if it appears negated in either junior or
senior preconditions of a t_can_modify rule. The other roles are called hierarchy
non-negative. A role is hierarchy positive, if it appears positive in either junior or
senior preconditions of a t_can_modify rule. The other roles are called hierarchy
non-positive. Any move m related to a DTRH policy with hierarchy non-negative or
hierarchy non-positive roles is called an invisible transition, the others are called vis-
ible transition. Any invisible transition that creates a conflict with the anti-symmetric
property of DTRH in Section 3.2 generates a new state. Any visible transition that
creates a conflict with the anti-symmetric property of DTRH in Section 3.2 is pro-
hibited.

E. Uzun et al. / Security analysis for temporal role based access control 985

Algorithm 1. The modified Stoller et al.’s Algorithm (MSA)

1: Set ST = {c0} as temporary, SP = ∅ as permanent set
2: Determine the non-positive and non-negative roles
3: while ST = ∅ do
4: Get a state c ∈ ST
5: Create a temporary state ctemp = c
6: for all Rules m ∈ ST that generate an invisible transition do
7: Check for hierarchy conflicts in ctemp

8: if There exists any violation then
9: Create a new state c′

10: Apply rule m on c′

11: Set ST = ST ∪ c′

12: else
13: Apply rule m on ctemp

14: end if
15: end for
16: Set c = ctemp

17: for all Rules m ∈ ST that generate a visible transition do
18: Create a new state c′

19: Check for hierarchy conflicts in c′

20: if There exists any violation then
21: Discard c′

22: else
23: Set ST = ST ∪ c′

24: end if
25: end for
26: Set ST = ST \c
27: Set SP = SP ∪ c
28: end while

In the analysis for role hierarchies, there is no goal state to be achieved, rather all
possible hierarchy configurations are constructed to be used to interpret the implicit
role assignments of the other steps of the analysis.

4.3. Stage 3: Interpretation of the results

The final step of the security analysis is to interpret the results obtained to con-
clude whether the access control configuration is vulnerable based on the analysis
of interest. In our analysis methodology, each step of the four step analysis proce-
dure outputs results for a different relation in TRBAC. However, these results are not
sufficient individually to answer the security questions. The results of different steps

986 E. Uzun et al. / Security analysis for temporal role based access control

of the analysis should be utilized together to obtain the correct result. For instance,
Role Assignment analysis could state that the goal role would be assigned to the tar-
get user, but that role might not get enabled at that time instance, meaning that it is
not possible for that particular user to exercise the goal role. This step is crucial to
interpret the security properties correctly.

Suppose that all four steps of the analysis is done. Each step outputs a set of state
configurations denoted as C1, C2, C3 and C4 respectively for the four steps. Each
configuration c ∈ C1 is composed of TUA, c ∈ C2 is composed of RS, c ∈ C3
is composed of DTRH and c ∈ C4 is composed of DTRH policies. For notational
simplicity, we denote the relations as configurations. Under these settings a given
TRBAC policies and rules create a security violation if they satisfy the following
criteria for different security questions of interest:

• Explicit Role Assignment: ∃TUA ∈ C1, RS ∈ C2: (u, r, s1) ∈ TUA ∧ (r, s2) ∈
RS ∧ s1 ∩ s2 = ∅.

• Implicit Role Assignment: ∃TUA ∈ C1, RS ∈ C2, DTRH ∈ C3: (u, r1, s) ∈
TUA ∧ (r1〈F〉si1

r2), . . . , (rn〈F〉sin r) ∈ DTRH ∧ (r1, sj1), (r2, sj2), . . . , (r,

sjn) ∈ RS ∧ s ∩ si1 ∩ · · · ∩ sin ∩ sj1 ∩ · · · ∩ sjn = ∅.2

• Role Enabling: ∃RS ∈ C2: (r, s) ∈ RS ∧ s = ∅.
• Permission Assignment: ∃TPA ∈ C4: (p, r, s) ∈ TPA ∧ s = ∅.
• Liveness for Explicit Role Assignment: ∀s1, s2,�TUA ∈ C1, RS ∈ C2: (u, r,
s1) /∈ TUA ∨ (r, s2) /∈ RS.

• Mutual Exclusion for Explicit Role Assignment: ∃TUA ∈ C1, RS ∈ C2: (u1, r,
s1) ∈ TUA ∧ (u2, r, s2) ∈ TUA ∧ (r, s3) ∈ RS ∧ s1 ∩ s2 ∩ s3 = ∅.

5. Computational experiments

We have performed computational experiments for the analysis of TRBAC using
Rule and Role Schedule Approaches. In our experiments we demonstrated the per-
formance of the Role Assignment (Step 1) and Role Hierarchy (Step 3), since the
other steps are analogous to Step 1. In the experiments we employ SA and MSA for
Role Assignment and Role Hierarchy components.

We implement our algorithm with C programming language and run it on a com-
puter with 3 GB RAM and Intel Core2Duo 3.0 GHz processor running Debian Linux
operating system. In the experiments, the initial state is set to be an empty state
(meaning that there are no role assignments), and the rules and the goal are created
randomly by the code with respect to the corresponding parameter values for the
number of rules, number of roles, number of time slots and the number of cycles. As
we discussed before, we assume separate administration. Also, for role hierarchies,

2Depending on the type of role hierarchy, role enabling criteria must satisfy the DTRH properties given
in Definitions 4–7.

E. Uzun et al. / Security analysis for temporal role based access control 987

Table 4

Parameter settings

Number of roles |R| 100, 500, 900

Number of rules |MALL| 100, 500, 900

Number of time slots TMAX 100, 500, 900

Number of cycles P 30 for all cases

we assume a general hierarchy relation. The parameter settings are shown on Table 4.
10 replications are done for each parameter setting and their average is reported. The
results are in Fig. 4(a), (b) and (c).

5.1. User to role assignment experiments

The complexity of the rule schedule approach algorithm depends not only on the
number of roles and rules but also depends on the number of time slots, and the
schedules (rule–role) that are assigned to the roles. The state space that is generated
by this algorithm tends to be exponential in the worst case since it is a brute force
state space exploration algorithm.

According to the results obtained for the rule schedule approach, the run time per-
formances of the algorithms do not tend to be exponential, especially for the number
of roles. A possible explanation to this situation is that the datasets are generated
randomly. Hence there does not exist any “pattern” among the rules. We mean pat-
tern in the sense that, the components that determine the usability of the rules, i.e.,
all of the precondition relations, rule and role schedules of the moves are generated
randomly – so it might become probabilistically harder to satisfy all of these condi-
tions. Nevertheless, the results give some insight about how the algorithm is likely
to behave under different parameter settings.

The effect of number of rules while all other parameters are constant is more
significant and tends to be an increasing relationship as number of rules increases
(see Fig. 4(b)). Moreover, the increasing tendency becomes more significant as the
number of roles and number of time slots increase. Furthermore, there is a noticeable
group formation between the fixed parameters (number of roles and number of time
slots). The groups are formed by different number of time slots values indicating
that the effect of number of roles is comparably smaller. Finally, Fig. 4(c) denotes
the relationship between different values of number of time slots parameter when the
other two parameters are kept constant. The results show that for the majority of the
cases, there is a linearly increasing relationship with the increasing number of rules.

For the role schedule approach, we use SA. According to the results obtained,
there is a linear and increasing relationship with 100, 500 and 900 roles in the system
while all other parameters are constant (see Fig. 5(a)). The effect of number of rules
while all other parameters are constant is very similar to the effect of roles. There is
an increasing relationship in the running time as the number of rules increases (see
Fig. 5(b)).

988 E. Uzun et al. / Security analysis for temporal role based access control

Fig. 4. Rule schedule approach for role assignment. (a) Effect of number of roles. (b) Effect of num-
ber of rules. (c) Effect of number of time slots. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/JCS-140510.)

E. Uzun et al. / Security analysis for temporal role based access control 989

Fig. 5. Role schedule approach for role assignment. (a) Effect of number of roles. (b) Effect of num-
ber of rules. (c) Effect of number of time slots. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/JCS-140510.)

990 E. Uzun et al. / Security analysis for temporal role based access control

Finally, Fig. 5(c) denotes the relationship between different values of number of
time slots parameter when the other two parameters are kept constant. The results
show that there is a linearly increasing behavior as the number of time slots increase.
This result is expected since the complexity of the algorithm linearly depends on this
parameter.

5.2. Role hierarchy experiments

In the role hierarchy experiments, we observe that the running times of both of the
approaches increased significantly. Especially for higher parameter settings for Rule
Schedule Approach, running times of 10,000 s, as opposed to a maximum of 12 s
for User to Role Assignment experiments are observed. The underlying reasoning
for this drastic increase is the fact that the state space consists of a pair of roles.
Moreover, the process of determining whether an intended update in any of the role
hierarchy pairs require examining the existing role hierarchy pairs to make sure that
the newly imposed changes will not create a conflict.

When the run time performances of rule schedule and role schedule approaches
are compared, a similar pattern as in the User to Role Assignment experiments is
observed. Role Schedule approach is significantly faster than the Rule Schedule ap-
proach due to the fact that the Rule Schedule approach is an exponential state space
exploration algorithm. The experimental results are given in Fig. 6(a), (b) and (c) for
Rule Schedule and Fig. 7(a), (b) and (c) for Role Schedule approach.

6. Temporal role hierarchies execution model

The dynamic temporal role hierarchy definition theoretically allows the access
control system to have a different hierarchy at each different time slot, hence users
can potentially acquire a totally different set of roles and permissions in each of
these slots. Recall that, the role hierarchy set is composed of role hierarchy policies.
In fact, these policies create a tree structure with roles as nodes and the policies as the
directed edges. So, the hierarchy can also be represented as a tree. In an application
perspective, it is necessary to determine exactly how the temporal role hierarchies
are represented in the system. There are two different ways: (1) A separate complete
hierarchy tree for each time slot. Then, the role/permission acquisition at each time
slot can be determined by tracing the complete role hierarchy tree of that particu-
lar time slot. (2) Retaining the Hierarchy Policies with embedded schedules, and the
role/permission acquisition decisions are made on demand. Both of these approaches
are useful under different circumstances. Now, we provide an insight about when to
use which representation to answer a query asking whether a role is senior to another
role in a given time slot. Having a separate complete role hierarchy at each time slot
provides faster response to any query that checks for an implicit assignment. A sim-
ple search (like depth-first search) done on this tree will provide an efficient answer

E. Uzun et al. / Security analysis for temporal role based access control 991

Fig. 6. Rule schedule approach for role hierarchy. (a) Effect of number of roles. (b) Effect of num-
ber of rules. (c) Effect of number of time slots. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/JCS-140510.)

992 E. Uzun et al. / Security analysis for temporal role based access control

Fig. 7. Role schedule approach for role hierarchy. (a) Effect of number of roles. (b) Effect of num-
ber of rules. (c) Effect of number of time slots. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/JCS-140510.)

E. Uzun et al. / Security analysis for temporal role based access control 993

in O(|R| log |R|) time. On the other hand, a search in the partial hierarchies require
an exponential O(|DTRH||DTRH|) time. However, the partial hierarchies can be bene-
ficial if the system faces many alterations in the role hierarchies. In this case a policy
change for a single time slot requires O(|DTRH|) time for the partial hierarchies, but
O(|R| log |R|) for separate complete hierarchy.

7. Related work

The pioneering works for the security analysis of policies are done for protection
schemes with Discretionary Access Control, which is usually composed of an ac-
cess control matrix and some operators to modify the scheme. Harrison et al. [14]
propose a formal model for protection systems, which shows that there is an algo-
rithm which decides whether or not a given mono-operational protection system and
initial configuration is unsafe for a given generic right. However, it is undecidable
whether a given configuration of a given protection system is safe for a given generic
right. Jones et al. [16] state that the safety analysis of whether a user will gain an
access right can be answered in linear time (for a specific class of simple policies).
Sandhu [26] proposes the Schematic Protection Model (SPM) that has a high ex-
pressive power and provides an analysis which is both decidable and tractable only
if the model is acyclic and attenuating. Ammann et al. [3] propose ESPM to address
the limitations of SPM. In fact, the main outcome of the paper is that, it proves that
ESPM is equivalent to HRU. The benefits of having strong typing in the access con-
trol schemes as depicted in SPM model can also be embedded into the basic HRU
model. Sandhu [27] proposes Typed Access Matrix (TAM) model to address this is-
sue and shows that HRU is a special case of TAM. Soshi [29] provides an extension
of TAM, called Dynamic TAM (DTAM), in which changes in object types are al-
lowed and allowing a nonmonotonic scheme and removing the restriction of strong
typing can also provide a decidable safety analysis under certain conditions.

For RBAC, there are some studies exploring the security analysis. Li and Tripuni-
tara [21,22] develop the first approach to security analysis in RBAC. Jha et al. [15]
state that the security analysis problem on URA with a simple query of whether a
user is a member of a particular role is PSPACE-Complete. Stoller et al. [30] consider
analyzing the security problem in a parameterized complexity environment. The al-
gorithm provided for analysis is said to be fixed parameter tractable with respect
to the number of roles. Ferrara et al. [12] proposes a set and numerical abstraction
based reduction of ARBAC97 policies into programs, so that a program verification
tool can be used to check the security properties. According to the results they obtain,
the model scales well to analyze security properties of large ARBAC policies.

The first model that embeds temporal data to access control is proposed by Bertino
et al. [7] and called the Temporal Authorization Model (TAM). The model is basi-
cally built on the Discretionary Access Control model using discrete time. Atluri and
Gal [4] propose another model that embeds the temporal notion into access control.

994 E. Uzun et al. / Security analysis for temporal role based access control

The first temporal model developed on RBAC – Temporal RBAC – is proposed by
Bertino et al. [8] that has periodic role enabling and role triggers. Joshi et al. [20]
propose Generalized Temporal RBAC model which considers Temporal constraints
on role assignments, role activations, enabling and disabling constraints (like cardi-
nality constraints), and temporal role hierarchies and SOD constraints in addition to
Temporal RBAC. Mondal et al. [23] provide a security analysis for Generalized Tem-
poral RBAC using timed automata to verify the safety and liveness security proper-
ties. This real time verification process is PSPACE-Complete. The important obser-
vation is that the verification process has a state space explosion for large number of
users.

The work in this paper builds upon our prior work in [31,32]. Uzun et al. [31]
provides an analysis for Temporal RBAC model that considers only time based de-
composition for user to role assignment and role enabling relations. Uzun et al. [32]
introduces the problem of security analysis for Dynamic Temporal Role Hierarchies.
In this paper, we present a comprehensive approach that takes all the components of
TRBAC into account and experimentally validate it with real data sets.

8. Conclusions and future work

Security analysis is vital for access control systems to capture any vulnerability
that the incorrectly configured policies might cause. In this paper, we emphasize
this analysis on the temporal extension of RBAC. Although there are models for the
temporal extension of RBAC proposed in the literature before, none of them has an
extensive analysis that captures temporal user to role and permission to role assign-
ments, as well as temporal role hierarchies and role enabling all together. We pro-
pose an administrative model that is capable of handling authorized changes on the
temporal policies. The security analysis methodology that we propose is structurally
flexible to adopt itself to various different security analysis purposes as to answer dif-
ferent security questions of interest. Our three stage analysis procedure decomposes
the analysis into relation based subproblems as well as time based sub-subproblems
to obtain RBAC-like analysis problems that are easier to handle. In addition to this,
we also propose an approach to analyze changes in role hierarchy in the presence of
can_modify type administrative rules. We demonstrate the run time performances
of these approaches on randomly generated data sets to show the effects of different
parameters on the running times.

Our future work is to further enhance our analysis with respect to its performance,
by providing an incremental security analysis. It is clear that the complexity of the
problems affects the running times of the analysis algorithms. An incremental anal-
ysis enables faster analysis to minor modifications (introducing a new rule or a new
role) done on already analyzed security problems by utilizing the previously gener-
ated state space. The help of the recycled states will eventually facilitate the analysis
by generating fewer new states when compared to a security analysis with an empty
initial state space.

E. Uzun et al. / Security analysis for temporal role based access control 995

References

[1] R. Agrawal, T. Imielinski and A. Swami, Mining association rules between sets of items in large
databases, in: Proceedings of the 1993 ACM SIGMOD Conference, 1993.

[2] S. Aich, S. Sural and A.K. Majumdar, Starbac: spatiotemporal role based access control, in: Pro-
ceedings of the 2007 OTM Confederated International Conference on the Move to Meaningful Inter-
net Systems: CoopIS, DOA, ODBASE, GADA, and IS, OTM’07, Part II, Springer, Berlin/Heidelberg,
2007, pp. 1567–1582.

[3] P. Ammann and R. Sandhu, Safety analysis for the extended schematic protection model, in: IEEE
Symposium on Security and Privacy, 1991, pp. 87–97.

[4] V. Atluri and A. Gal, An authorization model for temporal and derived data: securing information
portals, ACM Trans. Inf. Syst. Secur. 5(1) (2002), 62–94.

[5] E. Barka and R. Sandhu, Framework for role-based delegation models, in: Computer Security Ap-
plications, 2000. ACSAC’00. 16th Annual Conference, IEEE, 2000, pp. 168–176.

[6] E. Barka, R. Sandhu et al., A role-based delegation model and some extensions, in: Proceedings of
the 23rd National Information Systems Security Conference, Vol. 4, 2000, pp. 49–58.

[7] E. Bertino, C. Bettini and P. Samarati, A temporal authorization model, in: Proceedings of the 2nd
ACM Conference on Computer and Communications Security, CCS’94, 1994, pp. 126–135.

[8] E. Bertino, P. Bonatti and E. Ferrari, TRBAC: A temporal role based access control model, ACM
Transactions on Information and System Security 4(3) (2001), 191–233.

[9] J. Crampton and H. Khambhammettu, Delegation in role-based access control, in: Computer Secu-
rity – ESORICS 2006, 2006, pp. 174–191.

[10] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn and R. Chandramouli, Proposed NIST standard for
role-based access control, in: TISSEC, 2001.

[11] D.F. Ferraiolo, D.R. Kuhn, R. Chandramouli and J. Barkley, Role-based access control (RBAC), in:
15th National Computer Security Conference, 1992, pp. 554–563.

[12] A.L. Ferrara, P. Madhusudan and G. Parlato, Security analysis of access control policies through
program verification, in: 25th IEEE Computer Security Foundations Symposium, 2012.

[13] Q. Guo, J. Vaidya and V. Atluri, The role hierarchy mining problem: Discovery of optimal role
hierarchies, in: Computer Security Applications Conference, 2008. ACSAC 2008. Annual, IEEE,
2008, pp. 237–246.

[14] M.A. Harrison, W.L. Ruzzo and J.D. Ullman, Protection in operating systems, Commun. ACM 19(8)
(1976), 461–471.

[15] S. Jha, N. Li, M. Tripunitara, Q. Wang and W. Winsborough, Towards formal verification of role-
based access control policies, IEEE Trans. Dependable Secur. Comput. 5(4) (2008), 242–255.

[16] A.K. Jones, R.J. Lipton and L. Snyder, A linear time algorithm for deciding security, in: Proceedings
of the 17th Annual Symposium on Foundations of Computer Science, SFCS’76, IEEE Computer
Society, Washington, DC, USA, 1976, pp. 33–41.

[17] J. Joshi and E. Bertino, Fine-grained role-based delegation in presence of the hybrid role hierarchy,
in: Proceedings of the Eleventh ACM Symposium on Access Control Models and Technologies, 2006,
pp. 81–90.

[18] J. Joshi, E. Bertino and A. Ghafoor, Hybrid role hierarchy for generalized temporal role based ac-
cess control model, in: 26th Annual International Computer Software and Applications Conference,
2002. COMPSAC 2002. Proceedings, IEEE, 2002, pp. 951–956.

[19] J. Joshi, E. Bertino and A. Ghafoor, Temporal hierarchies and inheritance semantics for GTRBAC,
in: Proceedings of the Seventh ACM Symposium on Access Control Models and Technologies, ACM,
2002, pp. 74–83.

[20] J. Joshi, E. Bertino, U. Latif and A. Ghafoor, A generalized temporal role based access control
model, IEEE Transactions on Knowledge and Data Engineering 17(1) (2005), 4–23.

996 E. Uzun et al. / Security analysis for temporal role based access control

[21] N. Li and M.V. Tripunitara, Security analysis in role-based access control, in: Proceedings of the
Ninth ACM Symposium on Access Control Models and Technologies, SACMAT’04, ACM, New York,
NY, USA, 2004, pp. 126–135.

[22] N. Li and M.V. Tripunitara, Security analysis in role-based access control, ACM Transactions on
Information and System Security 9(4) (2006), 391–420.

[23] S. Mondal, S. Sural and V. Atluri, Towards formal security analysis of GTRBAC using timed au-
tomata, in: ACM Symposium on Access Control Models and Technologies, 2009, pp. 33–42.

[24] R. Sandhu et al., Role-based access control models, IEEE Computer, February 1996, pp. 38–47.
[25] R. Sandhu, V. Bhamidipati and Q. Munawer, The ARBAC97 model for role-based administration

of roles, ACM Transactions on Information and System Security 2(1) (1999), 105–135.
[26] R.S. Sandhu, The schematic protection model: its definition and analysis for acyclic attenuating

schemes, J. ACM 35(2) (1988), 404–432.
[27] R.S. Sandhu, The typed access matrix model, in: 1992 IEEE Computer Society Symposium on Re-

search in Security and Privacy, 1992, Proceedings, IEEE, 1992, pp. 122–136.
[28] A. Schaad, J. Moffett and J. Jacob, The role-based access control system of a European bank: A case

study and discussion, in: Proceedings of ACM Symposium on Access Control Models and Technolo-
gies, May 2001, pp. 3–9.

[29] M. Soshi, Safety analysis of the dynamic-typed access matrix model, in: Computer Security –
ESORICS 2000, Lecture Notes in Computer Science, Vol. 1895, Springer, Berlin/Heidelberg, 2000,
pp. 106–121.

[30] S.D. Stoller, P. Yang, C.R. Ramakrishnan and M.I. Gofman, Efficient policy analysis for adminis-
trative role based access control, in: ACM, 2007, pp. 445–455.

[31] E. Uzun, V. Atluri, S. Sural, J. Vaidya, G. Parlato, A.L. Ferrara and M. Parthasarathy, Analyzing
temporal role based access control models, in: Proceedings of the 17th ACM Symposium on Access
Control Models and Technologies, SACMAT’12, ACM, New York, NY, USA, 2012.

[32] E. Uzun, V. Atluri, J. Vaidya and S. Sural, Analysis of TRBAC with dynamic temporal role hierar-
chies, in: Data and Applications Security and Privacy XXVII, Springer, 2013, pp. 297–304.

[33] J. Wainer and A. Kumar, A fine-grained, controllable, user-to-user delegation method in RBAC, in:
Symposium on Access Control Models and Technologies: Proceedings of the Tenth ACM Symposium
on Access Control Models and Technologies, Vol. 1, 2005, pp. 59–66.

[34] L. Zhang, G. Ahn and B. Chu, A rule-based framework for role-based delegation and revocation,
ACM Transactions on Information and System Security (TISSEC) 6(3) (2003), 404–441.

[35] X. Zhang, S. Oh and R. Sandhu, Pbdm: a flexible delegation model in RBAC, in: Proceedings of the
Eighth ACM Symposium on Access Control Models and Technologies, ACM, 2003, pp. 149–157.

Copyright of Journal of Computer Security is the property of IOS Press and its content may
not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.

