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Abstract: In this study, the coverage of downlink cellular orthogonal frequency-division multiple-access networks
transmitting one quadrature-amplitude modulation symbol per hop is analysed. The coverage probability is first
defined by using an upper bound on the bit error rate (BER) of a bit-interleaved coded modulation system. Moreover
then, the moment generating functions of the legacy Gaussian and Laplacian metrics (LMs) for soft-decision decoding
of an employed error-correcting code are derived for computing the upper bound on the BER and the corresponding
coverage probability of the networks. Numerical results demonstrate that due to the impulsive nature of the inter-cell
interference for moderate-to-small cell loads, the networks using the LM for soft-decision decoding significantly
outperform those employing the legacy Gaussian metric in terms of the achievable cell radius and the amount of the
average transmit power reduction.

1 Introduction

Orthogonal frequency-division multiple-access (OFDMA) has been
accepted in many cellular standards such as Institute of Electrical
and Electronics Engineers (IEEE) 802.16e/m [1, 2] and third
generation partnership project long term evolution (LTE) [3], since
it possesses high spectral efficiency as well as it does not suffer
from any intracell interference as long as the orthogonality among
subcarriers is maintained. However, the coverage performance of
downlink cellular OFDMA networks is mainly limited by the
severe intercell interference (ICI) on the mobile stations (MSs)
positioned at the cell edge [4]. The ICI may cause the reduction of
the achievable cell radius or the increase of the average transmit
power consumption.

Previous work [5–8] on the coverage analysis of downlink cellular
OFDMA networks has dealt with the signal-to-interference-plus-
noise ratio (SINR) as a major measure and has employed a
Gaussian approximation of the sum of the ICI and the background
noise, simply called the ‘ICI-plus-noise’, as in code-division
multiple-access networks [9]. However, the results in [10, 11]
reveal that in downlink cellular OFDMA networks transmitting
one quadrature-amplitude modulation (QAM) symbol per hop
(simply, downlink subcarrier-hopping cellular OFDMA networks),
the distribution of the ICI-plus-noise possesses a heavy tail and
deviates significantly from the Gaussian distribution for
moderate-to-small cell loads. This implies that the SINR may not
be an appropriate measure for predicting the error rate or the
coverage under such situations. It was also demonstrated in [10,
11] that decoders with non-Gaussian metrics based on the
statistical characteristics of the ICI-plus-noise offer a significant
performance gain over the decoder with the legacy Gaussian
metric (GM) [12] for soft-decision decoding of an error-correcting
code (ECC). For these reasons, it is challenging to quantify the
coverage performance of downlink subcarrier-hopping cellular
OFDMA networks employing a non-GM for soft-decision decoding.

In this paper, we analyse the coverage performance of downlink
subcarrier-hopping cellular OFDMA networks employing the legacy
Gaussian or Laplacian metrics (LMs) for soft-decision decoding of an
ECC, based on the union bound on the bit error rate (BER) of a

bit-interleaved coded modulation (BICM) system with quarternary
phase-shift keying (QPSK) modulation or 16-ary QAM. Throughout
this paper, the Gaussian (Laplacian, resp.) metric of a bit denotes its
log-likelihood ratio (LLR) under the assumption that the real and
imaginary parts of the ICI-plus-noise are approximated as
independent and identically distributed (i.i.d.) Gaussian (Laplacian,
resp.) random variables (RVs). The union bound on the BER of a
BICM system employing legacy GM was computed in [13].
However, there are no known results on the BER of that employing
non-GM. In downlink subcarrier-hopping cellular OFDMA networks,
the LM as a simple non-GM is observed to exhibit much better
performance than the GM for moderate-to-small cell loads. Moreover,
it allows one to compute a bound on the BER of a BICM system.
Therefore, it is employed as a non-GM for our coverage analysis in
this paper. The moment generating functions (MGFs) of the GM and
the LM for QPSK modulation or 16-ary QAM are derived and
employed for computing an upper bound on the BER of a BICM
system. On the basis of the bound, the coverage performance of
downlink subcarrier-hopping cellular OFDMA networks is evaluated.

Numerical results demonstrate that the cell radius of the networks
with QPSK modulation and 16-ary QAM increases by at least 40%
and 180%, respectively, and the average base station (BS) transmit
power can be reduced by at least 6 dB for all the considered cases,
when the LM is employed instead of the GM. Our approach can
be extended to the cases of 64-ary or 256-ary QAM, even though
these cases are not included here due to the limit of space. Since
the performance of the LM is far from the optimum decoding
performance in downlink subcarrier-hopping cellular OFDMA
networks, it is expected that the coverage performance may be
further improved with a non-GM.

The remainder of this paper is organised as follows. Section 2
briefly describes the system model. The coverage probability based
on the upper bound on the BER of a BICM system is defined in
Section 3. In Section 4, the MGFs of the GM and the LM for
QPSK modulation or 16-ary QAM are derived for computing the
upper bound on the BER. Numerical results on the coverage
performance of downlink cellular OFDMA networks with QPSK
modulation or 16-ary QAM are presented in Section 5. Finally,
concluding remarks are given in Section 6.
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2 System model

Consider a synchronous, downlink cellular OFDMA network with
NB BSs. It is assumed that one QAM symbol per MS is
transmitted in one of the available subcarriers in each OFDM
symbol where the chosen subcarriers are taken randomly among
the available subcarriers. Each BS sends K QAM symbols (hence,
supporting K MSs) in K subcarriers in each OFDM symbol
occupying a total of N (≥K) subcarriers, where N is equal to the
fast Fourier transform (FFT) size. Each OFDM symbol is
prepended with a cyclic prefix of length G, measured in OFDM
samples.

Let cm,k denote the M-ary QAM (M-QAM for short) symbol
transmitted by the mth BS on the kth subcarrier with E(cm,k) = 0
and E(c∗m, kcn, l) = dm, ndk, l where E(·) is the expectation operator,
and δm,n = 1 if m = n, and zero otherwise. Moreover, let
Es,m W gmET be the average received signal energy per subcarrier
by the desired MS from the mth BS where ET denotes the average
transmitted signal energy per subcarrier at each BS, given by
ET W (AB/Wl) with AB the average transmit power, W the signal
bandwidth, and l W K/N the cell load. The factor,
gm W 10(hm−r−10m log10 rm)/10 represents the coefficient considering
the path loss and the shadowing where ηm is a zero-mean
Gaussian RV with σS the shadowing standard deviation, ρ is the
path loss [in decibel (dB)] at 1 km, μ is the path loss exponent,
and rm is the Euclidean distance [in kilometre (km)] between the
mth BS and the desired MS. Since the variations in the shadowing
and the location of the MS are expected to be very slow, gm, m =
1, …, NB, are assumed to remain constant during the transmission
of a codeword of the ECC employed in the underlying OFDMA
network. This system model is identical to that described in [10],
except that only QPSK modulation or 16-QAM is considered in
this paper. The readers are referred to [10] for a more detailed
description.

Assuming that the desired MS is perfectly synchronised with the
selected BS possessing the maximum average signal strength, that is,
maxm=1, ...,NB

{gm}, the normalised FFT output at the kth subcarrier
of a given OFDM symbol is given in [10] by

Y [k] = Hm̂[k]cm̂, k + Z[k] (1)

for k [ Cm̂, where m̂ denotes the index of the selected BS, that is,
m̂ W argmaxm=1, ...,NB

{gm}, Cm is the set of subcarrier indices
occupied by the mth BS during the OFDM symbol duration, and

Z[k] W
∑NB

m=1,m=m̂

���
Im

√
Hm[k]cm, k pm, k +

W [k]�����
Es, m̂

√
represents the combined effect of the ICI and the additive white
Gaussian noise (AWGN), simply called the ‘ICI-plus-noise’. The
factor Hm[k] is the complex channel frequency response at the kth
subcarrier between the mth BS and the desired MS, which is
characterised by a circularly symmetric, zero-mean complex
Gaussian RV with E(H∗

m[k]Hm′ [k ′]) = dm,m′dk, k′ . The factor W[k]
represents the effect of the AWGN and is modelled as a zero-mean
complex Gaussian noise process with E(W*[k]W[l ]) =N0δk,l where
N0/2 is the two-sided power spectral density of the AWGN, given
by N0 W kBT (F − 1) with kB the Boltzmann constant, T the
absolute temperature, and F the noise figure of the desired MS
[14]. Moreover, Im W Es,m/Es, m̂ = gm/gm̂ represents the average
power ratio of the mth BS to the selected BS, and pm,k = 1 if k∈Cm,
and zero otherwise.

The probability density function (PDF) of the ICI-plus-noise Z[k],
conditioned on I W [I1, . . . , Im̂−1, Im̂+1, . . . , INB

] and l, is
derived in [10], but is complicated to exactly compute. Instead, the
conditional PDF of the ICI-plus-noise assuming that all interfering
cells employ a constant energy signal constellation is used in this
paper, as in [10] where this approximation is justified by the fact
that the uncoded symbol error rate based on (2) is shown to be
very close to the simulation results even in the case of 16-QAM.

That is, we have

fZ[k](z|I , l) =
∑1
p1, k=0

. . .
∑1

pm̂−1, k=0

∑1
pm̂+1, k=0

. . .
∑1

pNB , k=0∏NB
m=1,m=m̂ ((1− l)(1− pm, k )+ l pm, k )

pYPk , I ,l

× exp − |z|2
YPk , I ,l

( )
(2)

where

YPk , I ,l
W E |Z[k]|2|Pk , I , l

( ) = ∑NB

m=1,m=m̂

Im pm, k +
N0

Es, m̂

and Pk W [ p1, k , . . . , pm̂−1, k , pm̂+1, k , . . . , pNB , k
].

3 Coverage probability of the underlying OFDMA
network

In this section, we will introduce a method to compute an upper
bound on the BER of a convolutional code by using the MGF of a
metric for its soft-decision decoding. Moreover then, we will use it
to define the worst-case coverage probability of the underlying
OFDMA network when a convolutional code is employed as an
ECC. This method may be applicable to any binary ECC under
maximum-likelihood (ML) decoding.

It is well-known in [15] that the BER of a convolutional code is
upper bounded by

Pb ≤
∑1

d=dfree

BdPd

where dfree is the free distance of the considered convolutional code,
Bd denotes the total number of non-zero information bits on all the
weight-d paths, divided by the number of information bits per unit
time, and Pd stands for the pairwise error probability that a path of
weight d is selected as a decoder output, assuming that the all-zero
codeword was transmitted.

To compute the pairwise error probability Pd, we can assume
without loss of generality that the path chosen by the ML decoder
is different from the all-zero path at bit position i, i = 1, … , d, and
the metrics of the corresponding bits, denoted by Li, i = 1, … , d,
are i.i.d. LLRs having the same distribution as a given metric L.
Then, Pd can be expressed in [16] as

Pd = P
∑d
i=1

Li , 0

( )
. (3)

Since it is not easy to evaluate (3) directly, we employ the
saddlepoint approximation that approximates the cumulative
distribution function (CDF) of the sum of d i.i.d. RVs via the
MGF of L as follows. Let Φ(s) be the MGF of L, defined by
Φ(s) = E(exp (sL)), and let ŝ be the solution to F(1)(ŝ) = 0, where
F(n)(s) W (dn/dsn)F(s). Then, from the saddlepoint approximation
in [17], we have

Pd ≃ 1− Q(r)+ 1����
2p

√ exp − r2

2

( )
1

r
− 1

q

( )
(4)
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where

Q(x) W
1����
2p

√
∫1
x
exp − y2

2

( )
dy,

r = sgn(ŝ)
��������������
−2d ln F(ŝ)

√
,

q = ŝ

����������
d
F(2)(ŝ)

F(ŝ)

√
,

and sgn(x) denotes the sign of x. This method yields an extremely
accurate approximation to the CDF [17].

The coverage probability of the underlying OFDMA network is
defined as

Pcoverage W P PL
b , PT

b

( )
(5)

as in [7]. Here, PL
b is the BER when the ECC employed in the

underlying OFDMA network is decoded with a given metric L,
and PT

b denotes the maximum tolerable BER for a data traffic.
Unfortunately, it seems very difficult to predict the exact BER
performance of the underlying OFDMA network even when a
convolutional code is employed as an ECC. Therefore, in this
paper, we consider only the worst-case coverage probability, that
is, the coverage probability when PL

b in (5) is replaced by the
union bound defined as

Pb, UB W
∑1

d=dfree

BdPd . (6)

To compute this coverage probability, it is required to derive the
MGF of a given metric for soft-decision decoding, which
determines the pairwise error probability via (4) and the union
bound in (6) in turn.

4 MGFs of the Gaussian and Laplacian Metrics

In this section, we will derive the MGFs of the GM and the LM for
soft-decision decoding of the ECC employed in the underlying
OFDMA network with QPSK modulation or 16-QAM in order to
compute the pairwise error probability Pd in (4). Note that Pd is
employed in turn in the computation of the union bound on the
BER of a BICM system, and the coverage probability of the
underlying OFDMA network is evaluated.

For simplicity, it is assumed that the phase of Hm̂[k] is perfectly
compensated. Compensated by the phase of Hm̂[k], the normalised
FFT output in (1) is replaced by

Ỹ [k] = |Hm̂[k]|cm̂, k + Z̃[k]

for k [ Cm̂, where Ỹ [k] and Z̃[k] are the phase-compensated signals
of Y[k] and Z[k] in (1), respectively.

4.1 Gaussian metric

The legacy GM for soft-decision decoders with QAM over AWGN
or Rayleigh fading channels was first introduced in [12]. In general,
the GM is the most widely used metric obtained by approximating
the real and imaginary parts of Z̃[k] as i.i.d. Gaussian RVs [18, 19].
For n = 1, . . . , log2 M , let LGM,n be the GM of the nth bit, bn
belonging to the M-QAM symbol on the kth subcarrier in the
underlying OFDMA network. It is given in [10] by (see equation (7))
whereAn

i denotes the set of theM-QAMsymbolswhosenth bit is equal

to i∈ {0, 1}, a W |Hm̂[k]| is a Rayleigh-distributed RV with scale
parameter 1/2, Re{x} and Im{x} denote the real and imaginary parts
of x, respectively, and

�YI ,lW E |Z̃[k]|2|I , l( ) = l
∑NB

m=1,m=m̂

Im + N0

Es, m̂
.

Under the Gray-coded bit-to-symbol mapping rule in [20], it
suffices to consider only the GMs belonging to the real part of an
M-QAM symbol. Moreover, note that the max-log approximation ln
(ex + ey)≃max(x, y) is widely used in the literature [13, 21], since it
lowers the computational load without a serious performance loss.
For n = 1, . . . , ( log2 M )/2, let LGM, n

A,M be the approximated GM of
the nth bit belonging to the real part of the M-QAM symbol on the
kth subcarrier by the max-log approximation. Then

LGM, n
A,M = min

c̃[Bn1
(ỸR[k]− ac̃)2 − min

c̃[Bn0
(ỸR[k]− ac̃)2 (8)

where ỸR[k] is the real part of Ỹ [k] and B
n
i denotes the set of the real

parts of the M-QAM symbols whose nth bit is equal to i∈ {0, 1}.
For QPSK modulation (or 4-QAM),

LGM, 1
A, 4 = (ỸR[k]+ av4)

2 − (ỸR[k]− av4)
2 = 4av4ỸR[k] (9)

where v4 W 1/
��
2

√
is the normalisation factor of the QPSK signal

energy. Similarly, for 16-QAM,

LGM,1
A,16 = min

c̃[B11

(ỸR[k]− ac̃)2 − min
c̃[B10

(ỸR[k]− ac̃)2

=
8av16ỸR[k]+ 8a2v2

16, ỸR[k] , −2av16

4av16ỸR[k], −2av16 ≤ ỸR[k] , 2av16

8av16ỸR[k]− 8a2v2
16, ỸR[k] ≥ 2av16,

⎧⎪⎨
⎪⎩ ,

LGM, 2
A, 16 = min

c̃[B21

(ỸR[k]− ac̃)2 − min
c̃[B20

(ỸR[k]− ac̃)2

= 4av16ỸR[k]+ 8a2v2
16, ỸR[k] , 0

−4av16ỸR[k]+ 8a2v2
16, ỸR[k] ≥ 0

{

wherev16 W 1/
���
10

√
is the normalisation factor of the 16-QAMsignal

energy.
To estimate the upper bound on the BER of the desired MS in the

underlying OFDMA network employing the GM, we will derive the
MGF FGM

M (s|b = 0, I , l) of the approximated GM of an arbitrary
coded-bit, b for M-QAM, conditioned on b = 0, I and l. These
MGFs are needed in the computation of the pairwise error
probability, assuming that the all-zero codeword was transmitted.
Since LGM,n

A,M is a function of α and ỸR[k], it is possible to derive

its conditional MGF when the conditional PDF of ỸR[k] is given.
Note that

fỸR[k]
(y|bn = i, a, I , l) = 1

Bn
i

∣∣ ∣∣ ∑
c̃[Bni

fỸR[k]
(y|c̃, a, I , l)

= 1

Bn
i

∣∣ ∣∣ ∑
c̃[Bni

fZ̃R[k](y− ac̃|I , l) (10)

for i∈ {0, 1}, where Z̃R[k] denotes the real part of Z̃[k] and

LGM, nW ln

∑
c[An0

exp − (Re{Ỹ [k]− ac})
2 + (Im{Ỹ [k]− ac})

2
( )

/�YI ,l

( )
∑

c[An1
exp − (Re{Ỹ [k]− ac})

2 + (Im{Ỹ [k]− ac})
2

( )
/�YI ,l

( ) (7)
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fZ̃R[k]
(z|I , l) is given in [10] by

fZ̃R[k](z|I , l) =
∑1
p1, k=0

. . .
∑1

pm̂−1, k=0

∑1
pm̂+1, k=0

. . .
∑1

pNB , k=0∏NB
m=1,m=m̂ ((1− l)(1− pm, k )+ l pm, k )����������

pYPk , I , l

√

× exp − z2

YPk , I ,l

( )
.

For QPSK modulation, the MGF of the approximated GM,
conditioned on b1 = 0, α, I , and l, can be derived from (9) and (10) as

FGM
4 (s|b1=0,a, I , l)

=E exp sLGM,1
A,4

( )( )

=
∫1
−1

exp(4av4ys)fỸR[k]
(y|b1=0,a, I , l)dy

=
∑1
p1,k=0

...
∑1

pm̂−1,k=0

∑1
pm̂+1,k=0

...
∑1

pNB ,k=0

∏NB

m=1,m=m̂

((1−l)(1− pm,k )+lpm,k )

·exp(4a2v2
4s(1+YPk ,I ,l

s)). (11)

AveragingFGM
4 (s|b1 = 0, a, I , l) in (11) over α, we get

FGM
4 (s|b1 = 0, I , l)

=
∫1
0
FGM

4 (s|b1 = 0, a, I , l) · 2a exp (−a2) da

=
∑1
p1, k=0

. . .
∑1

pm̂−1, k=0

∑1
pm̂+1, k=0

. . .
∑1

pNB , k=0

∏NB

m=1,m=m̂

((1− l)(1− pm, k )+ l pm, k )

· 2g(s; YPk , I , l
, v4; 4, 1, 0, 0, 0, 0) (12)

where (13) for positive numbers Y, v and integers ci satisfying
c1v

2s(c2 + Ys) , 1, Y+ v2(c3 + c4Ys) . 0 and c5 + c6Ys ≥ 0.
In a similar way, the MGF FGM,n

16 (s|bn = 0, I , l) of
LGM,n
A,16 , n = 1, 2 for 16-QAM, conditioned on bn = 0, I and l,

may be computed as

FGM, n
16 (s|bn = 0, I , l) =

∫1
0
E exp (sLGM, n

A, 16 )
( )

· 2a exp (−a2) da,

n = 1, 2.

See Appendix 1 for more details. Note that the coded bits are
assumed to be randomly bit-interleaved in the underlying OFDMA
network with 16-QAM and then are mapped to 16-QAM symbols.
This implies that the approximated GM, LGMA, 16 of an arbitrary

coded-bit, b for 16-QAM may be modelled as

LGMA,16 =
LGM,1
A,16 , with probability 1/2

LGM,2
A,16 , with probability 1/2.

{
(14)

Hence, the conditional MGF of LGMA,16 for 16-QAM can be expressed
as a mixture form, given by

FGM
16 (s|b = 0, I , l) = 1

2
FGM, 1

16 (s|b1 = 0, I , l)

+ 1

2
FGM, 2

16 (s|b2 = 0, I , l). (15)

4.2 Laplacian metric

As shown in [10], the distribution of Z̃[k] possesses a heavy tail and
deviates significantly from the Gaussian distribution for
moderate-to-small cell loads. The results in [10] show that the
generalised GM (GGM) obtained by approximating the real and
imaginary parts of Z̃[k] as i.i.d. generalised Gaussian RVs has
significantly enhanced performance, compared with the GM. The
PDF of a generalised Gaussian RV X is given in [22] by

fX (x) =
a1

2a2G(1/a1)
exp − |x|

a2

( )a1( )
(16)

where a1 is the shape parameter determined by the normalised
kurtosis of X, a2 is the scaling factor given by
a2 =

�������������������������
G(1/a1)/G(3/a1)E(X 2)

√
, and G(z) W

�1
0 tz−1 exp (−t) dt [23].

The RV X is Laplacian for a1 = 1, whereas it is Gaussian for a1 = 2
[24]. In general, the shape parameter a1 in (16) makes it very
difficult to derive the MGF of the GGM and analyse the
corresponding coverage probability of downlink subcarrier-
hopping cellular OFDMA networks, except for the case that a1 = 1
or 2. This is why we employ the GGM with a1 = 1 as a simple
non-GM in this paper.

Approximating the real and imaginary parts of Z̃[k] as i.i.d.
Laplacian RVs, that is, a1 = 1 in (16), we define the LM for
soft-decision decoding of an employed ECC. The LM has little
performance loss for QPSK modulation, compared with the GGM.
Even though the LM for 16-QAM exhibits slightly worse
performance than the GGM, it still outperforms the GM for
moderate-to-small cell loads. For n = 1, . . . , log2 M , let LLM,n

be the LM of the nth bit belonging to the M-QAM symbol on the
kth subcarrier in the underlying OFDMA network, given by (17)
where �YI ,l, A

n
i and α are defined as before. As in the GM, let

LLM, n
A,M , n = 1, . . . , ( log2 M )/2 be the approximated LM of the

nth bit belonging to the real part of the M-QAM symbol on the
kth subcarrier by the max-log approximation. Then

LLM, n
A,M = min

c̃[Bn1
|ỸR[k]− ac̃| − min

c̃[Bn0
|ỸR[k]− ac̃|

(s; Y, v; c1, c2, c3, c4, c5, c6) W
v(c5 + c6Ys)−

���������������������
Y+ v2(c3 + c4Ys)

√
2(−1+ c1v

2s(c2 + Ys))
���������������������
Y+ v2(c3 + c4Ys)

√ (13)

LLM, n = ln

∑
c[An0

exp − |Re{Ỹ [k]− ac}| + |Im{Ỹ [k]− ac}|( )
/

��������
�YI ,l/4

√( )
∑

c[An1
exp − |Re{Ỹ [k]− ac}| + |Im{Ỹ [k]− ac}|( )

/

��������
�YI ,l/4

√( ) (17)
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where ỸR[k] and Bn
i are defined as in (8). For QPSK modulation,

LLM, 1
A, 4 = |ỸR[k]+ av4| − |ỸR[k]− av4|

=
−2av4, ỸR[k] , −av4

2ỸR[k], −av4 ≤ ỸR[k] , av4

2av4, ỸR[k] ≥ av4

⎧⎪⎨
⎪⎩ (18)

where v4 = 1/
��
2

√
. Similarly, for 16-QAM,

LLM, 1
A, 16 = min

c̃[B11

|ỸR[k]− ac̃| − min
c̃[B10

|ỸR[k]− ac̃|

=

−4av16, ỸR[k] , −3av16

2ỸR[k]+ 2av16, −3av16 ≤ ỸR[k] , −2av16

−2av16, −2av16 ≤ ỸR[k] , −av16

2ỸR[k], −av16 ≤ ỸR[k] , av16

2av16, av16 ≤ ỸR[k] , 2av16

2ỸR[k]− 2av16, 2av16 ≤ ỸR[k] , 3av16

4av16, ỸR[k] ≥ 3av16,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LLM, 2
A, 16 = min

c̃[B21

|ỸR[k]− ac̃| − min
c̃[B20

|ỸR[k]− ac̃|

=

−2av16, ỸR[k] , −3av16

2ỸR[k]+ 4av16, −3av16 ≤ ỸR[k] , −av16

2av16, −av16 ≤ ỸR[k] , av16

−2ỸR[k]+ 4av16, av16 ≤ ỸR[k] , 3av16

−2av16, ỸR[k] ≥ 3av16

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

where v16 = 1/
���
10

√
.

Using the same approach as in the GM case of the previous
section, we will derive the MGF FLM

M (s|b = 0, I , l) of the
approximated LM of an arbitrary coded-bit, b for M-QAM,
conditioned on b = 0, I , and l. It is needed in the estimation of
the upper bound on the BER of the desired MS in the underlying
OFDMA network employing the LM. For QPSK modulation, the
MGF of the approximated LM, conditioned on b1 = 0, I , and l,
may be obtained from (18) and (10) as

FLM
4 (s|b1 = 0, I , l)

=
∫1
0
E exp (sLLM, 1

A, 4 )
( )

· 2a exp (− a2) da. (19)

See Appendix 2 for more details.
Similarly, the MGFFLM, n

16 (s|bn = 0, I , l) of LLM, n
A, 16 , n = 1, 2 for

16-QAM, conditioned on bn = 0, I and l, may be derived. See
Appendix 3 for more details. Under the same situation as in the
case of the approximated GM, the approximated LM, LLMA, 16 of an
arbitrary coded-bit, b for 16-QAM may be modelled as

LLMA, 16 =
LLM, 1
A, 16 , with probability 1/2

LLM, 2
A, 16 , with probability 1/2.

{
(20)

Hence, the conditional MGF of LLMA, 16 for 16-QAM can be expressed
as a mixture form, given by

FLM
16 (s|b = 0, I , l) = 1

2
FLM, 1

16 (s|b1

= 0, I , l)+ 1

2
FLM, 2

16 (s|b2 = 0, I , l). (21)

5 Numerical results

We present numerical results on the coverage performance of
downlink subcarrier-hopping cellular OFDMA networks with

QPSK modulation or 16-QAM when the LM or the GM are used
for soft-decision decoding of an employed ECC. For our
simulation, omnidirectional hexagonal cells are considered with NB

equal to 7. The desired MS is assumed to be located at the cell
edge and the noise figure F of the desired MS is set to 7 dB as in
[7] with the absolute temperature T of 290 K. The FFT size N is
taken to be 1024 and the signal bandwidth W is set to 10 MHz.
The average BS transmit power AB is considered to be 5, 10, 20,
and 40 W. The shadowing standard deviation σS is set to 8 dB
for the shadowing case and the path loss model is assumed to be
ρ = 128.1 dB at 1 km with μ = 3.76 as in [7]. The convolutional
code with generator polynomials (175)8, (133)8, and (145)8 whose
weight spectrum is given in [25] is employed where the
information length is 144, the code rate is 1/3, the constraint
length is 7, and the Viterbi algorithm is employed for decoding.
The coded bits are randomly interleaved prior to being mapped
into a stream of QAM symbols.

In the underlying OFDMA network with QPSK modulation, the
sum

∑d
i=1 Li in (3) consists of d i.i.d. RVs where Li, i = 1,… , d,

have the same distribution as LGM, 1
A, 4 in (8) for the approximated

GM or LLM, 1
A, 4 in (18) for the approximated LM. Similarly, in the

case of 16-QAM, it is made up of d i.i.d. RVs where Li, i = 1,… ,
d, have the same distribution as LGMA, 16 in (14) or LLMA, 16 in (20).
The MGFs in (12), (15), (19), and (21) can be applied to the
computation of the corresponding pairwise error probability Pd in
(4). Since the pairwise error probabilities obtained from the MGFs
in (12), (15), (19), and (21) are conditioned on I and l, the
coverage probability conditioned on l can be computed by
averaging the coverage probability in (5) over I via Monte Carlo
integration techniques [26].

For the no-shadowing case, the BER of the networks with QPSK
modulation or 16-QAM is shown in terms of the cell load in Fig. 1,
where the radius of each cell is set to 1 km and the average BS
transmit power is set to 20 W. Even though the LM has slightly
worse performance than the GGM, it exhibits much better
performance than the GM for moderate-to-small cell loads.
Moreover, as the cell load decreases, the upper bounds on the
BER agree with the simulation results at the range of BER < 10−4.
Except Fig. 1, we assume the shadowing case throughout this
section and compute the coverage probability of the networks for
small cell loads. Note that small cell loads are considered to be
practical as in [4, 7, 27–29].

Fig. 2 shows the coverage probability versus the cell load. The
target BER, PT

b ranges from 10−5 to 10−3 [30] for various types of
traffic, as shown in Table 1. The radius of each cell is set to 1 km
and the average BS transmit power is set to 20 W. For the cell
load of l < 50%, the coverage probability for the LM outperforms
that for the GM as expected, since the ICI-plus-noise is impulsive for

Fig. 1 BER versus the cell load for the no-shadowing case when AB = 20 W
and the cell radius is set to 1 km
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moderate-to-small cell loads. Moreover, as the target BER decreases,
the cell load satisfying the coverage probability of 90% increases
when the LM is employed instead of the GM. For example, by
employing the LM instead of the GM for 16-QAM, the cell load
satisfying the coverage probability of 90% increases from 2.6% to
11.7% at PT

b = 10−3 and from 0.7% to 8.8% at PT
b = 10−4. This is

approximately four-fold at PT
b = 10−3 and twelve-fold at PT

b = 10−4.
The coverage probability versus the cell radius is shown in

Figs. 3–5. We first choose the values of the cell load from Fig. 2,
which satisfy the coverage probability of 90% with the GM. Next,
we evaluate the coverage probability versus the cell radius for a
given value of the cell load when the average BS transmit power
varies. The expected gain in the cell radius of networks satisfying
the coverage probability of 90% increases by at least 40% and
180% for QPSK modulation and 16-QAM, respectively, when the
LM is employed instead of the GM. Moreover, the average BS

transmit power can be reduced by at least 6 dB for all the
considered cases when the LM is employed instead of the GM.
For example, in Fig. 3, the cell radius of the networks satisfying
the coverage probability of 90% with the GM and AB = 20 W is
the same as that of the networks with the LM and AB = 5 W. The
gain in the achievable cell radius and the amount of the average
BS transmit power reduction may be further improved if the GGM
is employed instead of the LM.

In the case of high cell loads, the distribution of the ICI-plus-noise
is observed in [10, 11] to be close to the Gaussian distribution. Thus,
we can easily expect without the help of analysis that the networks
employing the LM or the GGM may have almost the same
coverage performance as those employing the GM for high cell
loads. In fact, Fig. 1 shows that these two networks tend to have
the same BER performance when the cell loads increase.

6 Conclusions

We analysed the coverage performance of downlink
subcarrier-hopping cellular OFDMA networks with QPSK
modulation or 16-ary QAM, based on the union bound on the
BER of a BICM system. The MGFs for the GM and the LM were
derived and used for computing the pairwise error probability and

Fig. 3 Coverage probability versus the cell radius for QPSK modulation
when σS = 8 dB and PT

b = 10−3 (l= 32.7%)
Fig. 5 Coverage probability versus the cell radius for 16-QAM when σS =
8 dB and PT

b = 10−3 (l = 2.6%)

Fig. 2 Coverage probability versus the cell load when σS = 8 dB, AB =
20 W, and the cell radius is set to 1 km

Table 1 Maximum tolerable BERs for various types of traffic [30]

Types of traffic Maximum tolerable BER (PT
b )

voice 10−3

constant bit rate digital audio 10−4

constant bit rate digital video 10−5

Fig. 4 Coverage probability versus the cell radius for QPSK modulation
when σS = 8 dB and PT

b = 10−5 (l = 14.8%)
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the coverage probability when a convolutional code is employed.
Numerical results demonstrate that downlink subcarrier-hopping
cellular OFDMA networks with the LM significantly
outperform those with the GM in terms of the achievable cell
radius and the amount of the average BS transmit power
reduction when the cell loads are moderate to small. It is also
expected that the coverage performance may be further
improved with a non-GM that outperforms the LM.
Furthermore, our approach can be naturally extended to the
cases of 64-ary or 256-ary QAM, even though these cases are
not included here due to the limit of space.
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9 Appendices

9.1 Appendix 1: Derivation of the MGF of LGM, n
A, 16 , n = 1, 2

for 16-QAM

The expressions for the MGF of LGM, n
A, 16 , n = 1, 2 for 16-QAM may

be derived as (see equation (22))

and (see equation (23))

9.2 Appendix 2: derivation of the MGF
FLM

4 (s|b1 = 0, I , l) of LLM,1
A, 4 for QPSK modulation

The MGF of LLM, 1
A, 4 may be obtained from (18) and (10) as (see

equation (24)) where

f1(x) W 1+ 2 exp (x2)Q(x
��
2

√
).

Since there is no closed-form expression for Q(x), we employ the
approximation of Q(x) given in [31] by

Q(x) ≃
1

12
exp − x2

2

( )
+ 1

4
exp − 2x2

3

( )
, x ≥ 0

1− 1

12
exp − x2

2

( )
+ 1

4
exp − 2x2

3

( )[ ]
, x , 0.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(25)

Note that this approximation provides a tight upper bound for Q(x)
and is widely used for performance analysis of the system [32–
34]. On the basis of this approximation, we may approximate
FLM

4 (s|b1 = 0, I , l) in (24) as (see equation (26) at the bottom of
the next page) for s≥ 0, where

f2(x)W1−2
��
p

√
xexp(x2)Q(x

��
2

√
),

z(s;Y,v; c1, c2, c3)W c1b(Y,v; c2)
( )−1

f2 c3vs b(Y,v; c2)
( )−1/2

( )
,

b(Y,v; c1)W1+c1v
2Y−1

for positive numbers Y, v and real numbers ci. In general, s is a
complex variable, while the argument in the Q-function is
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restricted to a real number. Therefore, s is dealt with as a real variable
here.

When s < 0, the MGF FLM
4 (s|b1 = 0, I , l) of LLM, 1

A, 4 can be
similarly approximated from (24) by using the approximation of Q
(x) in (25), that is (27) where (28) for positive numbers Y, v and
real numbers ci.

9.3 Appendix 3: derivation of the MGF of LLM, n
A, 16 , n = 1, 2

for 16-QAM

In this Appendix, the approximated expressions for the MGF of
LLM, n
A, 16 , n = 1, 2 for 16-QAM are presented. Using the

approximation of Q(x) in (25), we approximate (see (29)) and (30)
where (31) for positive numbers Y, v and real numbers ci.

FGM, 1
16 (s|b1 = 0, I , l)

=
∫1
0
E exp (sLGM, 1

A, 16 )
( )

· 2a exp (−a2) da

=
∑1
p1, k=0

. . .
∑1

pm̂−1, k=0

∑1
pm̂+1, k=0

. . .
∑1

pNB , k=0

∏NB

m=1,m=m̂

((1− l)(1− pm, k )+ l pm, k )

· 1
2

g(s; YPk , I ,l
, v16; 16, 0, 1, −8, 1, −4)+ g(s; YPk , I ,l

, v16; 16, 2, 25, 8, 5, 4)
{

+ 2g(s; YPk , I ,l
, v16; 4, 1, 0, 0, 0, 0)− g(s; YPk , I ,l

, v16; 4, 3, 25, 8, 5, 2)

+ 2g(s; YPk , I ,l
, v16; 16, 1, 0, 0, 0, 0)− g(s; YPk , I , l

, v16; 4, 1, 9, 8, 3, 2)

+ g(s; YPk , I ,l
, v16; 4, 3, 1, −8, 1, 2)+ g(s; YPk , I ,l

, v16; 16, 1, 9, 8, 3, 4)

− g(s; YPk , I , l
, v16; 4, 1, 1, −8, 1, −2)− g(s; YPk , I ,l

, v16; 16, 1, 1, −8, 1, 4)
}

(22)

FGM, 2
16 (s|b2 = 0, I , l)

=
∫1
0
E exp (sLGM, 2

A, 16 )
( )

· 2a exp (−a2) da

=
∑1
p1, k=0

. . .
∑1

pm̂−1, k=0

∑1
pm̂+1, k=0

. . .
∑1

pNB , k=0

∏NB

m=1,m=m̂

((1− l)(1− pm, k )+ l pm, k )

· g(s; YPk , I , l
, v16; 4, 3, 1, −8, 1, 2)− g(s; YPk , I , l

, v16; 4, 1, 1, −8, 1, −2)
{

+ 2g(s; YPk , I ,l
, v16; 4, 1, 0, 0, 0, 0)

}
.

(23)

FLM
4 (s|b1 = 0, I , l)

=
∫1
0
E exp (sLLM, 1

A, 4 )
( )

· 2a exp (−a2) da

=
∑1
p1, k=0

. . .
∑1

pm̂−1, k=0

∑1
pm̂+1, k=0

. . .
∑1

pNB , k=0

∏NB

m=1,m=m̂

((1− l)(1− pm, k )+ l pm, k )

·
∫1
0

exp −2av4s
( )

Q
2av4�����������
YPk , I ,l

/2
√
⎛
⎜⎝

⎞
⎟⎠

⎧⎪⎨
⎪⎩ + 1

2
exp 2av4s
( )

f1 s
��������
YPk , I ,l

√( )

− exp s2YPk , I ,l
+ 2av4s

( )
Q

2av4 + sYPk , I ,l�����������
YPk , I ,l

/2
√

⎛
⎜⎝

⎞
⎟⎠
⎫⎪⎬
⎪⎭ · 2a exp (−a2) da

(24)

FLM
4 (s|b1 = 0, I , l) ≃

∑1
p1, k=0

. . .
∑1

pm̂−1, k=0

∑1
pm̂+1, k=0

. . .
∑1

pNB , k=0

∏NB

m=1,m=m̂

((1− l)(1− pm,k )+ l pm,k )

· z s; YPk , I ,l
, v4; 4,

16

3
, 1

( )
+ 1

2
f1 s

��������
YPk , I ,l

√( )
f2(−v4s)

{

− exp − s2YPk , I ,l

3

( )
z s; YPk , I ,l

, v4; 4,
16

3
,
5

3

( )}
(26)
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FLM
4 (s|b1 = 0, I , l) =

∫1
0
E exp (sLLM, 1

A, 4 )
( )

· 2a exp (−a2) da

≃
∑1
p1, k=0

. . .
∑1

pm̂−1, k=0

∑1
pm̂+1, k=0

. . .
∑1

pNB , k=0

∏NB

m=1,m=m̂

((1− l)(1− pm, k )+ l pm, k )

·
{
j(s; YPk , I , l

, v4; 4, 1)+
1

2
f1 s

��������
YPk , I ,l

√( )
f2(−v4s)− exp YPk , I

s2
( )

x s; YPk , I
, v4;

1

2
, 1

( )

− 12b(YPk , I
, v4; 4)

( )−1
c s; YPk , I

, v4;
1

2
, 0, 4, 1, 1

( )
− exp − YPk , I

, s2

3

( )
4b YPk , I

, v4;
16

3

( )( )−1

· c s; YPk , I
, v4;

1

2
, − 4

3
,
16

3
,
3

5
, 1

( )}

(27)

j(s; Y, v; c1, c2) W z(s; Y, v; 12, c1, c2)+ z s; Y, v; 4,
4

3
c1, c2

( )
,

x(s; Y, v; c1, c2) W 1− exp −r(Y, v; c1, 0)r(Y, v; c1, 2c2)s
2( )+ 2

��
p

√
c2vs exp ((c2v)

2s2)

· Q(r(Y, v; c1, c2)s
��
2

√
)− Q(c2vs

��
2

√
)

( )
,

r(Y, v; c1, c2) W c1Yv
−1 + c2v,

c(s; Y, v; c1, c2, c3, c4, c5) W −1+ 2 exp − r(Y, v; c1, 0)
( )2

b(Y, v; c2)s
2

( )
+ ��

p
√

c4v b(Y, v; c3)
( )−1/2

s exp ((c4v)
2 b(Y, v; c3)
( )−1

s2)

· 2Q(c4v b(Y, v; c3)
( )−1/2

s
��
2

√
)− 4Q(− r(Y, v; c1, c5) b(Y, v; c3)

( )−1/2
s
��
2

√
)

(

(28)

FLM, 1
16 (s|b1 = 0, I , l)

=
∫1
0
E exp (sLLM, 1

A, 16 )
( )

· 2a exp (− a2) da

≃
∑1
p1, k=0

. . .
∑1

pm̂−1, k=0

∑1
pm̂+1, k=0

. . .
∑1

pNB , k=0

∏NB

m=1,m=m̂

((1− l)(1− pm, k )+ l pm, k )

· 1
2

1

2
f1 s

��������
YPk , I ,l

√( )
f2 −v16s
( )+ f2 −2v16s

( )( )+ j(s; YPk , I ,l
, v16; 16, 2)

{
+ j(s; YPk , I ,l

, v16; 36, 2)

+ k s; YPk , I , l
, v16; 25, 1,

8

3
,
1

5
, 4, 15,

20

3

( )
− j(s; YPk , I ,l

, v16; 4, −1)− k s; YPk , I , l
, v16; 36, 2, 4,

1

6
, 4, 12, 0

( )

+ j(s; YPk , I ,l
, v16; 4, 1)− k s; YPk , I , l

, v16; 4, 1,
5

3
,
1

2
, 1, 0, − 4

3

( )
− j(s; YPk , I ,l

, v16; 9, 1)

+ k s; YPk , I , l
, v16; 4, −1, − 1

3
,
1

2
, 3, 8,

20

3

( )
+ j(s; YPk , I ,l

, v16; 16, 1)− k s; YPk , I ,l
, v16; 16, 1,

7

3
,
1

4
, 3, 8,

8

3

( )

− j(s; YPk , I ,l
, v16; 25, 1)+ k s; YPk , I ,l

, v16; 9, 1, 2,
1

3
, 2, 3, 0

( )
+ j(s; YPk , I ,l

, v16; 4, −2)

− k s; YPk , I , l
, v16; 1, −1, − 2

3
, 1, 2, 3,

8

3

( )
− k s; YPk , I ,l

, v16; 16, 2,
10

3
,
1

4
, 2, 0, − 16

3

( )

+ k −s; YPk , I , l
, v16; 1, −1, − 4

3
, −1, 0, −1, − 4

3

( )

−k −s; YPk , I ,l
, v16; 4, −2, − 8

3
, − 1

2
, 0, −4, − 16

3

( )}

(29)
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FLM, 2
16 (s|b2 = 0, I , l) =

∫1
0
E exp (sLLM, 2

A, 16 )
( )

· 2a exp (−a2) da

≃
∑1
p1, k=0

. . .
∑1

pm̂−1, k=0

∑1
pm̂+1, k=0

. . .
∑1

pNB , k=0

∏NB

m=1,m=m̂

((1− l)(1− pm, k )+ l pm, k )

· 1

2
f1 s

��������
YPk , I , l

√( )
f2 −v16s
( )+ j(s; YPk , I , l

, v16; 16, 1)

{

+ j(s; YPk , I ,l
, v16; 4, 1)− k s; YPk , I ,l

, v16; 16, 1,
7

3
,
1

4
, 3, 8,

8

3

( )

− j(s; YPk , I ,l
, v16; 4, − 1)+ k s; YPk , I , l

, v16; 4, −1, − 1

3
,
1

2
, 3, 8,

20

3

( )

−k s; YPk , I ,l
, v16; 4, 1,

5

3
,
1

2
, 1, 0, − 4

3

( )}
,

(30)

k(s; Y, v; c1, c2, c3, c4, c5, c6, c7)

W

z(s; Y, v; 12, c1, c2)+ exp −Ys2/3
( )

z s; Y, v; 4,
4

3
c1, c3

( )
, s ≥ 0

exp Ys2
( )

x(s; Y, v; c4, c5)

+ 12b(Y, v; c1)
( )−1

c(s; Y, v; c4, c6, c1, c2, c5)

+ exp −Ys2/3
( )

4b Y, v;
4

3
c1

( )( )−1

c s; Y, v; c4, c7,
4

3
c1, c3, c5

( )
, s , 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)
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