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Abstract: The authors study the problem of secret communication over a multiple-access channel with a common
message. Here, the authors assume that two transmitters have confidential messages, which must be kept secret from
the wiretapper (the second receiver), and both of them have access to a common message which can be decoded by
the two receivers. The authors call this setting as multiple-access wiretap channel with common message (MAWC-CM).
For this setting, the authors derive general inner and outer bounds on the secrecy capacity region for the discrete
memoryless case and show that these bounds meet each other for a special case called the switch channel. As well,
for a Gaussian version of MAWC-CM, the authors derive inner and outer bounds on the secrecy capacity region.
Providing numerical results for the Gaussian case, the authors illustrate the comparison between the derived
achievable rate region and the outer bound for the considered model and the capacity region of compound multiple
access channel.

1 Introduction

In a seminal work, the wire-tap channel was introduced by Wyner
[1], where a sender wishes to communicate a message to a
receiver while keeping the message secret from an eavesdropper.
He established the secrecy capacity for a single-user degraded
wire-tap channel. Later, Csiszár and Körner extended the wire-tap
channel to a more generalised model called the broadcast channel
with confidential messages [2] and computed its secrecy capacity.

The problem of secret communication over multi-user channels
has recently attracted remarkable attention [3–13]. In [3, 4],
multiple access channel (MAC) with generalised feedback has
been considered, where in [3] the encoders do not need to keep
their messages secret from each other, but their messages should
be kept secret from an external eavesdropper. Whereas in [4] each
user views the other user as an eavesdropper and wishes to keep
its confidential information as secret as possible from the other user.

The multiple access wire-tap channel (MAWC) (i.e. MAC with an
external eavesdropper) under strong secrecy criterion has been
studied in [5]. In [6], MAWC has been studied assuming that there
exists a common message while the eavesdropper is unable to
decode it. For this model an achievable rate region for discrete
memoryless case under the strong secrecy criterion has been
derived. A degraded Gaussian MAWC, in which the eavesdropper
receives a degraded version of the legitimate receiver’s signal, has
been studied in [7] and an achievable rate region for this setting
has been established. In [9] general Gaussian MAWC has been
considered such that an achievable rate region has been derived.
The problem of lossy source transmission over a MAWC was
considered in [14].

The influence of partial encoder cooperation on the secrecy
capacity of the MAWC has been studied in [10]. In their
considered setting, two encoders that are connected by two
communication links with finite capacities wish to send secret
messages to the common intended decoder in the presence of an
eavesdropper. In their model the transmitters do not have any
common messages. The compound MAC (CMAC)
(two-transmitter/two-receiver MAC) with conferencing links
between both encoders and decoders without any secrecy
constraint has been studied in [15]. In [16], we have considered

compound MAC with confidential messages so that the first
transmitter’s private message is confidential and are only decoded
by the first receiver, and kept secret from the second receiver,
while the common message and the private message of the second
transmitter are decoded by both receivers.

In this paper, we investigate secrecy constraints in a MAC with a
common message. We call our model as MAWC with common
message (MAWC-CM). To interpret this model, it can be noted
that in wireless networks there may be a scenario in which the
users may have a common message which can be decoded by all
users in addition to the confidential information that wish to be
kept secret from illegal users. Motivated by this scenario, we
consider MAWC-CM as a building block of this setting. In this
model, each transmitter sends its own private message while both
of them have a common message. Both of the transmitter’s private
messages (W1 and W2) are confidential and are only decoded by
the first receiver and kept secret from the second receiver. The
common message W0 is decoded by both receivers (see Fig. 1).
For this model, we derive single-letter inner and outer bounds on
the secrecy capacity region. We also study a switch channel which
is a special case of our model and show that the derived inner and
outer bounds meet each other for this case. We also consider
Gaussian MAWC-CM and derive inner and outer bounds on its
secrecy capacity region. Providing some numerical examples for
Gaussian MAWC-CM, we compare the derived achievable rate
region and outer bound for the Gaussian case with each other and
also with the capacity region of the Gaussian compound MAC.
The considered examples illustrate the impact of noise power and
secrecy constraints on the rate regions. We show that there are
scenarios for which the secret transmissions may increase
achievable rate region when compared with the case that requires
the second receiver to decode the private messages.

The rest of this paper is organised as follows. In Section 2, the
notations and the system model are described. In Section 3, outer
and inner bounds on the secrecy capacity region of discrete
memoryless MAWC-CM are established and it is shown that these
bounds meet each other for the switch channel model. An
achievable secrecy rate region and an outer bound on the secrecy
capacity region of Gaussian MAWC-CM are derived in Section
4. Finally, Section 5 concludes the paper.
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2 Notations and system model

In this paper, the random variables (RVs) are represented by capital
letters, for example, X, the realisations of RVs are represented by
lower case letters, for example, x and their alphabets are
represented by X . The T n

1(PXY ) indicates the set of ɛ−strongly
jointly typical sequences [11] of length n, on joint distribution
PX,Y. Xn

i indicates vector (Xi,1, Xi,2, …, Xi,n), and X k
i,j indicates

vector (Xi,j, Xi,j+1, …, Xi,k). The cardinality of U is denoted by |U|.

Definition 1: Consider a discrete memoryless MAWC-CM
(X1, X2, p(y1, y2|x1, x2), Y1, Y2) where X1 and X2 are the finite
input alphabets of transmitters, Y1 and Y2 are the channel output
alphabets of receiver 1 and receiver 2, respectively (Fig. 1) and
p(y1, y2|x1, x2) is the channel transition probability distribution.

Definition 2: A (2nR0, 2nR1, 2nR2, n) code for the MAWC-CM (Fig. 1)
consists of the followings: (i) Three message sets Wu = {1, . . . ,
2nRu} for u = 0, 1, 2 where independent messages W0, W1 and W2

are uniformly distributed over respective sets. (ii) Two stochastic
encoders gk, k = 1, 2, for transmitter k that are specified by
gk : W0 ×Wk � Xn

k for k = 1, 2. (iii) Two decoding functions
f : Yn

1 � W0 ×W1 ×W2 and r : Yn
2 � W0. The first decoder is

at the legitimate receiver and assigns (Ŵ01, Ŵ1, Ŵ2) [ W0 ×W1 ×
W2 to each received sequence yn1. The second decoder assigns an
estimate Ŵ02 [ W0 to each received sequence yn2. The average
probability of error is defined as,

Pn
e,1 = Pr {(Ŵ01, Ŵ1, Ŵ2) = (W0, W1, W2)} (1)

Pn
e,2 = Pr {(Ŵ02) = (W0)} (2)

Pn
e = max {Pn

e,1, P
n
e,2} (3)

The ignorance level of the eavesdropper (Receiver 2), with respect to
the confidential messages W1 and W2, is measured by equivocation
rate (1/n)H(W1, W2|Yn

2 ).

Definition 3: A rate tuple (R0, R1, R2) is said to be achievable for
MAWC-CM, if for any ɛ > 0 there exists a (2nR0, 2nR1, 2nR2, n)
code which satisfies

Pn
e , 1 (4)

R1 + R2 −
1

n
H(W1, W2|Yn

2 ) ≤ 1 (5)

for sufficiently large n. Note that secrecy requirement (5) implies

Rk −
1

n
H(Wk |Yn

2 ) ≤ 1 for k = 1, 2 (6)

that also has been shown in [3]. The secrecy capacity region of the
MAWC-CM is defined as the closure of the set of all achievable
rate tuples (R0, R1, R2).

3 Discrete memoryless MAWC-CM

In this section, we derive an outer bound on the secrecy capacity
region of discrete memoryless MAWC-CM in Theorem 1 and an
inner bound in Theorem 2. We show that these bounds meet each
other in a special case.

3.1 Outer bound

Theorem 1: (Outer bound) The secrecy capacity region of
MAWC-CM is included in the set of rates satisfying

R0 ≤ min {I(U ; Y1), I(U ; Y2)} (7)

R1 ≤ I(V1; Y1|U )− I(V1; Y2|U ) (8)

R2 ≤ I(V2; Y1|U )− I(V2; Y2|U ) (9)

R1 + R2 ≤ I(V1, V2; Y1|U )− I(V1, V2; Y2|U ) (10)

for some joint distribution

p(u)p(v1, v2|u)p(x1|v1)p(x2|v2)p(y1, y2|x1, x2) (11)

where the auxiliary RVs U, V1 and V2 are bounded in cardinality by

|U| ≤ |X1| · |X2| + 7 (12)

|V1| ≤ (|X1| · |X 2| + 3) · (|X1| · |X 2| + 7) (13)

|V2| ≤ (|X 1| · |X2| + 3) · (|X 1| · |X2| + 7). (14)

Proof: See Appendix 1. □

Remark 1: If transmitter 1 (or transmitter 2) does not send any
messages, by setting V1 = ∅ (or V2 = ∅) in Theorem 1 the region
reduces to the capacity region of the broadcast channel with
confidential messages discussed in [2].

3.2 Achievability

Theorem 2: (Achievability) For a discrete memoryless MAWC-CM,
the secrecy rate region R(pI ) is achievable, where R(pI ) is the
closure of the convex hull of all non-negative (R0, R1, R2) satisfying

R0 ≤ I(U ; Y2) (15)

R1 ≤ I(V1; Y1|V2, U )− I(V1; Y2|U ) (16)

R2 ≤ I(V2; Y1|V1, U )− I(V2; Y2|U ) (17)

Fig. 1 Multiple access wire-tap channel with common message
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R1 + R2 ≤ I(V1, V2; Y1|U )− I(V1, V2; Y2|U ) (18)

R0 + R1 + R2 ≤ I(V1, V2; Y1)− I(V1, V2; Y2|U ) (19)

and πI denotes the class of joint probability mass functions p(u, v1,
v2, x1, x2, y1, y2) that factor as

p(u)p(v1|u)p(v2|u)p(x1|v1)p(x2|v2)p(y1, y2|x1, x2) (20)

in which the auxiliary RVs U, V1 and V2 are bounded in cardinality
by

|U| ≤ |X1| · |X2| + 6 (21)

|V1| ≤ (|X1| · |X 2| + 5) · (|X1| · |X 2| + 6) (22)

|V2| ≤ (|X 1| · |X2| + 5) · (|X 1| · |X2| + 6). (23)

Proof: In the following, we provide outlines of our achievable
scheme and the details of the proof are referred to Appendix 2. In
the coding scheme we use superposition technique and Wyner’s
wiretap coding [1], as the secrecy achievability method. We
illustrate the common message w0 with the auxiliary codeword un.
All receivers are able to decode this codeword. Therefore, it does
not need to be protected from the illegal user by Wyner’s coding
technique. The auxiliary codeword vn1, which illustrates the private
message w1, is superimposed on top of un and is decoded only by
receiver 1. Moreover, the auxiliary codeword vn2, which illustrates
the message w2, is superimposed on top of un and is decoded only
by receiver 1. These codewords are protected from the illegal user
by Wyner’s coding technique. The structure of the encoder is
depicted in Fig. 7 in Appendix 2. Transmitted codewords xn1 and
xn2 are drawn based on vn1 and vn2 respectively, according to (20). □

Remark 2: If we convert our model to a MAWC without common
message, by setting U = ∅, V1 = X1 and V2 = X2 in Theorem 2, the
region reduces to the achievable secrecy rate region of the MAWC
without common message that is reported in [3] and its Gaussian
version is first introduced in [7, 9].

Remark 3: If we convert the model to a broadcast channel with
confidential messages, our region includes the region discussed by
Csiszár and Körner in [2]. It can be verified by setting V1 = ∅ or
V2 = ∅ in (15)–(19).

3.3 Switch channel

Now, we obtain the secrecy capacity region for a switch channel. In
the switch channel (see Fig. 2) the receivers cannot listen to both
transmitters at the same time. For example, each receiver can listen
to only one frequency whereas each transmitter can broadcast at

various frequencies during the symbol time i. We assume that at
each symbol time i, each receiver t for t∈ {1, 2} has access to a
random switch st∈ {1, 2}, which independently is set to t or �t
with probabilities

P(St,i = t) = tt (24)

P(St,i = �t) = 1− tt , i = 1, . . . , n (25)

where �t is complement of t. Hence, if St,i = t, receiver t for t∈ {1, 2}
listens to the signal sent by the transmitter t (i.e. xt,i) and if St,i = �t,
receiver t listens to the signal sent by the transmitter �t (i.e. x�t,i). The
switch channel is investigated in [12] as a special case of Interference
channel. We generalise the interpretation of a switch channel to our
model as follows: Consider a MAC with a common message and an
eavesdropper that the legal receiver (receiver 1) can listen to only one
of the transmitters at each time instant that is determined by the first
switch state. The illegal receiver (in terms of private messages) can
eavesdrop only one of the transmitters which is determined by the
second switch state. We also assume that both receivers have
access to switch state information. Thus, we have

P(yt,i|x1,i, x2,i, st,i) = P(yt,i|x1,i)1(st,i = 1)

+ P(yt,i|x2,i)1(st,i = 2) = P(yt,i|xst,i ,i)
(26)

where 1(.) is the indicator function. The switch state information
{St,i}

n
i=1 is an i.i.d. process known at receiver t. Therefore, we can

assume that st,i is a part of the channel output. In other words, we set

yt,i W {kt,i, st,i} (27)

where kt,i indicates the received signal at receiver t. For the described
switch channel, we have the following theorem for the secrecy
capacity region.

Theorem 3: For the switch channel with two confidential messages
and one common message, the secrecy capacity region CS is the
union of all (R0, R1, R2) satisfying

R0 ≤ I(U ; Y2) (28)

R1 ≤ I(V1; Y1|U )− I(V1; Y2|U ) (29)

R2 ≤ I(V2; Y1|U )− I(V2; Y2|U ) (30)

R1 + R2 ≤ I(V1, V2; Y1|U )− I(V1, V2; Y2|U ) (31)

R0 + R1 + R2 ≤ I(V1, V2; Y1)− I(V1, V2; Y2|U ) (32)

Fig. 2 Switch channel model
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over all distributions

p(u)p(v1|u)p(v2|u)p(x1|v1)p(x2|v2)p(y1, y2|x1, x2) (33)

where the auxiliary RVs U, V1 and V2 are bounded in cardinality by

|U| ≤ |X1| · |X2| + 6 (34)

|V1| ≤ (|X1| · |X 2| + 4) · (|X1| · |X 2| + 6) (35)

|V2| ≤ (|X 1| · |X2| + 4) · (|X 1| · |X2| + 6). (36)

Proof: See Appendix 3.

4 Gaussian MAWC-CM

In this section, we consider Gaussian MAWC-CM as shown in
Fig. 3, and derive inner and outer bounds on its secrecy capacity
region. Relationships between the inputs and outputs of the
channel, as shown in Fig. 3, are given by

Y1 = X1 + X2 + N1 (37)

Y2 = X1 + X2 + N2 (38)

where N1 and N2 are independent zero-mean Gaussian RVs, with

variances s2
1 and s2

2, and independent of the RVs X1, X2. We
impose the power constraints (1/n)

∑n
i=1 E[X

2
j,i] ≤ Pj, j = 1, 2.

4.1 Outer bound

Theorem 4: (Outer bound) The secrecy capacity region for the
Gaussian MAWC-CM is included in the set of rates satisfying
(see (39))

where C(x) = (1/2)log (1 + x) and the union is taken over all 0≤ β1≤
1, 0≤ β2≤ 1 and 0≤ ρ ≤ 1.

Proof: See Appendix 4. □

4.2 Inner bound

Theorem 5: (Achievability) An inner bound on the secrecy capacity
region of Gaussian MAWC-CM is: (see (40))

where C(x) = (1/2)log (1 + x) and the union is taken over all 0≤ β1≤
1 and 0≤ β2≤ 1.

Proof: The achievable rate region in Theorem 2 can be extended to
the discrete-time Gaussian memoryless case with continuous
alphabets by standard arguments [17]. Hence, it is sufficient to

Fig. 3 Gaussian MAWC-CM

⋃ R0 ≤ min C
(1− b1)P1 + (1− b2)P2 + (1− b1b2)r

������
P1P2

√
b1P1 + b2P2 + 2b1b2r

������
P1P2

√
+ s2

1

( )
, C

(1− b1)P1 + (1− b2)P2 + (1− b1b2)r
������
P1P2

√
b1P1 + b2P2 + 2b1b2r

������
P1P2

√
+ s2

2

( ){ }

R1 + R2 ≤ C
b1P1 + b2P2 + 2b1b2r

������
P1P2

√
s2
1

( )
− C

b1P1 + b2P2 + 2b1b2r
������
P1P2

√
s2
2

( )[ ]
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (39)

⋃

R0 ≤ C
b2
1P1 + b2

2P2 + 2b1b2

������
P1P2

√
(1− b2

1)P1 + (1− b2
2)P2 + s2

2

( )

R1 ≤ C
(1− b2

1)P1

s2
1

( )
− C

(1− b2
1)P1

(1− b2
2)P2 + s2

2

( )
R2 ≤ C

(1− b2
2)P2

s2
1

( )
− C

(1− b2
2)P2

(1− b2
1)P1 + s2

2

( )
R1 + R2 ≤ C

(1− b2
1)P1 + (1− b2

2)P2

s2
1

( )
− C

(1− b2
1)P1 + (1− b2

2)P2

s2
2

( )
R0 + R1 + R2 ≤ C

P1 + P2 + 2b1b2

������
P1P2

√
s2
1

( )
− C

(1− b2
1)P1 + (1− b2

2)P2

s2
2

( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)
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evaluate (15)–(19) with appropriate choice of input distribution to
reach (40). We constrain all the inputs to be Gaussian. For certain
0≤ β1≤ 1 and 0≤ β2≤ 1 consider the following mapping in (41)–
(44) for the generated codebook in Theorem 2 with respect to the
p.m.f (20), which contains the Gaussian version of the
superposition coding and random binning

V1 =
���
P1

√
b1U +

������������
P1(1− b2

1)
√

K1 (41)

X1 = V1 (42)

V2 =
���
P2

√
b2U +

������������
P2(1− b2

2)
√

K2 (43)

X2 = V2. (44)

where U, K1 and K2 are independent, zero-mean and unit variance
Gaussian RVs. Using the above mapping with the channel model
in (37)–(38), and by calculating mutual information functions for
Gaussian RVs similar to the method in [17], we have

I(U ; Y2) = C
b2
1P1 + b2

2P2 + 2b1b2

������
P1P2

√
(1− b2

1)P1 + (1− b2
2)P2 + s2

2

( )
(45)

I(V1; Y1|V2, U ) = C
(1− b2

1)P1

s2
1

( )
(46)

I(V1; Y2|U ) = C
(1− b2

1)P1

(1− b2
2)P2 + s2

2

( )
(47)

I(V2; Y1|V1, U ) = C
(1− b2

2)P2

s2
1

( )
(48)

I(V2; Y2|U ) = C
(1− b2

2)P2

(1− b2
1)P1 + s2

2

( )
(49)

I(V1, V2; Y1|U ) = C
(1− b2

1)P1 + (1− b2
2)P2

s2
1

( )
(50)

I(V1, V2; Y2|U ) = C
(1− b2

1)P1 + (1− b2
2)P2

s2
2

( )
(51)

I(V1, V2; Y1) = C
P1 + P2 + 2b1b2

������
P1P2

√
s2
1

( )
(52)

where C(x) = (1/2)log (1 + x). Considering Theorem 2 and (45)–(52)
completes the proof. □

As mentioned in Section 1 we aim to compare our derived bounds
with each other and also with the capacity region of the Gaussian
compound MAC. Hence, we first derive this region as follows.

Theorem 6: The capacity region of Gaussian compound MAC with
common information is given by: (see equation (53) at the bottom of
the next page)

where C(x) = (1/2)log (1 + x) and the union is taken over all 0≤ β1≤
1 and 0≤ β2≤ 1.

Proof: It is clear that to obtain this capacity region, Propositions 6.1
and 6.2 in [15], which are outer and inner bounds on the capacity
region of the Gaussian compound MAC with conferencing links,
can be modified by setting C12 = C21 = 0 in them (i.e. ignoring
conferencing links) and by adopting them to our defined channel
parameters in (37) and (38). □

4.3 Examples

In this part, we provide numerical examples and compare our derived
inner and outer bounds on the secrecy capacity region of Gaussian
MAWC-CM. We also compare these bounds with the capacity
region of the Gaussian compound MAC illustrated in (53). As
an example, for the values P1 = P2 = 1, s2

1 = 0.1 and s2
2 = 0.3 the

outer bound in Theorem 4 and the achievable rate region in
Theorem 5 are depicted in Fig. 4. To illustrate the effect of
secrecy constraint and noise power on the rate region of
MAWC-CM, we also compare our derived regions with the
capacity region of the Gaussian compound MAC in (53). These
comparisons are shown in Figs. 5 and 6. Actually, in the CMAC
both receivers should decode W0, W1, W2 reliably, while in the
defined MAWC-CM model the messages W1 and W2 should be
kept secret from receiver 2. As it can be seen in Fig. 5 for channel
parameters P1 = P2 = 1, s2

1 = 0.1 and s2
2 = 0.3 (i.e. the same as

for Fig. 4) the achievable rates and outer bounds on R1 and R2

(rate of W1 and W2 respectively, which are decoded by receiver 1)
for MAWC-CM is less than that for CMAC due to secrecy
constraint for decoding messages W1 and W2. Note that in Figs. 5
and 6 we present the regions in two-dimensional by projecting on
R0 plane to have a better illustration. Based on (53) it is clear that
if the noise power of receiver 2 (i.e. s2

2) increases, the capacity
region of Gaussian CMAC may remain as before or decreases (i.e.
it does not increase). On the other hand, there exist scenarios for

Fig. 4 Achievable rate region and Outer bound of Gaussian MAWC-CM for P1 = P2 = 1, s2
1 = 0.1 and s2

2 = 0.3
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MAWC-CM (see (40)) for which increasing s2
2 results in increasing

its achievable rate region. For comparison, assume changing
s2
2 = 0.3 to s2

2 = 0.6 in the above example. As it can be seen in
Fig. 6, the achievable rate region of MAWC-CM is larger than the
capacity region of CMAC for the new parameters. This can be
interpreted as follows: the transmitted signals from transmitters 1
and 2 are extremely attenuated at the receiver 2 in comparison
with the investigated case shown in Fig. 5. Hence, for this case the
requirement of secrecy of W1 and W2 from receiver 2 in
MAWC-CM can increase the achievable rate region in comparison

with that of CMAC wherein W1 and W2 should be reliably
decoded by receiver 2.

5 Conclusions

In this paper, we have studied the secrecy capacity region of
MAWC-CM. We have obtained inner and outer bounds on the
secrecy capacity region for the general MAWC-CM and showed
that these bounds meet each other for the switch channel model.

Fig. 5 Achievable rate region of Gaussian MAWC-CM and the Capacity region of Gaussian CMAC for P1 = P2 = 1, s2
1 = 0.1 and s2

2 = 0.6

Fig. 6 Achievable rate region of Gaussian MAWC-CM and the capacity region of Gaussian CMAC for P1 = P2 = 1, s2
1 = 0.1 and s2

2 = 0.6
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P1 + P2 + 2
������
P1P2

√
b1b2

s2
1

( )
, C

P1 + P2 + 2
������
P1P2

√
b1b2

s2
2

( ){ }

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(53)
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As well, we have studied Gaussian MAWC-CM and derived inner
and outer bounds on its secrecy capacity region. Providing
numerical examples for the Gaussian case, we have illustrated the
impact of noise and secrecy constraint on the capacity region. We
have shown that there are scenarios for which the secret
transmissions may increase achievable rate region in compare with
the case that requires receiver 2 to decode the private messages.
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8 Liu, R., Marić, I., Yates, R.D., et al.: ‘The discrete memoryless multiple access
channel with confidential messages’. Proc. IEEE Int. Symp. on Information
Theory (ISIT), Seattle, WA, September 2006, pp. 957–961

9 Tekin, E., Yener, A.: ‘The general Gaussian multiple-access and two-way wiretap
channels: Achievable rates and cooperative jamming’, IEEE Trans. Inf. Theory,
2008, 54, (6), pp. 2735–2751

10 Xu, P., Ding, Z., Dai, X.: ‘Rate regions for multiple access channel with conference
and secrecy constraints’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (12),
pp. 1961–1974

11 Bloch, M., Barros, J.: ‘Physical-layer security: from information theory to security
engineering’ (Cambridge University Press, 2011)
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8 Appendices

8.1 Appendix 1: Proof for Theorem 1

The basis for deriving our outer bound is using Fano’s inequality
[18] and applying the techniques in [2] to consider the secrecy
constraints.

Consider a (2nR0 , 2nR1 , 2nR2 , n, Pn
e ) code for the MAWC-CM.

Applying Fano’s inequality results in

H(W0, W1, W2|Yn
1 ) ≤ n11 (54)

H(W0|Yn
2 ) ≤ n12. (55)

where ɛi→ 0, i = 1, 2 as Pn
e � 0.

To derive the upper bound on R1, we first present the bound on
H(W1|Yn

2 ) as follows

H(W1|Yn
2 ) = H(W1|Yn

2 , W0)+ I(W1; W0|Yn
2 )

= H(W1|Yn
2 , W0)+ H(W0|Yn

2 )− H(W0|Yn
2 , W1)

≤
(a)
H(W1|Yn

2 , W0)+ n12

≤
(b)
H(W1|Yn

2 , W0)− H(W1|Yn
1 , W0)+ n(11 + 12)

= I(W1; Y
n
1 |W0)− I(W1; Y

n
2 |W0)+ n(11 + 12)

=
∑n
i=1

[I(W1; Y1,i|W0, Y
i−1
1 )− I(W1; Y2,i|W0, Y

n
2,i+1)]

+ n(11 + 12)

=(c)
∑n
i=1

[I(W1; Y1,i|W0, Y
i−1
1 , Yn

2,i+1)

− I(W1; Y2,i|W0, Y
i−1
1 , Yn

2,i+1)]+ n1′

=(d)
∑n
i=1

[I(V1,i; Y1,i|Ui)− I(V1,i; Y2,i|Ui)]+ n1′ (56)

where (a) and (b) result from Fano’s inequality in (54) and (55). The
equality (c) results from [19, Lemma 17.12] (i.e. Csiszár’s sum
Lemma [2]), and setting ɛ′ = ɛ1 + ɛ2. The equality (d ) results from
the following definitions of the RVs in (57)–(59).

Ui = W0, Y
i−1
1 , Yn

2,i+1 (57)

V1,i = (W1, Ui) (58)

V2,i = (W2, Ui). (59)

Now, we have

H(W1|Yn
2 )≤

(a)
n
∑n
i=1

p(Q = i)[I(V1,Q; Y1,Q|UQ, Q = i)

− I(V1,Q; Y2,Q|UQ, Q = i)]+ n1′

= n[I(V1,Q; Y1,Q|UQ, Q)

− I(V1,Q; Y2,Q|UQ, Q)]+ n1′

=(b) n[I(V1; Y1|U )− I(V1; Y2|U )]+ n1′

(60)

where (a) results from consideringQwith a uniform distribution over
{1, 2,…,n} outcomes and (b) is due to defining V1,Q = V1, V2,Q =
V2, Y1,Q = Y1, Y2,Q = Y2 and (UQ, Q) =U. Using (6) and (60) we
derive the bound on R1 as follows

R1 ≤ I(V1; Y1|U )− I(V1; Y2|U ). (61)

Now, we derive the bound on R2. Using (6) and proceeding the same
way as for deriving the bound on H(W1|Yn

2 ), the bound on H(W2|Yn
2 )

and hence the bound on R2 can be derived as follows

R2 ≤ I(V2; Y1|U )− I(V2; Y2|U ) (62)

Based on (5) we have: for any ɛ > 0,

n(R1 + R2)− n1 ≤ H(W1, W2|Yn
2 ) (63)

for all sufficiently large n. Hence, to derive the bound on R1 + R2 we
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first derive the bound on H(W1, W2|Yn
2 ) as follows

H(W1, W2|Yn
2 ) = H(W1, W2|Yn

2 , W0)+ I(W1, W2; W0|Yn
2 )

≤
(a)
H(W1, W2|Yn

2 , W0)+ n12

≤
(b)
H(W1, W2|Yn

2 , W0)− H(W1, W2|Yn
1 , W0)

+ n(11 + 12)

= I(W1, W2; Y
n
1 |W0)− I(W1, W2; Y

n
2 |W0)

+ n(11 + 12)

=
∑n
i=1

[I(W1, W2; Y1,i|W0, Y
i−1
1 )

− I(W1, W2; Y2,i|W0, Y
n
2,i+1)]+ n(11 + 12)

=(c)
∑n
i=1

[I(W1, W2; Y1,i|W0, Y
i−1
1 , Yn

2,i+1)

− I(W1, W2; Y2,i|W0, Y
i−1
1 , Yn

2,i+1)]+ n1′

=(d)
∑n
i=1

[I(V1,i, V2,i; Y1,i|Ui)− I(V1,i, V2,i; Y2,i|Ui)]+ n1′

(64)

where (a) and (b) result from Fano’s inequality in (54) and (55)
respectively. The equality (c) results from Csiszár’s sum Lemma,
and setting ɛ′ = ɛ1 + ɛ2. The equality (d ) results from the
definitions of the RVs as (57)–(59). Using (63) and (64) and by
applying the same time-sharing strategy as before, we have

R1 + R2 ≤ I(V1, V2; Y1|U )− I(V1, V2; Y2|U )+ 1w (65)

where 1w = 1+ 1′. Finally, we derive the bound on R0 as follows

nR0 = H(W0)

= I(W0; Y
n
1 )+ H(W0|Yn

1 )

≤ I(W0; Y
n
1 )+ n11

=
∑n
i=1

I(W0; Y1,i|Y i−1
1 )+ n11

=
∑n
i=1

[I(W0, Y
i−1
1 ; Y1,i)− I(Y i−1

1 ; Y1,i)]+ n11.

Hence, we have

nR0 ≤
∑n
i=1

I(W0, Y
i−1
1 ; Y1,i)+ n11

=
∑n
i=1

[I(W0, Y
i−1
1 , Yn

2,i+1; Y1,i)− I(Yn
2,i+1; Y1,i|W0, Y

i−1
1 )]+ n11

≤
∑n
i=1

I(W0, Y
i−1
1 , Yn

2,i+1; Y1,i)+ n11

=
∑n
i=1

I(Ui; Y1,i)+ n11. (66)

By applying the same time-sharing strategy as before, we have

R0 ≤ I(U ; Y1)+ 11. (67)

Moreover we have,

nR0 = H(W0)

= I(W0; Y
n
2 )+ H(W0|Yn

2 )

≤ I(W0; Y
n
2 )+ n12

=
∑n
i=1

I(W0; Y2,i|Yn
2,i+1)+ n12

=
∑n
i=1

[I(W0, Y
n
2,i+1; Y2,i)− I(Yn

2,i+1; Y2,i)]+ n12.

Hence, we have

nR0 ≤
∑n
i=1

I(W0, Y
n
2,i+1; Y2,i)+ n12

=
∑n
i=1

[I(W0, Y
i−1
1 , Yn

2,i+1; Y2,i)− I(Y i−1
1 ; Y2,i|W0, Y

n
2,i+1)]+ n12

≤
∑n
i=1

I(W0, Y
i−1
1 , Yn

2,i+1; Y2,i)+ n12

=
∑n
i=1

I(Ui; Y2,i)+ n12. (68)

By applying the same time-sharing strategy as before, we have

R0 ≤ I(U ; Y2)+ 12. (69)

Fig. 7 Coding scheme
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Therefore, from (67) and (69) we have

R0 ≤ min {I(U ; Y1), I(U ; Y2)}. (70)

Considering (61), (62), (65) and (70), the region in (7)–(10) is
obtained. The bounds on cardinality of |U|, |V1| and |V2| can be
derived by following the steps in [2, Appendix]. This completes
the proof. □

8.2 Appendix 2: Proof for Theorem 2

As described in Section 3.2, we use the coding structure as illustrated
in Fig. 7. More precisely, the codebook generation is as follows

(i) Codebook generation: Fix p(u), p(v1|u), p(v2|u), p(x1|v1) and p
(x2|v2). Let

R′
1 + R′

2 = I(V1, V2
; Y2|U )− 1, (71)

where ɛ > 0 and ɛ → 0 as n→∞.
† Generate 2nR0 length-n codewords un through p(un) =∏n

i=1 p(ui) and index them as un(w0), w0 [ {1, . . . , 2nR0}.

† For each codeword un(w0), generate 2
ñR1 length-n codewords

vn1 through p(vn1|un) =
∏n

i=1 p(v1,i|ui), where R̃1 = R1 + R′
1.

Then, randomly bin 2ñR1 codewords into 2nR1 bins, and index
them as vn1(w0, w1, q), where w1∈ {1,…, 2nR1} is the bin

number and q [ Q= {1, . . . , 2nR
′
1} is the index of codewords

in the bin number w1.
The codebook for user 2 is generated in the same way.

(ii) Encoding: Assume that (w0, w1) is the message pair to be
transmitted, the encoder g1 randomly chooses index q
corresponding to (w0, w1) and then generates a codeword Xn

1 at
random according to

∏n
i=1 p(x1,i|v1,i). Transmitter 2 uses the same

way to encode (w0, w2).
(iii) Decoding and probability of error:

Decoding:

† The legitimate receiver (receiver 1) decodes (ŵ01, ŵ1, ŵ2) by
looking for the unique (un, vn1, v

n
2) such that

(un(ŵ01), v
n
1(ŵ01, ŵ1, q), v

n
2(ŵ01, ŵ2, q

′), yn1) [ Tn
1 (PUV1V2Y1

).

† Receiver 2 decodes ŵ02 by looking for the unique un such that
(un(ŵ02), y

n
2) [ Tn

1 (PUY2
).

Probability of error analysis: Define the events

Er,w0,w1,w2
= {(un(ŵ01), v

n
1(ŵ01, ŵ11, q),

vn2(ŵ01, ŵ21, q
′), yn1) [ Tn

1 (PUV1V2Y1
)}

(72)

Ee,w0
= {(un(ŵ02), y

n
2) [ Tn

1 (PUY2
)}. (73)

Without loss of generality, we assume that (w0, w1, w2) = (1, 1, 1)
was sent. We can bound the probability of error in receiver 1
using the union bound (see (74))

(see (75))

In the same way we can bound the probability of error in receiver 2
using the union bound as

Pn
e,2(1, 1, 1) = Pr {Ec

e,1

⋃
w0=1

Ee,w0
}

≤ Pr {Ec
e,1}+

∑
w0=1

Pr {Ee,w0
}

(76)

From the Asymptotic Equipartition Property [17, Chapter 3] and [17,
Thm. 15.2.1, 15.2.3], it follows that

Pr {Ec
r,1,1,1} ≤ 1 (77)

Pr {Er,w0,1,1
} ≤ 2−n[I(U ,V1,V2;Y1)−1] (78)

Pr {Er,1,w1,1
} ≤ 2−n[I(V1;Y1|V2,U )−1] (79)

Pr {Er,w0,w1,1
} ≤ 2−n[I(U ,V1,V2;Y1)−1 (80)

Pr {Er,1,1,w2
} ≤ 2−n[I(V2;Y1|V1,U )−1] (81)

Pr {Er,w0,1,w2
} ≤ 2−n[I(U ,V1,V2;Y1)−1] (82)

Pr {Er,1,w1,w2
} ≤ 2−n[I(V1,V2;Y1|U )−1] (83)

Pr {Er,w0,w1,w2
} ≤ 2−n[I(U ,V1,V2;Y1)−1] (84)

Pr {Ec
e,1} ≤ 1 (85)

Pr {Ee,w0
} ≤ 2−n[I(U ;Y2)−1] (86)

where ɛ > 0 and ɛ → 0 as n→∞. Hence, (75) and (76) are

Pn
e,1(1, 1, 1) = Pr {Ec

r,1,1,1

⋃
w0=1

Er,w0,1,1

⋃
w1=1

Er,1,w1,1

⋃
w0 = 1

w1 = 1

Er,w0,w1,1

⋃
w2=1

Er,1,1,w2

⋃
w0 = 1

w2 = 1

Er,w0,1,w2

⋃
w1 = 1

w2 = 1

Er,1,w1,w2

⋃
w0 = 1
w1 = 1

w2 = 1

Er,w0,w1,w2
}

(74)

≤ Pr {Ec
r,1,1,1}+

∑
w0=1

Pr {Er,w0,1,1
}+

∑
w1=1

∑
q

Pr {Er,1,w1,1
}

+
∑
w0=1

∑
w1=1

∑
q

Pr {Er,w0,w1,1
}

+
∑
w2=1

∑
q′

Pr {Er,1,1,w2
}+

∑
w0=1

∑
w2=1

∑
q′

Pr {Er,w0,1,w2
}

+
∑
w1=1

∑
q

∑
w2=1

∑
q′

Pr {Er,1,w1,w2
}

+
∑
w0=1

∑
w1=1

∑
q

∑
w2=1

∑
q′

Pr {Er,w0,w1,w2
}.

(75)
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respectively bounded by

Pn
e,1(1, 1, 1) ≤ 1+ 2nR0 × 2−n[I(U ,V1,V2;Y1)−1] + 2nR̃1

× 2−n[I(V1;Y1|V2,U )−1] + 2nR0+R̃1 × 2−n[I(U ,V1,V2;Y1)−1]

+ 2nR̃2 × 2−n[I (V2;Y1|V1,U )−1] + 2nR0+R̃2

× 2−n[I(U ,V1,V2;Y1)−1] + 2n(R̃1+R̃2) × 2−n[I (V1,V2;Y1|U )−1]

+ 2n(R0+R̃1+R̃2) × 2−n[I (U ,V1,V2;Y1)−1]

(87)

and

Pn
e,2(1) ≤ 1+ 2nR0 × 2−n[I(U ;Y2)−1]. (88)

Due to (88) and (87), to generate Pn
e � 0 as n→∞, we must choose

R0 ≤ I(U ; Y2) (89)

R̃1 ≤ I(V1; Y1|V2, U ) (90)

R̃2 ≤ I(V2; Y1|V1, U ) (91)

R̃1 + R̃2 ≤ I(V1, V2; Y1|U ) (92)

R0 + R̃1 + R̃2 ≤ I(U , V1, V2; Y1), (93)

and

R0 ≤ I(U , V1, V2; Y1) (94)

R0 + R̃1 ≤ I(U , V1, V2; Y1) (95)

R0 + R̃2 ≤ I(U , V1, V2; Y1) (96)

then Pn
e,1 ≤ 1 and Pn

e,2 ≤ 1, and from (3) we have: Pn
e ≤ 1. Note that

in (89)–(96), we have these Markov chains V1−U− V2 and U− (V1,
V2)− (Y1, Y2), and the bounds (94)–(96) are redundant because of
(93). Therefore, we need to consider only (89)–(93). Moreover
R̃1 = R1 + R′

1 and R̃2 = R2 + R′
2 that by replacing these into (89)–

(93) we have

R0 ≤ I(U ; Y2) (97)

R1 + R′
1 ≤ I(V1; Y1|V2, U ) (98)

R2 + R′
2 ≤ I(V2; Y1|V1, U ) (99)

R1 + R′
1 + R2 + R′

2 ≤ I(V1, V2; Y1|U ) (100)

R0 + R1 + R′
1 + R2 + R′

2 ≤ I(U , V1, V2; Y1) (101)

(iv) Equivocation computation

H(W1, W2|Yn
2 ) ≥ H(W1, W2|Yn

2 , U
n)

= H(W1, W2, Y
n
2 |Un)− H(Yn

2 |Un)

= H(W1, W2, Y
n
2 , V

n
1 , V

n
2 |Un)− H(Vn

1 , V
n
2 |W1, W2, Y

n
2 , U

n)

− H(Yn
2 |Un)

= H(W1, W2, V
n
1 , V

n
2 |Un)+ H(Yn

2 |W1, W2, V
n
1 , V

n
2 , U

n)

− H(Vn
1 , V

n
2 |W1, W2, Y

n
2 , U

n)− H(Yn
2 |Un)

≥
(a)
H(Vn

1 , V
n
2 |Un)− H(Vn

1 , V
n
2 |W1, W2, Y

n
2 , U

n)

+ H(Yn
2 |Vn

1 , V
n
2 , U

n)− H(Yn
2 |Un)

= H(Vn
1 , V

n
2 |Un)− H(Vn

1 , V
n
2 |W1, W2, Y

n
2 , U

n)

− I(Vn
1 , V

n
2 ; Y

n
2 |Un)

(102)

where (a) is due to I(Yn
2 ; W1, W2|Vn

1 , V
n
2 , U

n) = 0.

The first term in (102) is given by

H(Vn
1 , V

n
2 |Un) = nR̃1 + nR̃2 = n(R1 + R′

1 + R2 + R′
2). (103)

We then show that the second term in (102) can be bounded by
H(Vn

1 , V
n
2 |W1, W2, Y

n
2 , U

n) ≤ n11, as n→∞ then ɛ1→ 0. To this
aim, it can be noted that given the message (W1, W2) = (w1, w2)
and assuming that receiver 2 knows the sequence Un = un, it can
decode (q, q′) with small probability of error if

R′
1 ≤ I(V1; Y2|V2, U ) (104)

R′
2 ≤ I(V2; Y2|V1, U ) (105)

R′
1 + R′

2 ≤ I(V1, V2; Y2|U ). (106)

for sufficiently large n.
Using Fano’s inequality implies that H(Vn

1 , V
n
2 |W1 = w1,

W2 = w2, Y
n
2 , U

n) ≤ n11. Hence,

H(Vn
1 , V

n
2 |W1, W2, Y

n
2 , U

n)

=
∑
w1

∑
w2

p(W1 = w1)p(W2 = w2)

× H(Vn
1 , V

n
2 |W1 = w1, W2 = w2, Y

n
2 , U

n) ≤ n11.

(107)

The last term in (102) is bounded as

I(Vn
1 , V

n
2 ; Y

n
2 |Un) ≤ nI(V1, V2; Y2|U )+ n12, (108)

as n→∞ then ɛ2→ 0 similar to [1, Lemma 1]. By replacing (103),
(107) and (108) in (102) we have

H(W1, W2|Yn
2 ) ≥ n(R1 + R′

1 + R2 + R′
2)

− n11 − nI(V1, V2; Y2|U )− n12
(109)

= n(R1 + R2 + R′
1 + R′

2 − I(V1, V2; Y2|U ))− nd (110)

= n(R1 + R2)− 2nd (111)

where δ = ɛ1 + ɛ2. Finally, by using the Fourier–Motzkin procedure
[18] to eliminate R′

1 and R′
2 in (71), (97)–(101) and (104)–(106) we

obtain the five inequalities in Theorem 2. The bounds on cardinality
of |U|, |V1| and |V2| can be derived by following the steps in [2,
Appendix]. This completes the proof of Theorem 2.
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8.3 Appendix 3: Proof for Theorem 3

To prove this theorem, we concentrate on outer bound (Theorem 1)
and inner bound (Theorem 2) and we prove that these bounds are
identical for the switch channel case. The method of our proof is
similar to the method in [12]. According to the distribution (20),
for a known auxiliary random variable U, auxiliary RVs V1 and V2

are independent, but this is not true for distribution (11).
Therefore, we first show that these distributions are identical for a
switch channel case. Therefore, we show that,

I(V1; V2|U ) = 0 (112)

holds for the outer bound of switch channel case. Moreover, if

I(V1; V2|Y1, U ) = 0, (113)

holds for the outer bound of the switch channel, then

I(V1; Y1|V2, U ) = I(V1; Y1|U ) (114)

I(V2; Y1|V1, U ) = I(V2; Y1|U ) (115)

that is, for the switch channel case, (8)–(9) in the outer bound and
(16)–(17) in the inner bound are identical.

Now, we prove that (112) and (113) hold for outer bound of
switch channel model. From definitions (57)–(59) we need to
show that

I(W1; W2|Ui) = 0 (116)

I(W1; W2|Ui, Y1,i) = 0 (117)

where according to (57), Ui = W0, Y
i−1
1 , Yn

2,i+1. We first show that
(116) holds for switch channel. From definition (27) we have,

{Y i−1
1 , Yn

2,i+1} = {Ki−1
1 , Kn

2,i+1, S
i−1
1 , Sn2,i+1} (118)

therefore,

I(W1; W2|Ui) = I(W1; W2|W0, K
i−1
1 , Kn

2,i+1, S
i−1
1 , Sn2,i+1)

=
∑
si−1
1

∑
sn2,i+1

P(Si−1
1 = si−1

1 , Sn2,i+1 = sn2,i+1)

I(W1; W2|W0, K
i−1
1 , Kn

2,i+1, s
i−1
1 , sn2,i+1)

=
∑
si−1
1

∑
sn2,i+1

∏i−1

a=1

P(S1,a = s1,a)
∏n

b=i+1

P(S2,b = s2,b)

[ ]

I(W1; W2|W0, K
i−1
1 , Kn

2,i+1, s
i−1
1 , sn2,i+1).

(119)

Now, for known st,i, the switch channel model (26) shows that kt,i
depends only on the channel input xst,i, i. From [12], and for
known switch state information si−1

1 and sn2,i+1 we can easily show
that

I(W1; W2|W0, K
i−1
1 , Kn

2,i+1, s
i−1
1 , sn2,i+1) = 0. (120)

This proves the equality (112). Proceeding the same way, we can
show that equality (113) holds. Hence, the equalities (114)–(115)
hold for the switch channel. Moreover, (7) implies (15). Moreover,
in the derived outer bound in Theorem 1, adding (7) to the (10)
subject to the existing Markov chain U− (V1, V2)− (Y1, Y2) gives:
R0 + R1 + R2≤ I(V1, V2;Y1)− I(V1, V2;Y2|U ) that is identical to (19)
in the derived inner bound. The bounds on cardinality of |U|, |V1|
and |V2| can be derived by following the steps in [2, Appendix].
This completes the proof.

8.4 Appendix 4: Proof for Theorem 4

To derive an outer bound for the Gaussian case we can follow the
steps of deriving an outer bound for discrete memoryless case (i.e.
Theorem 1) that are based on the basic properties of mutual
information (the chain rule and positivity) and hold irrespective of
the continuous or discrete nature of the channel. Therefore, by
following (64), (66) and (68), it can be seen that if a rate tuple
(R0, R1, R2) is achievable for the Gaussian MAWC-CM, it must
hold that

R0 ≤ min
1

n

∑n
i=1

I(Ui; Y1,i),
1

n

∑n
i=1

I(Ui; Y2,i)

{ }
(121)

R1 + R2 ≤
1

n

∑n
i=1

[I(V1,i, V2,i; Y1,i|Ui)− I(V1,i, V2,i; Y2,i|Ui)] (122)

It remains to upper bound (121) and (122) with terms that depend on
the power constraints P1 and P2. We first assume that s2

1 ≤ s2
2 so that

the eavesdropper’s channel is stochastically degraded with respect to

the main channel. We expand
1

n

∑n

i=1
I(Ui; Y1,i) in terms of the

differential entropy as

1

n

∑n
i=1

I(Ui; Y1,i) =
1

n

∑n
i=1

h(Y1,i)−
1

n

∑n
i=1

h(Y1,i|Ui) (123)

and we bound each sum separately. Due to channel model definition
and assumptions, we have

var (Y1,i) = E[X 2
1,i]+ E[X 2

2,i]+ s2
1 + 2li (124)

where li = E[X1,iX2,i]. Hence, the differential entropy of Y1,i is upper
bounded by the entropy of a Gaussian random variable with the same
variance. Hence,

1

n

∑n
i=1

h(Y1,i) ≤
1

n

∑n
i=1

1

2
log (2pe(E[X 2

1,i]+ E[X 2
2,i]+ s2

1 + 2li))

≤
(a) 1

2
log 2pe

1

n

∑n
i=1

E[X 2
1,i]+

1

n

∑n
i=1

E[X 2
2,i]+

2

n

∑n
i=1

li + s2
1

( )( )
,

where (a) results since x 7! log (2pex) is a concave function of x as
using Jensen’s inequality. Also, by setting Q1W (1/n)

∑n
i=1 E[X

2
1,i],

Q2 W (1/n)
∑n

i=1 E[X
2
2,i], Q3 W (1/n)

∑n
i=1 li and r = Q3/

������
Q1Q2

√
we finally obtain

1

n

∑n
i=1

h(Y1,i) ≤
1

2
log (2pe(Q1 + Q2 + 2r

������
Q1Q2

√
+ s2

1)). (125)

To bound the second sum (1/n)
∑n

i=1 h(Yi|Ui), note that

1

n

∑n
i=1

h(Y1,i|Ui) ≤
1

n

∑n
i=1

h(Y1,i)

≤ 1

2
log (2pe(Q1 + Q2 + 2r

������
Q1Q2

√
+ s2

1)).

(126)

Moreover, because Ui→ (V1,i, V2,i)→ (X1,i, X2,i)→ (Y1,i, Y2,i) forms
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a Markov chain, we have

1

n

∑n
i=1

h(Y1,i|Ui) ≥
1

n

∑n
i=1

h(Y1,i|Ui, X1,i, X2,i)

= 1

n

∑n
i=1

h(Y1,i|X1,i, X2,i)

= 1

2
log (2pes2

1).

(127)

Since x, y 7! (1/2) log (2pe(xQ1 + yQ2 + 2xyr
������
Q1Q2

√
+ s2

1)) is a
continuous function on interval x∈ [0, 1] and y∈ [0, 1], a
two-dimensional intermediate-value theorem ensures the existence
of β1, β2∈ [0, 1] such that

1

n

∑n
i=1

h(Y1,i|Ui) =
1

2
log (2pe(b1Q1 + b2Q2

+ 2b1b2r
������
Q1Q2

√
+ s2

1)).

(128)

By substituting (125) and (128) into (123), we obtain

1

n

∑n
i=1

I(Ui; Y1,i)

≤ 1

2
log (2pe(Q1 + Q2 + 2r

������
Q1Q2

√
+ s2

1))

− 1

2
log (2pe(b1Q1 + b2Q2 + 2b1b2r

������
Q1Q2

√
+ s2

1))

= 1

2
log 1+

(1− b1)Q1 + (1− b2)Q2 + 2(1− b1b2)r
������
Q1Q2

√
b1Q1 + b2Q2 + 2b1b2r

������
Q1Q2

√
+ s2

1

( )
.

(129)

Now, we need to upper bound (1/n)
∑n

i=1 I(Ui; Y2,i). Note that we
can repeat the steps leading to (125) with Y2,i instead of Y1,i to obtain

1

n

∑n
i=1

h(Y2,i) ≤
1

2
log (2pe(Q1 + Q2 + 2r

������
Q1Q2

√
+ s2

2)). (130)

Hence, we need to derive a lower bound for (1/n)
∑n

i=1 h(Y2,i|Ui) as
a function of Q1, Q2, β1, β2 and ρ. Since we have assumed that the
eavesdropper’s channel is stochastically degraded with respect
to the main channel, we can write Y2,i = Y1,i +N ′

i with
N ′
i� N (0, s2

2 − s2
1). Applying the Entropy Power Inequality (EPI)

[18] to the RV Y2,i conditioned on Ui = ui, we have

h(Y2,i|Ui = ui) = h(Y1,i + N ′
i |Ui = ui)

≥ 1

2
log 22h(Y1,i |Ui=ui) + 22h(N

′
i |Ui=ui)

( )
= 1

2
log 22h(Y1,i|Ui=ui) + 2pe(s2

2 − s2
1)

( )
.

(131)

Hence,

1

n

∑n
i=1

h(Y2,i|Ui) =
1

n

∑n
i=1

EUi
[h(Y2,i|Ui)]

≥
(a) 1

2n

∑n
i=1

EUi
log 22h(Y1,i |Ui) + 2pe s2

2 − s2
1

( )( )[ ]
≥
(b) 1

2n

∑n
i=1

log 22EUi
[h(Y1,i|Ui)] + 2pe s2

2 − s2
1

( )( )
= 1

2n

∑n
i=1

log 22h(Y1,i|Ui) + 2pe(s2
2 − s2

1)
( )

≥
(c) 1

2
log 2(2/n)

∑n

i=1
h(Y1,i|Ui) + 2pe(s2

2 − s2
1)

( )
=(d) 1
2
log (2pe(b1Q1 + b2Q2 + 2b1b2r

������
Q1Q2

√
+ s2

2)),

(132)

where (a) follows from EPI and (131). Both (b) and (c) follow from
the convexity of the function x 7! log (2x + c) for c∈R+ and
Jensen’s inequality, while (d ) follows from (128). Hence,

1

n

∑n
i=1

I(Ui; Y2,i) =
1

n

∑n
i=1

h(Y2,i)− h(Y2,i|Ui)

≤ 1

2
log (2pe(Q1 + Q2 + 2r

������
Q1Q2

√
+ sn

2))

− 1

2
log (2pe(b1Q1 + b2Q2 + 2b1b2r

������
Q1Q2

√
+ s2

2))

= 1

2
log 1+

(1− b1)Q1 + (1− b2)Q2 + 2(1− b1b2)r
������
Q1Q2

√
b1Q1 + b2Q2 + 2b1b2r

������
Q1Q2

√
+ s2

2

( )
(133)

where the inequality follows from (130) and (132). By substituting
(129) and (133) into (121), we obtain (see (134))

Now, we derive the bound on R1 + R2,

1

n

∑n
i=1

[I(V1,i, V2,i; Y1,i|Ui)− I(V1,i, V2,i; Y2,i|Ui)]

= 1

n

∑n
i=1

[I(V1,i, V2,i, X1,i, X2,i; Y1,i|Ui)

− I(X1,i, X2,i; Y1,i|Ui, V1,i, V2,i)

− I(V1,i, V2,i, X1,i, X2,i; Y2,i|Ui)

+ I(X1,i, X2,i; Y2,i|Ui, V1,i, V2,i)]

R0 ≤ min

1

2
log 1+

(1− b1)Q1 + (1− b2)Q2 + 2(1− b1b2)r
������
Q1Q2

√
b1Q1 + b2Q2 + 2b1b2r

������
Q1Q2

√
+ s2

1

( )
,

1

2
log 1+

(1− b1)Q1 + (1− b2)Q2 + 2(1− b1b2)r
������
Q1Q2

√
b1Q1 + b2Q2 + 2b1b2r

������
Q1Q2

√
+ s2

2

( )
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (134)

IET Commun., 2016, Vol. 10, Iss. 1, pp. 98–110
109& The Institution of Engineering and Technology 2016



= 1

n

∑n
i=1

[I(X1,i, X2,i; Y1,i|Ui)

+ I(V1,i, V2,i; Y1,i|Ui, X1,i, X2,i)

− I(X1,i, X2,i; Y1,i|Ui, V1,i, V2,i)− I(X1,i, X2,i; Y2,i|Ui)

− I(V1,i, V2,i; Y2,i|Ui, X1,i, X2,i)

+ I(X1,i, X2,i; Y2,i|Ui, V1,i, V2,i)]

=(a) 1
n

∑n
i=1

[I(X1,i, X2,i; Y1,i|Ui)

− I(X1,i, X2,i; Y1,i|Ui, V1,i, V2,i)

− I(X1,i, X2,i; Y2,i|Ui)+ I(X1,i, X2,i; Y2,i|Ui, V1,i, V2,i)]

= 1

n

∑n
i=1

[I(X1,i, X2,i; Y1,i|Ui)

− I(X1,i, X2,i; Y1,i, Y2,i|Ui, V1,i, V2,i)

+ I(X1,i, X2,i; Y2,i|Ui, V1,i, V2,i, Y1,i)

− I(X1,i, X2,i; Y2,i|Ui)+ I(X1,i, X2,i; Y2,i|Ui, V1,i, V2,i)]

=(b) 1
n

∑n
i=1

[I(X1,i, X2,i; Y1,i|Ui)

− I(X1,i, X2,i; Y1,i, Y2,i|Ui, V1,i, V2,i)

− I(X1,i, X2,i; Y2,i|Ui)+ I(X1,i, X2,i; Y2,i|Ui, V1,i, V2,i)]

≤
(c) 1

n

∑n
i=1

[I(X1,i, X2,i; Y1,i|Ui)− I(X1,i, X2,i; Y2,i|Ui)]

(135)

where (a) follows from I(V1,i, V2,i;Y1,i|Ui, X1,i, X2,i) = I(V1,i, V2,i;Y2,i|

Ui, X1,i, X2,i) = 0 since Ui→ (V1,i, V2,i)→ (X1,i, X2,i)→ (Y1,i, Y2,i)
forms a Markov chain, (b) follows from I(X1,i, X2,i;Y2,i|Ui, V1,i, V2,

i, Y1,i) = 0 since Y2,i is stochastically degraded with respect to Y1,i,
and (c) follows from I(X1,i, X2,i;Y2,i|Ui, V1,i, V2,i)≤ I(X1,i, X2,i;Y1,i,
Y2,i|Ui, V1,i, V2,i). Next, we use (128) and (132) to substitute Q1,
Q2, ρ, β1 and β2 as follows

1

n

∑n
i=1

[I(V1,i, V2,i; Y1,i|Ui)− I(V1,i, V2,i; Y2,i|Ui)]

≤
(a) 1

n

∑n
i=1

[I(X1,i, X2,i; Y1,i|Ui)− I(X1,i, X2,i; Y2,i|Ui)]

= 1

n

∑n
i=1

[h(Y1,i|Ui)− h(Y1,i|Ui, X1,i, X2,i)

− h(Y2,i|Ui)+ h(Y2,i|Ui, X1,i, X2,i)]

≤
(b) 1

2
log 1+

b1Q1 + b2Q2 + 2b1b2r
������
Q1Q2

√
s2
1

( )

− 1

2
log 1+

b1Q1 + b2Q2 + 2b1b2r
������
Q1Q2

√
s2
2

( )

(136)

where (a) is due to (135), and (b) results from (127), (128) and (132).
If s2

1 ≥ s2
2, then the main channel is stochastically degraded with

respect to the eavesdropper’s channel and R1 = R2 = 0 by virtue of
[11, Proposition 3.4]. By swapping the roles of Y1,i and Y2,i in the
proof, it can be verified that (134) still holds. We combine the two
cases s2

1 ≤ s2
2 and s2

1 ≥ s2
2 by writing (39). Note that (134) and

(136) are increasing functions of Q1 and Q2. Hence, by defining
Qj = (1/n)

∑n
i=1 E[X

2
j,i] ≤ Pj, j = 1, 2 the inequalities in Theorem

4 hold. This completes the proof.
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