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Identifying food deserts and swamps 
based on relative healthy food access: a 
spatio-temporal Bayesian approach
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Abstract 

Background: Obesity and other adverse health outcomes are influenced by individual- and neighbourhood-scale 
risk factors, including the food environment. At the small-area scale, past research has analysed spatial patterns of 
food environments for one time period, overlooking how food environments change over time. Further, past research 
has infrequently analysed relative healthy food access (RHFA), a measure that is more representative of food purchas-
ing and consumption behaviours than absolute outlet density.

Methods: This research applies a Bayesian hierarchical model to analyse the spatio-temporal patterns of RHFA in the 
Region of Waterloo, Canada, from 2011 to 2014 at the small-area level. RHFA is calculated as the proportion of healthy 
food outlets (healthy outlets/healthy + unhealthy outlets) within 4-km from each small-area. This model measures 
spatial autocorrelation of RHFA, temporal trend of RHFA for the study region, and spatio-temporal trends of RHFA for 
small-areas.

Results: For the study region, a significant decreasing trend in RHFA is observed (-0.024), suggesting that food 
swamps have become more prevalent during the study period. For small-areas, significant decreasing temporal 
trends in RHFA were observed for all small-areas. Specific small-areas located in south Waterloo, north Kitchener, and 
southeast Cambridge exhibited the steepest decreasing spatio-temporal trends and are classified as spatio-temporal 
food swamps.

Conclusions: This research demonstrates a Bayesian spatio-temporal modelling approach to analyse RHFA at the 
small-area scale. Results suggest that food swamps are more prevalent than food deserts in the Region of Waterloo. 
Analysing spatio-temporal trends of RHFA improves understanding of local food environment, highlighting specific 
small-areas where policies should be targeted to increase RHFA and reduce risk factors of adverse health outcomes 
such as obesity.

© 2015 Luan et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Past research has demonstrated that the food environ-
ment is an important factor in health outcomes. Several 
studies have shown that residents with higher access to 
healthy foods have healthier diets [1], lower risk of over-
weight/obesity [2], and lower risk of high blood pres-
sure [3]. Obesity, in particular, is a major risk factor for 

chronic diseases including heart diseases, stroke, and dia-
betes [4].

Acknowledging the role of healthy food access in shap-
ing food consumption and related health outcomes, 
policymakers have prioritized increasing healthy food 
access. In Canada, for example, the Ontario Professional 
Planners Institute has issued a call for action on plan-
ning for healthy food systems and engaging planners with 
food relevant issues [5]. Furthermore, the municipalities 
of Vancouver [6] and Toronto [7] have developed local 
programs to increase healthy food access by establishing 
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healthy corner stores that sell fresh produce and institut-
ing mobile grocery stores.

Measuring the food environment
Various measures have been developed for assessing the 
food environment and have been summarized [8–11] and 
compared [12, 13] in extant literature. While these meas-
ures can be categorized based on a number of different 
criteria (e.g., community or consumer nutrition environ-
ment1 [10]), one important distinction is between abso-
lute and relative measures.

The absolute and relative measures capture differ-
ent aspects of the food environment [12]. Absolute 
metrics (e.g., the density of supermarkets within a cen-
sus tract) measure access to one type of food outlet 
whereas relative metrics assess the relative accessibil-
ity of two types of food outlets, including healthy and 
unhealthy [14]. Recent research has demonstrated that 
relative healthy food access (RHFA), as measured by the 
percentage of healthy food outlets (=healthy outlets/
healthy  +  unhealthy outlets), better represents food 
purchasing and consumption behaviours [15, 16] com-
pared to absolute densities of healthy food outlets. This 
may be because RHFA measures the balance between 
healthy and unhealthy food outlets while absolute meas-
ures assess only a portion of the total food environment. 
While analysed in past research, relative measures has 
been shown to provide more consistent and expected 
associations with health outcomes. In a meta-analysis 
of 61 studies, Zenk et al. [17] observed four studies that 
employ relative food environment measures and all of 
these studies had consistent and expected findings (e.g., 
higher RHFA linked to lower odds of obesity), whereas 
mixed findings were identified in studies using absolute 
food environment measures. Relative measures also have 
methodological advantages since incorporating both 
absolute measures of healthy and unhealthy food outlets 
in regression models could lead to multi-collinearity as 
these two measures are usually positively correlated [16].

Capturing both healthy and unhealthy food outlets in 
one measure allows for a more comprehensive analysis of 
different dimensions of the food environment [18] and 
enables conceptualizing food deserts and food swamps 
on a continuous scale. Food deserts are areas lacking 
access to nutritious and affordable food (i.e., 0 % RHFA) 
and food swamps are areas that with relatively few 
healthy options (i.e., small RHFA) [19] or where “large 
relative amounts of energy-dense snack foods, inundate 
healthy food options” [20]. The modified Retail Food 
Environment Index (mRFEI) is a relative measure of the 

1 Community nutrition environment refers to characteristics such as food 
outlet types and locations; consumer nutrition environment includes in-
store characteristics such as food affordability, quality [56].

food environment that can represent both food deserts 
and food swamps2 where a value equal to zero character-
izes a food desert while a small value greater than zero 
characterizes a food swamp. Food deserts have been 
extensively investigated in past research, however recent 
research indicates food swamps may be more prevalent 
in countries including Canada [20–22].

Temporal variation in the food environment
Previous research has indicated that changes in the num-
bers and types of retail food outlets may lead to changes 
in food purchasing and consumption behaviours [23], 
however little research has analysed temporal changes in 
healthy food access, especially RHFA.

Temporal food access can be considered from supply 
(retail) and demand (consumer) sides. From the sup-
ply side, variations in temporal food access occur across 
years (e.g., new food outlets opening), seasons (e.g., farm-
ers’ markets), and weekdays (e.g., opening hours of food 
outlets) [23–27]. For example, Filomena et al. [23] investi-
gated annual changes of the food environment in Brook-
lyn, New York between 2007 and 2011 and observed that 
changes in absolute healthy food outlets varied between 
neighbourhoods based on income and ethnic composi-
tion, where low income and predominately non-white 
neighbourhoods experienced higher variations in healthy 
food access. Widener et al. [25] found that poorer neigh-
bourhoods have better spatial access to healthy foods 
in summer than in winter because of seasonal farmers’ 
markets. Also analysing food environments at the sea-
sonal scale, Lamichhane et al. [28] explored associations 
between absolute densities of supermarkets, conveni-
ence stores and socio-demographic characteristics. Posi-
tive associations were observed between the number of 
both types of food stores and neighbourhood poverty. 
Two recent studies from Chen and Clark [26, 27] sug-
gested that socio-economically marginalized neighbour-
hoods have limited temporal access, rather than spatial 
access, to healthy food outlets due to limited daily open-
ing hours of green retailers. Therefore, interventions 
such as extending opening hours of green retailers were 
recommended to reduce healthy food access disparities, 
complementing conventional interventions (e.g., building 
new healthy food outlets).

From the demand side, temporal food access is gen-
erally measured for individuals because it is largely 
determined by consumer time availability (e.g., people 
working non-conventional hours may be constrained by 
food outlet operating hours [26]). In this case, the space–
time prism has been used to quantify food accessibility, 

2 This paper follows the mRFEI approach to differentiate food deserts and 
food swamps.
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incorporating individual mobility and time budgets [29, 
30]. Findings from these studies identify which popula-
tion rather than which areas have greater or less access 
to healthy foods. Temporal variations in transporta-
tion service (especially public transit) that link supply 
and demand sides also influence healthy food access. 
For example, Farber et  al. [31] found that supermarket 
accessibility varied for public transit-dependent residents 
across the day in Cincinnati due to daily fluctuations in 
transit availability.

This study analyses annual spatio-temporal variations 
of RHFA at the small-area scale for the Region of Water-
loo, from 2011 to 2014, complementing past research that 
analyses only spatial variations and absolute healthy food 
access. RHFA at a small temporal scale (e.g., annual) mer-
its attention given that changes in the number and type of 
food outlets are slow and it probably takes a long time for 
the food environment to manifest its health effects [32]. 
Specifically, this study has three objectives: (1) to estimate 
temporal trend in RHFA for the study region (regional 
trend), (2) to identify spatio-temporal RHFA trends at the 
small-area scale (local trends), and (3) to highlight spatio-
temporal food swamps, or small-areas where RHFA is 
decreasing at a greater rate than the study region.

Study region and data
Study region
The Region of Waterloo, Ontario, Canada, is composed 
of three cities, Kitchener, Waterloo, and Cambridge, and 
four rural townships. It is located approximately 1 h west 
of Toronto, Canada’s largest city. For this study, rural town-
ships were excluded from the analysis because retail food 
outlets are primarily located in urban areas. City bounda-
ries were collected from the Region of Waterloo [33].

In total, 655 DAs with a population of 444,681 were 
analysed. For reference, DAs are the smallest census 
units that cover the entirety of Canada and are delineated 
according to roads and physical boundaries [34]. Average 
DA population density was 3234/km2, ranging between 
2/km2 in a predominantly industrial DA and 16,025/km2 
in a DA with many apartment buildings. Population data 
and geographic shapefiles were obtained from Statistics 
Canada [35].

Food outlet data
Retail food outlet locations were extracted from a food 
inspection dataset containing all food outlets in the 
Region of Waterloo. Some misclassification of outlets 
was detected, which is a common challenge encoun-
tered in secondary datasets [36, 37]. Retail food outlets 
were re-classified based on categories from the Nutri-
tion, Environment in Waterloo Region, Physical Activ-
ity, Transportation and Health (NEWPATH) project [38], 

which surveyed in-store characteristics of all food outlets 
(e.g., shelf-space dedicated to fruit and vegetables in a 
supermarket or availability of healthy eating options in a 
restaurant) in 2009. NEWPATH included nine categories: 
full-service restaurant, fast-food restaurant, bar/pub, 
supermarket, speciality food store, convenience store, 
pharmacy, superstore, and snack stand.

In practice, dichotomously categorizing food outlets 
as ‘healthy’ or ‘unhealthy’ is contentious because many 
healthy food outlets supply unhealthy food products. 
We followed the most common and simplest classifica-
tion scheme in the literature [39]: only supermarkets/
superstores are classified as healthy and only conveni-
ence stores and fast-food restaurants are classified as 
unhealthy. Similar approaches have been employed in 
recent Canadian [15, 40] and Australian [16] studies.

RHFA was calculated by dividing the number of healthy 
food outlets by the sum of healthy and unhealthy food out-
lets within a 4  km road network buffering distance from 
DA centroids. Food outlets that were located outside of the 
study region, but were inside buffers, were included. A 
4 km buffering distance was chosen because RHFA within 
a DA is likely not representative of food purchasing behav-
iours, as DAs are small (average area = 0.48 km2) and retail 
food outlets are often located close to small-area borders 
[41]. A 4  km road network buffer approximates a 5-min 
driving distance, which is the primary transportation 
mode for employment and shopping in the study region 
(approximately 85 % of employed residents either drive to 
work or are passengers3). A 5-min driving distance also 
captures local food environments for residents using other 
forms of transportation, such as public transit and cycling. 
For reference, the longest distance from a DA centroid to 
the closest healthy or unhealthy food outlet is 3.53 km.

Table 1 shows the descriptive statistics for healthy and 
unhealthy food outlets in the study region. Between 2011 
and 2014, the number of healthy food outlets slightly 
declined by three (4.3 %), while the number of unhealthy 
food outlets increased by 34 (3.6  %). As a result, RHFA 
for the study region decreased from 7 to 6.5 %. Notably, 
because the number of convenience stores decreased 
by 12, the increase in unhealthy food outlets is due to 
increasing numbers of fast-food restaurants.

Figure  1 shows the geographic distribution of healthy 
food outlets in the study region from 2011 to 2014. Most 
healthy food outlets were operational during the 4 years 
(green dots), with the exception of two (red dots) in 
north Kitchener and one (pink dot) in south Cambridge. 
One healthy food outlet at middle Cambridge (blue dot) 
was closed in 2012, but a new one was constructed at the 
same site in 2013.

3 The figure was derived based on Census Canada 2011.
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Figure  2 maps RHFA at the DA-scale for each year. 
RHFA values range from 0 % in all years to 20 % in 2012. 
Areas that have no healthy food outlets within 4 km are 
highlighted with hatched lines.

While no explicit thresholds have been applied to 
define food swamps, we assume that they are areas where 
RHFA is greater than zero and less than 10  %. This is 
based on a recent study that demonstrated that, in areas 
with more than 10 % of healthy food outlets, households 
had higher odds of purchasing healthier foods [16]. Most 
DAs (~90 %) are identified as food swamps because they 
have low RHFA (<10  %). Some DAs have RHFA of less 
than 5  % for the duration of the study period and are 
highlighted in Fig.  2: south Kitchener and north Cam-
bridge (Location A), southeast Waterloo and northeast 
Kitchener (Location B), and north Waterloo (Location 
C).

Notably, one DA in north Waterloo went from a food 
swamp in 2011 to a food desert in 2012, which was due to 
road network reconstructions that made supermarkets/
superstores inaccessible within 4  km. While the RHFA 
patterns in most small-areas are similar from 2011 to 

Table 1 Descriptive statistics of  retail food outlets 
and RHFA by year

2011 2012 2013 2014

Healthy food outlets 70 69 68 67

Unhealthy food outlets

 Total 932 939 942 966

 Convenience store 323 317 306 311

 Fast-food restaurant 609 622 636 655

Total healthy and unhealthy food outlets 1002 1008 1010 1033

RHFA (%) 7 6.8 6.7 6.5

0 52.5 Miles

Year of operation
2011-2012
2011-2013
2011, 2013, 2014
2011-2014

DA boundaries
Cambridge
Kitchener
Waterloo

Fig. 1 Distributions of healthy food outlets in the Region of Waterloo from 2011 to 2014
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2014, RHFA fluctuations in Location B are noticeable. In 
2012, RHFA increased in Location B because the num-
ber of accessible unhealthy food outlets decreased and 
the number of supermarkets/superstores was constant. 
Following closures of two supermarkets in 2013, RHFA 
decreased in these same areas.

Methodology
A Bayesian hierarchical model was used to analyse the 
spatio-temporal trend of RHFA. This approach was 
adapted from Bernardinelli et  al. [42] and has been 
widely used in spatio-temporal analysis of count data 
[43–45]. Bayesian approaches combine prior knowledge 
and observed data (i.e., accessible healthy food outlets) to 
estimate posterior distributions of unknown parameters 
(i.e., regional RHFA trend).

The spatio-temporal model consists of two levels. The 
first level [Model (1)] assumes that the count of healthy 
food outlets within 4  km of DA i at time j follows a 

binomial distribution, where Yij is the observed num-
ber of healthy food outlets, Tij is the sum of healthy and 
unhealthy food outlets, and pij is the probability of a food 
outlet being healthy. Of note, pij can be considered as 
an estimated RHFA and while different than calculated 
RHFA, they are both representative of the risk of low 
RHFA. The distinction will be detailed in the discussion 
section.

Using a logit link function, pij is decomposed into 
parameters measuring purely spatial variation, purely 
temporal variation, and spatio-temporal interaction at 
the second level [Model (2)].

Purely spatial variation is represented by an intercept 
α (average RHFA for the study region), ui (unstructured 
random effects), and si (spatially structured random 

(1)Yij ∼ Binomial (pij ,Tij)

(2)logit (pij) = α + ui + si + (γ + δi)tj

0%
2.9% ~ 5%
5% ~ 10%
10% ~ 15%
15% ~ 18.2%

2011

2014

0%
2.9% ~ 5%
5% ~ 10%
10% ~ 15%
15% ~ 20%

2012

2013

0 5 102.5 Miles

0%
2.3% ~ 5%
5% ~ 10%
10% ~ 15%
15% ~ 18.6%

0%

2.6% ~ 5%

5% ~ 10%

10% ~ 15%

15% ~ 19.2%

Mean: 7%
Median: 6.5%
S.D.: 2.4%
Range: 0 ~ 18.2%

Mean: 6.9%
Median: 6.5%
S.D.: 2.6%
Range: 0 ~ 19.2%

Mean: 7.1%
Median: 6.7%
S.D.: 2.4%
Range: 0 ~ 20%

Mean: 6.7%
Median: 6.4%
S.D.: 2.5%
Range: 0 ~ 18.5%

C: North Waterloo

B: Southeast Waterloo &
    Northeast Kitchener

A: South Kitchener &
     North Cambridge

Fig. 2 Quantile maps of RHFA from 2011 to 2014
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effects). Random effects (ui and si) deal with overdisper-
sion (greater variance than expected based on a prob-
ability distribution) which occurs when modelling count 
data at the areal level. Sources of overdispersion in small-
area studies include intra-area heterogeneity, which may 
be due to the presence of missing covariates or meas-
urement errors in covariates [43, 46, 47]. The spatially 
structured random effects, si, model the spatial autocor-
relation of RHFA. Because RHFA is calculated using a 
buffering approach, it is likely to be spatially autocorre-
lated such that nearby areas exhibit similar RHFA.

In Model (2), purely temporal variation of RHFA for 
the study region is captured by γ. We assumed a linear 
regional trend over a four-year period considering that 
the opening and closure of food outlets occur infre-
quently over time (compared to epidemiological cases 
that likely vary rapidly at small-area levels over 4  years, 
for example) (Fig.  2). The spatio-temporal interaction 
term δi models local differential trends (the difference 
between regional trend and local trends) in RHFA after 
accounting for purely spatial and temporal effects. Nota-
bly, tj is the centred time, calculated by subtracting the 
empirical mean from each time value, which has been 
suggested for better model convergence [48].

Model (2) can be extended to include other covariates 
[Model (3)]. Specifically, Xi

T is a vector of covariates that 
could be included in the modelling, and β is a vector of 
corresponding coefficients. An example of covariates to 
be included is population density to explore the possibil-
ity that food outlets are located in highly populated areas.

The posterior probability (PPi) of δi being less than 
zero measures the strength that the local trend negatively 
departs from the regional trend (γ) [43, 44]. Spatio-tem-
poral food swamps are small-areas that exhibit a decreas-
ing RHFA trend and a high probability of local RHFA 
trend being less than regional RHFA trend. Specifically, 
they are areas that have a negative local trend (γ + δi < 0) 
(i.e., decreasing RHFA from 2011 to 2014) and high PPi 
of δi less than zero (i.e., local RHFA trend strongly differs 
from the study region trend). Notably, spatio-temporal 
food swamps are not necessarily static food swamps.

We specified an improper uniform prior U (−∞, +∞) 
for the intercept α. Priors for spatial random effect si and 
spatio-temporal interaction δi were specified by the 
intrinsic (Gaussian) conditional autoregressive (ICAR) 
[49] distribution. Under the ICAR distribution, the 
expected mean of si and δi of the ith DA is the mean of 
adjacent si’s and δi’s, respectively, where adjacency is 
defined as areas sharing at least one common vertex 
[44]. Variances of si and δi is controlled by 

(3)logit(pij) = α + ui + si + (γ + δi)tj + Xi
Tβ

hyperparameters4 σs2 and σδ2, respectively, and is inversely 
proportional to the number of neighbours of the ith DA.

It should be noted that there are other prior specifica-
tions for spatial parameters, for example the proper 
(Gaussian) conditional autoregressive distribution. ICAR 
is appropriate for data that exhibits high spatial autocor-
relation [47, 50] and strong spatial autocorrelation of 
RHFA has been identified using Moran’s I5 (≥0.8).

A non-informative prior Normal (0, 1000) was given to 
the regional trend parameter γ and covariate coefficients 
β, respectively, while a prior of Normal (0,  σu2) was 
assigned to ui. Non-informative hyperpriors of Gamma 
(0.5, 0.0005) were given to the reciprocal of hyperparam-
eters σs2, σu2, and σδ2 (denoted as τs, τu, and τδ). To deter-
mine the degree to which hyperparameter specification 
influenced results, we performed sensitivity analysis 
using three alternative priors: (1) Gamma (0.001, 0.001) 
for τs, τu, and τδ, (2) a uniform prior U (0, 100) [44] for σs, 
σu, and σδ, and (3) a half normal prior Normal+∞ (0, 10)6 
[45, 51] for σs, σu, and σδ.

We fitted the models using the WinBUGS software [52] 
with two parallel chains thinned by 10 to reduce autocor-
relation. Convergence was checked by visually examining 
trace plots, history plots, autocorrelation plots, and Gel-
man-Rubin plots. Deviance Information Criterion (DIC) 
[53] was used to identify the model best fitting the data. 
The better model is the one with a smaller DIC value.

Results
Model (2) and (3) were compared in Table 2 to identify 
the model that better represents the spatio-temporal 
variation (rather than covariates) of RHFA, which is the 
main goal of this study. Model (3) extended Model (2) by 
testing the association between RHFA and population 
density, one of the major driving factors of the distribu-
tion of food outlets [24, 54]. This association was found 
to be insignificant. A DIC difference of 1.2 (10,162.5 ver-
sus 10,163.7) does not indicate remarkable improvement 
of model fitting, so we selected Model (2) based on the 
principle of parsimony.

For Model (2), convergence occurred by 10,000 itera-
tions (thinned by 10). We ran a further 10,000 iterations 
for both chains to obtain 20,000 samples of the posterior 
distribution. Regional trend (γ) was negative (−0.024) 
and statistically significant at the 95 % credible interval, 
indicating a decreasing trend of RHFA at the region-
scale from 2011 to 2014. The sensitivity analysis using 

4 In Bayesian approaches, hyperparameters are the parameters of priors. 
Priors assigned to hyperparameters are called hyperpriors.
5 Moran’s I is a statistical method to quantify spatial autocorrelations. A 
value of Moran’s I approaching 1 indicates strong positive autocorrelations.
6 +∞ means that only positive values from the normal distribution will be 
sampled.
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the alternative hyperpriors discussed above suggested 
that results are insensitive to the selection of hyperp-
riors as DIC differences between Model (2) and models 
using the three alternative priors are only 6.3, 5.8, and 1, 
respectively.

Figure  3a shows the area-specific differential trend, 
which indicates the degree to which local area-spe-
cific trends deviate from the regional trend. The map is 
smoothed because of the buffering approach used to cal-
culate RHFA and the addition of spatially structured ran-
dom effects.

Since the regional trend (γ) is −0.024 and the larg-
est differential trend (δi) is 0.004, no DAs exhibit 
a positive trend in RHFA (i.e., maximum trend is 
−0.024 +  0.004 = −0.02). A negative differential trend 
(δi) indicates a steeper decreasing trend than the regional 
trend while a positive one indicates a gentler decreasing 
trend. Areas in the lowest quantile (−0.004  ~  −0.002) 
have the steepest decreasing trend and are located 
in south Waterloo, north Kitchener, and southeast 
Cambridge.

Figure  3b shows PPi, or the strength that area-spe-
cific trend negatively deviates from the regional trend. 
Because food outlet closures and openings are slow, PPis 
are relatively small with the maximum 0.63. We assumed 
0.55, the fifth quintile threshold of PPis, to be a reason-
able threshold for defining a “high” PPi although higher 
thresholds have been used in other contexts [44, 45]. This 
threshold enables the top 20  % DAs to be identified as 
having a “high” PPi. As mentioned, areas with high PPi 
and negative (γ + δi) are spatio-temporal food swamps; 
therefore, areas in the lowest quantile (0.55  ~  0.63; 
Fig.  3b) are identified as spatio-temporal food swamps 
given that all small areas had a decrease trend of RHFA. 
As shown by Fig.  3, areas with high PPi coincide with 
areas with the steepest area-specific differential trends. 
This is expected as there is more evidence that these areas 
have a trend that negatively deviates from the regional 
trend. Notably, in Fig. 3b we highlight DAs that are not 
in the quantile with lowest RHFA (based on Fig.  2) but 
experienced a significant steeper decreasing trend of 
RHFA (more in the discussion).

Table 2 Spatio-temporal analyses results of Model (2) and Model (3)

a The 95 % Credible Interval is the range in which there is a 95 % probability that the posterior mean occurs

Model (2) Model (3)

Population density β (95 % Credible Interval)a NA 0.003 (−0.015, 0.022)

Regional trend γ (95 % Credible Interval) −0.024 (−0.036, −0.011) −0.024 (−0.037, −0.011)

DIC 10,162.5 10,163.7

δi
-0.004 ~ -0.002

-0.002 ~ 0

0 ~ 0.002

0.002 ~ 0.004

PPi
0.55 ~ 0.63

0.5 ~ 0.55

0.4 ~ 0.5

0.38 ~ 0.4

a b

0 5 102.5 Miles

Fig. 3 a Local differential trends (δi) and b the posterior probability of a local trend less than the regional trend (PPi)
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Discussion
Consistent with previous findings in the Canadian con-
text, this paper reveals that food swamps are more 
prevalent than food deserts in the study region. Using a 
Bayesian model that accounts for spatial autocorrelation 
and spatio-temporal interaction, this paper also shows 
that food swamps are becoming more prevalent during 
the study period.

Past research evaluating the food environment is pre-
dominantly spatial, thus providing limited insight into 
how RHFA is changing over time at the local scale. For 
example, spatial analysis of the food environment shows 
that Locations A, B, and C (Fig.  2) have similar RHFA 
(<5  %). Results of this spatio-temporal model, how-
ever, show that there is strong evidence (high PPi) that 
some DAs in Location B exhibited steeper decreasing 
trend of RHFA (δi  < −0.002) and can be categorized as 
spatio-temporal food swamps. Locations A and C had 
relatively stable RHFA and are not spatio-temporal food 
swamps (0  < δi  <  0.002). It is noteworthy that a spatio-
temporal food swamp could attribute to decreases of 
accessible healthy food outlets and/or increases of acces-
sible unhealthy food outlets during the study period. 
For example, two DAs that are both identified as spatio-
temporal food swamps in our analysis and have the same 
increase in fast-food restaurants; however one exhibits 
an increase in convenience stores (unhealthy) and the 
other exhibits a decrease in supermarkets/superstores 
(healthy).

This study has also identified areas that were not in 
the quantile of lowest RHFA based on only spatial and 
descriptive approaches, but have decreasing trends of 
RHFA that are steeper than the regional decreasing trend 
(highlighted in Fig. 3b). If the trend continues, these high-
lighted DAs could become new areas that have the lowest 
RHFA. Such temporal information cannot be quantified 
through visual comparison of multiple maps (Fig. 2) and 
can help policy makers prioritize specific areas for inter-
ventions. For instance, the spatio-temporal food swamps 
at south Waterloo, north Kitchener, and southeast Cam-
bridge should be prioritized since RHFA decreases faster 
in these areas.

As mentioned, estimated RHFA is different from cal-
culated RHFA. Calculated RHFA is simply the number 
of healthy food outlets divided by the sum of healthy and 
unhealthy food outlets. Estimated RHFA is the probabil-
ity of a food outlet being healthy [pij in Model (2)] and is 
based on calculated RHFA in a given DA and the average 
of calculated RHFA’s in adjacent areas [via the spatial ran-
dom effects in Model (2)]. In this case, estimated RHFA 
helps to account for the realistic assumption that people 
could travel beyond DA or buffering zone boundaries 
to procure food; therefore, the RHFA value is smoothed 

(Fig.  4b). In contrast, calculated RHFA constraints food 
access within the DA or buffering zones. Two DAs with 
the same calculated RHFA could have varied estimated 
RHFA if the averages of calculated RHFA’s in their adja-
cent areas are different. To exemplify the difference 
between calculated RHFA and estimated RHFA, we 
selected two pairs of DAs (highlighted in Fig. 4) with the 
same calculated RHFA but differing estimated RHFA in 
2014: one pair are food deserts (Areas 1 and 2 have cal-
culated RHFA = 0 %) and the other pair are food swamps 
(Areas 3 and 4 have calculated RHFA = 4.76 %). Area 1 
has a higher average of calculated RHFA’s among adjacent 
areas (3.58  %) compared to Area 2 (2.08  %), leading to 
Area 1 having a greater estimated RHFA. Similarly, Area 
3 has adjacent areas with a higher average of calculated 
RHFA’s than Area 4, leading to Area 3 having a greater 
estimated RHFA. Practically, these results suggest that 
Area 2 is a more serious food desert than Area 1 and that 
Area 4 is a more serious food swamp than Area 3. When 
identifying small-areas for food policy interventions, 
this information helps to continuously categorize food 
deserts and food swamps, suggesting that Area 2 should 
be prioritized first because it has the lowest estimated 
RHFA, followed by Area 1, Area 4, and Area 3 (Table 3).

There are several limitations to this research. First, we 
employed a 4 km buffer for calculating RHFA. Different 
buffer sizes could be used depending on policy targets 
(e.g., improve the RHFA within a walking distance), study 
region characteristics (e.g., compactness), and character-
istics of the local population (e.g., car ownership). The 
buffering size could also be altered accordingly based 
on food outlet types, which may be linked to the behav-
iours underlying travel patterns to visit specific healthy or 
unhealthy stores (and subtypes among them). Second, we 
applied the most common scheme for classifying healthy 
and unhealthy food outlets. The NEWPATH survey, from 
which food outlets were classified, measured in-store 
characteristics of food outlets and indicated that all non-
supermarket and non-superstore outlets (e.g., full-service 
restaurants and pub/bars), with the exception of specialty 
stores (e.g., bakeries), should be categorized as unhealthy. 
Moreover, supermarkets/superstores are also sources of 
unhealthy food options. We completed additional analy-
ses following in-store classification and counting gro-
cery stores as both healthy and unhealthy, but results of 
regional and local RHFA trends (thus the identification of 
spatio-temporal food swamps) were similar. Additional 
RHFA measures based on consumer nutrition environ-
ment, for instance, shelf space devoted to healthy foods 
divided by the total shelf spaces devoted to healthy and 
unhealthy foods in accessible food outlets [55], should be 
considered. Lastly, we used 10 % as a threshold to define 
food swamps. Nevertheless, this figure could be tailored 
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for different research contexts depending on the inter-
vention targets for striking balance between healthy and 
unhealthy food access as well as evidence of the level at 
which RHFA impacts healthy food purchase, consump-
tion, or health outcomes in specific study regions.

Future research should further apply this Bayesian 
approach in different contexts (e.g., outside Canada) to 
study spatio-temporal variations of the food environment 
accounting for transportation networks. Of particu-
lar interest is the association between changes in public 
transit and changes to RHFA. Future research could also 
analyse the association between spatio-temporal pat-
terns of the food environment and health or socio-eco-
nomic data, when available. Compared to spatial studies 
that analyse one time period, spatio-temporal analysis 
clarifies how changes in the food environment influence 
health outcomes (e.g., obesity), and how the food envi-
ronment may be changing in tandem with increasing or 
decreasing socioeconomic status.

Conclusions
This paper explores the spatio-temporal patterns of RHFA 
in the Region of Waterloo over 4  years, using a Bayes-
ian spatio-temporal modelling approach. This method 

quantifies regional temporal trend and local spatio-tempo-
ral trends of RHFA, which are not available from traditional 
spatial or descriptive analyses. In particular, this study adds 
to the literature for investigating relative food access at a 
small temporal scale (based on annual RHFA changes).

Results of our study are consistent with previous find-
ings in the Canadian context that food swamps are more 
prevalent than food deserts. While food deserts should 
be prioritized, food swamps (especially spatio-temporal 
food swamps) should not be overlooked by public health 
practitioners and policy-makers. In general, food swamps 
have become more prevalent during the study period, 
given that RHFA has decreased at the regional level and 
all DAs (most are food swamps in the starting year 2011) 
at the local level show significant decreasing trend of 
RHFA. Areas located at south Waterloo, north Kitchener, 
as well as southeast Cambridge have the steepest RHFA 
decreasing gradient (Fig. 3) thus are spatio-temporal food 
swamps and should be prioritized for interventions.
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Fig. 4 a RHFA in 2014 and b estimated RHFA in 2014 [pi4 in Model (2)]

Table 3 Calculated RHFA and estimated RHFA in 2014

a pi4 in Model (2) indicates the estimated RHFA in 2014

Area ID Calculated  
RHFA (%)

Average of calculated RHFA  
in neighbouring areas (%)

Estimated RHFA(%)a 
(95 % credible interval)

1 0 3.58 5.2 (4.1, 6.5)

2 0 2.08 4.9 (3.5, 6.6)

3 4.76 6.72 6.0 (5.0, 7.0)

4 4.76 5.31 5.3 (4.1, 6.7)
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