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Abstract
Limited communication resources have gradually become a critical factor toward efficiency

of decentralized large scale multi-agent coordination when both system scales up and tasks

become more complex. In current researches, due to the agent’s limited communication

and observational capability, an agent in a decentralized setting can only choose a part of

channels to access, but cannot perceive or share global information. Each agent’s coopera-

tive decision is based on the partial observation of the system state, and as such, uncer-

tainty in the communication network is unavoidable. In this situation, it is a major challenge

working out cooperative decision-making under uncertainty with only a partial observation

of the environment. In this paper, we propose a decentralized approach that allows agents

cooperatively search and independently choose channels. The key to our design is to build

an up-to-date observation for each agent’s view so that a local decision model is achievable

in a large scale team coordination. We simplify the Dec-POMDPmodel problem, and each

agent can jointly work out its communication policy in order to improve its local decision utili-

ties for the choice of communication resources. Finally, we discuss an implicate resource

competition game, and show that, there exists an approximate resources access tradeoff

balance between agents. Based on this discovery, the tradeoff between real-time decision-

making and the efficiency of cooperation using these channels can be well improved.

Introduction
Communication resources always play a latent role in networked large-scale agent team coordi-
nation applications, such as multi-robots system, mobile sensor system, etc. With the expan-
sion of the system, communication resources exert a momentous impact on the cooperative
efficiency [1], and numerous attention from both industry and academia has been devoted to
this research [2]. For instance, the utmost transfer rate of IEEE 802.11b protocol is 11Mbit/s,
and with the insecurity of latency and packet loss, this may fail to meet the capacity require-
ment of large-scale robots carrying video equipment for surveillance in an open environment
[3]. In our previous work [4], we found that, with the expansion of the team size, robots will
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compete the limited spectrum resources, which is a phenomenon also supported by other stud-
ies [5, 6]. On the other hand, different from Cognitive Radio (CR) [7], Mobile Sensor [8] and
other traditional wireless communication researches, multi-agent system usually consist of
multiple inexpensive agents, and without a strong central processing unit or resources pre-
authorization, but with more incomplete channels observation and changing dynamics. In
addition, there are no typical technical characteristics, such as a fixed base station or a central
node to manage and distribute channels, etc. The major communication mode for most decen-
tralized multi-agent system is Ad-hoc network [2]. However, the typical pre-authorization and
consultative allocation approach cannot be applied in the dynamic tasks and agents’migration.
In consequence, new concepts and strategies should be developed, and this is the main motiva-
tion proposed here.

As a main technical part of our research. In this paper, we model the decentralized multi-
agent multi-channel access problem as a Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) problem. We use a continuous time Markov model to simulate the
usage of channels while the constant slotted opportunity is used to support agents’ interaction.
In addition, we use a sample-based Partially Observable Markov Decision Process (POMDP)
to simplify the model. Finally, based on game theory, we model and analyze implicit resource
competition between agents, and prove the existence of equilibrium in an ideal state.

State of the Art
Even though centralized channel resource allocation methods can provide some sort of optimal
solutions, they are less effective in situations where the central point fails. For instance, typical
auction-based algorithms generally have low communication requirements [9], and the negoti-
ation process, in addition, can degrade in overall efficiency as communication deteriorates
[10]. It has been shown in [11] that spatial channels opportunity allocation is equivalent to a
graph coloring problem, which objective is to obtain colors assignment that maximizes the util-
ity. But obtaining the optimal coloring is generally known to be NP-hard.

Opportunistic Spectrum Access (OSA) [12] and Opportunistic Spectrum Sharing (OSS)
[13] are widely adopted in most recent researches, and several investigations have modeled
OSA problems as a POMDP model [14]. Basic OSA concept is described as an agent, which
can identify and access idle frequency bands and obtain maximized rewards. Many decentral-
ized methods have referenced the design of POMDP, varying reliance on schemes and can only
handle intermittent communication resource scheduling. Reinforcement learning (RL) [15] is
a paradigm to solve POMDP problems, and it is inspired by a learning theory which has good
performance in multi-robots decision applications [16, 17]. For most RL-based multi-agent
systems, the rewards are more achieved by long-team learning, which is the expected accumu-
lated reward that the agent expects to receive in the future under the policy, and can be speci-
fied by update value function. However, for the fixed utility function design, time restrains,
interaction and observation limited applications, RL is restricted.

Game Theory provides another approach to OSA. Stochastic game [18] as an extension of
Game Theory, can improve the capability to solve the OSA problems, and a deeper analysis
between the game and the graph-based method is noted in [19]. It is important to note that in
many situations, states of the system cannot be observed completely. Therefore, some
researches adopt the definition of Partially Observable Stochastic Game (POSG), and a cooper-
ative case of POSG, namely Dec-POMDP [20]. Although some efforts have been made in
building heuristic algorithms to solve this intrinsic NEXP-complete problem [21], it is still less
feasible obtaining optimal results in a limited time with the partial observation over channels.
In addition, in a non-cooperative case, this Dec-POMDP will no longer be suitable.
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Many existing works assume that the observation information obtained from an agent’s
neighbors is highly correlated. It can improve the efficiency of multi-agent coordination. In
this case, exchange of local observations becomes important in coordination. From this view,
we present a decentralized cooperative game model in which agents can iteratively adapt their
strategies in terms of reduced competition or conflict, and can meet the minimum communica-
tion requirements for each agent timely. This presents a novel approach addressing the gaps in
the aforementioned works.

SystemModel and Problem Statement
In this section, we follow the basic idea of continuous time Markov model to define the basic
model of a multi-Channel access problem, and then describe the specific functional definition
of each variable and the decision model.

Multi-Channel Access Model
We consider a multi-agent Ad-hoc network as being created by agents themselves in an open
environment, with setR ¼ fr1; r2; ::::rNg consisting of N distributed agents. Although the
multi-hops information sharing method can make each agent finally gain full knowledge of the
global state, this consumes a lot of communication resources and also deteriorates the system’s
performance. Therefore, an agent makes decisions based on its limited observations, and the
entire system would still be partially observed. The network consists of a set of contiguous,
orthogonal (non-interfering) and homogeneous channels (e.g., 3 such channels in IEEE
802.11b/g and 12 in IEEE 802.11a), denoted by CH = {c1, c2, . . ., cK}. The available channels are
also numbered from 1 to K, and we assume that N> K agents are seeking channel opportuni-
ties in these K channels.

We should recognize that agents can only access channels if the sensed channels are idle. As
shown in Fig 1, a time slot consists of 3 parts: sensing, transmission and acknowledgment.
Because of practical considerations, agent ri can sense a set of channels and a subset of
sensed channels to access. Limited by its hardware constraints, ri can sense {C1} channels,
({C1} 2 {CH}, jC1 j<K) channels and access {C2} channels, ({C2} 2 {C1}, jC2j< jC1j) channels.
State statistics of the K channels follows a discrete-time Markov process with 2K states, where
state is either idle or occupied. The channel sensing and access decisions are made to maximize
agents reward by fully exploiting the sensing of vacant opportunities and the history statistics.

Fig 1. Multi-agent Multi-channel Access Opportunities. Several agents are independently seeking available communication opportunities in two
channels, a suitable mechanism is required to ensure smooth communication and low conflicts.

doi:10.1371/journal.pone.0145526.g001
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Multi-channel Access Decision Problem
For some reasons, some agents change the status of stable channel access(switch to other chan-
nels, increasing the data flow or strong interference, etc.), and other agents need to adjust the
channel access based on their limited observation so as to ensure the global rational use of
resources and QoS. Therefore, the multi-agent multi-channel access problem can be described
as cooperative searching for available resources in a partially observable multi-channel net-
work. As such, this can be modeled as a Dec-POMDP problem in terms of interdependence. A
finite-horizon Dec-POMDP can be defined as a tuple< S;L;T;O;O;R; p0 >, where

• S = {s0, s1, . . .sn} denotes the finite set of network states.

• Ai = {a1, a2, . . ., am} denotes ri’s available actions set. At each time step, all the agents inR
take a joint action Lt ¼ �1�i�mfatig.

• T denotes Markovian state transition function. P(s0js, Λt) denotes the probability that doing
action Λt and being in state s then going to state s0.

• Ot ¼ �1�i�kfot
ig denotes the set of joint observations of all the agents and ot

i is the observa-
tion by ri at time t.

• O denotes observation function, which specifies the probability of joint observation O(Otjs0,
Λt).

• Rðs0jLt; sÞ denotes the reward value obtained from taking action Λt in state s.

• p0 = {B0, s0} is the initial belief and state distribution.

Action a is determined by the policy π: b!a, which is the function that maps a belief state

to the action that an agent should execute. Ot�1
i = ×1 � i � t−1{ω

t−1} denotes the known network
states.

Formally, most policies can be represented as decision trees. We use Qi to denote the possi-
ble policy space for agent ri, and Q−i denotes the sets of policy trees for all agents except ri.
With a programming approach, it is required that we generate incrementally the sets of useful
policies for each agent. Thus, a joint policyP = ×i 2 N{πi} is a vector of policy trees. Evaluating
a joint policy can then use the following formulation:

Vðs;PÞ ¼
X
o2O

Pðojs;PÞ½
X
s02S

Pðs0js; p;oÞVðs0;PðoÞÞ� ð1Þ

whereP(ω) is the joint policy of subtree selected after observation ω. So we get the utility func-
tion as:

Uðbi;PiÞ ¼
X
s2S

X
P�i2Q�i

biðs;P�iÞV ½s; fP�i; pig� ð2Þ

Therefore, the essence of this framework is to find a set of n policies to maximize a total
reward function from finite horizon T under initial belief state p0, and the expected joint

reward is given by EðPT
t¼0 Rðst;LtÞjp0Þ.

A Resource-aware Approach for Multi-agent Multi-channel Access
In this section, we demonstrate an agent’s decision-making process based on current observa-
tion and resource perception, and analyze the computational complexity under the instincts of
no-information-sharing.

Decentralized Resources Access for Cooperative Ad-Hoc Networks

PLOS ONE | DOI:10.1371/journal.pone.0145526 January 4, 2016 4 / 21



Resource Awareness Policy Generation
From the idealistic view of the Shannon’s theory [22], the optimal available resources under an
ideal state for ri is:

Capi ¼ Bn

XN�1
j¼1
fð1� pmÞlog2ð1þ

g2i p
o
j

so
j

Þ þ pmlog2ð1þ
g2i p

o
j

sp
i þ g2i p

p
i

Þg ð3Þ

where Bn is the channel bandwidth and pm is the channel state misperception probability. so
j

and sp
i respectively denote the noise variances from other agents and ri affected channel chi. poj

and ppi respectively denote the communication power of other agents and ri. gi is the channel
sensing gain. However, in the presence of sensing error, not only the sensing and access policy
but also the operating characteristics of the channel sensor affect the performance of the net-
work and the interference perceived by all the agents. The loss of resources caused by interfer-
ences are:

4Capi ¼ Bn

XN�1
j¼1
½log2ð1þ

g2i p
o
j

so
j

Þ � log2ð1þ
g2i p

o
j

sp
i þ g2i p

p
i

Þ�pm ð4Þ

As a result, agent ri can obtain the idealistic expectation channel resources in C2 as:

ECapi ¼
XjC2 j
i¼1
ðCapi �4CapiÞ ð5Þ

We can see that the agent can access the network interval sequence independently, and this
follows the same negative exponential distribution G(t) = 1−e−μi t, where μi is the channel free
probability. Thus, we can get the probability of agent ri to choose and access channel cj as:

ppi;j ¼ psi;jVðECapi;PiÞlog2ð1þ
ni;j

ln
0:2

BERi;n

Þ ð6Þ

We can use ppi;j and p
s
i;j to denote the probability that agent ri select channel cj and the proba-

bility of channel cj being sensed idle respectively. ni;j ¼ ECapj�pj
Eð4CapjÞþN0

is the Signal to Interference

plus Noise Ratio (SINR) for agent ri from the other agents in channel cj. This problem cannot
be solved in one stage, and as such, should be done in an iterative manner. Therefore, based on
the above analysis, we use Eqs (5) and (6) to obtain the policy tree and a target BER equal to

BERi;n � s1exp½�s2zi;n2
bi;n�1�, where σ1 and σ2 are Lagrangian multipliers, bi, n is the number of bits

per symbol in channel cn, and zi, n is the Signal to Noise Ratio (SNR) for the receiver agent ri in
channel cn. Consequently, we adopt the utility function design in [23]:

Uðb; pÞ ¼ m1

X
ci2C2

ppi;jlogðm2c
h
i kiÞ � costi ð7Þ

where the product chi ki is the bandwidth (i.e. transmission rate), chi is the size of access channel
in Hz, ki is the spectral efficiency

2 in bits per symbol per Hz due to adaptive modulation, and
μ1 and μ2 are constants that depend on the communications protocol and agent communica-
tion system performance, respectively. costi is the communication consumption, which relates
to the agent’s hardware system. The optimal policy is therefore π� = argmax[U(b, πi)].
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Dynamic Local Search
Based on the model described above, agent ri cannot get a full view of the state of the system,
since it can only use its observation to update its actions. The goal of this problem’s model is to
come up with a joint policyP� =�1�i�Nfpt

ig, which can maximize the expected reward of all

the agents over a finite horizon. The belief space is a sufficient statistic [21], and can be inde-
pendent of the decision time. We remark that ri can only infer what action its neighbors may
take, but the inference or conflict is inevitable. At each time slot, we can compute the expected
value of a policy as follows:

EðVt
pðOt�1;otÞÞ ¼ RðOt�1; hot; ptiÞ þ

X
S02S

PðOt�1; hot; pti; S0Þ

�
X
o2O

OðS0; hot; pti;o0Þ � Vtþ1
p ðS0;o0Þ

ð8Þ

Solutions to a finite-horizon POMDP can be represented as a decision tree, where nodes
denote the actions and arcs denote the observations. Similarly, solving a finite-horizon Dec-
POMDP with known state space can be formulated as a multiple vector of horizon T policy
tree searching process.

Algorithm 1: Resource aware policy search for agent ri.
Require:

Set g0 = 0; <0 = {Φ}; < 2 Qi;
Ensure:
9 P� ¼ �i2Np

� and 8 vðpiÞ � vðp�i Þ;
1: for each ri do
2: random select ploicy candidates set {ηi}from <;
3: gi(t) =max

k2ði[NiÞ
gk;

4: for all �i 2 ηi do
5: excute �i to obtain ωt;
6: compute gi(t);

7: if giðtÞ > V̂ ðp0Þthen
8: �� = �i;
9: else
10: prune �i and get new p0i;
11: end if
12: Z0i = argmax {Π0 2 <jV(η0) > R(η)};
13: end for
14: return �� ! Π�;
15: end for

As shown in Algorithm 1, < 2 Qi denotes the random initialized policy space with
completely unspecified candidate policies. gi = EVðp�i Þ − Vðpt

iÞ is the difference in value
between the expected policy and the current one. In the beginning of each searching round,

randomly select η0 from <, if gi’s value is bigger than V̂ ðp0Þ, then map πi to p�i . If not, prune
the inappropriate πi and search new p0i. We assume that the partial policy with the highest heu-

ristic value is selected, and the provided value of V̂ ðp0Þ is the lower bound for an optimal joint
policy, which can be used to prune the search space. If ri has the minimum gi value in one
round, then it will get priority to access its {C2}. Other agents are constantly updated to the
new strategy, and after finite times evaluation and exploration that they can get all the apposite
policies to fix the gi value. In a limited belief space, by retrieving the limited policies space, and
the state transition probability approaching the optimal values, similarly, the decision can
approach the optimal policyP�i . At each time slot, the computation of gi performs a summa-
tion over all possible network states and observations, and so the time complexity of this
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algorithm is O((jSj�jQij)T). The value of a policy is highly dependent on the other agents’ beliefs
and the current system status, whereas, without sharing, the policy regeneration can only be
derived on the basis of the reckoned joint policies. We define the policy update function as:

p0i ¼ argmaxXP½Rðp0ijdti ;VðptÞÞ�

VðptÞ ¼ 1

jC2j
XjC2 j
1

RðECapijat; pt; dt
iÞ;

ð9Þ

8>>><
>>>:

where Xπ represents the conditional expectation given that policy πi is employed, and B0 is the
initial belief, which can be the stationary distribution of the network state. dt

i is the knowledge,

consisting of two parts: channels observation ωt and the known status Ot
i . The search strategy

performs a summation over all possible network states from agents’ observations. Since each
policy specifies different actions over possible histories of observations, the number of possible

policies for agent ri is OðjAij
jOjT�1
jQi j�1 Þ. In consequence, the time complexity of finding the optimal

policy by searching this space is: OðjAij
jOjT�1
jQi j�1 � jSj � jQijÞTÞ.

A Decision Theoretical Approach for Multi-channel Access
In the previous sections, we proposed a random searching solution without coordination. This
method has very high computational complexity and time cost. But from a practical point of
view, each agent can be aware of its neighbor. Therefore, with the neighbor’s policy sharing,
the agent ri can get a proximate full local observation. Consequently, we refer to the design in
[21], and the multi-agent finite horizon Dec-POMDP model can decompose into several sin-
gle-agent POMDP decision problems.

Neighbor-Aware Policy Generation
In order to solve a single-agent POMDP, we introduce neighbor policies �p i as a new parameter

to the knowledge δi, and the joint policy of n neighbors is formulated as �Pi ¼ �i2nf�p ig. There-
fore, we augment the state space to be I ¼ fS� �Sg, where the second set �S is the state variables
of the other agents’ beliefs. In consequence, we resolve and upgrade the Dec-POMDP to a
POMDP model as a tuple< I;A;T;O;O;R; fdig >. All variable definitions remain
unchanged, and to accomplish this, we factor the transition distribution into two terms:
T½ðs0; �s0 Þja; �Pið�sÞ; ðs;�sÞ� ¼ T½s0ja; �Pið�sÞ; �T ð�s0 js0; a; �Pið�sÞ�, and the upper bound of the POMDP
value function can be reached through the complete observation. In consequence, the belief
update function can be denoted as:

bðs0Þ ¼ Pðs0jo; a; bÞ ¼ Oðs0; a;oÞPs2ITðs; a; s0ÞbðsÞ
Pðoja; bÞ ð10Þ

The value function of a POMDP is defined over the space of beliefs, where a belief state b
represents a probability distribution over states. The optimal value of policy π� can then be
approximated as:

Vp� ðbÞ ¼ max
a2A
fRdðb; aÞ þ l

X
o2O

pðojb; aÞ � V�ðb; a;oÞg ð11Þ
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Heuristic Local Policy Search
Modeling our problem as a POMDPmodel is to search for the optimal policy π�, and maximize
the expected reward over a finite horizon-T policy distribution over states. Formally, a belief
state bt+1 = P(st+1jδt, δt−1, . . .., δ0) is a probability distribution over states conditioned on
knowledge dti . In order to avoid a heuristic with unbounded input (the knowledge can be arbi-
trary), a traditional approach is to learn a mapping from belief states to actions, which is from
the known knowledge dt

i . But in discrete worlds, beliefs can only be represented by a state with
probabilities. We represent the regeneration process of belief states by sampling. A sample x is
annotated with a numerical importance factor to account for the difference in the sampling
distribution.

Heuristic search is based on the decomposition of the evaluation function into a sequence of
exact sub-evaluations. As aforementioned, we denote qt as an arbitrary depth t policy vector
extract from policy vector QT, and {qt, QT−t} constitutes a complete policy vector of depth T.
This allows us to decompose the policy vector into any t depth vector, and the value of the
completion is:

VðQT�tjfqt; p0gÞ ¼ Vðp0; qtÞ þ HT�tðQT�tjqt; p0Þ ð12Þ

whereH(q) is the heuristic function, and the value of QT−t depends on the previous execution
and the underlying state distribution at time t. In consequence, we can describe the heuristic
function as:

HT�tðQT�tÞ ¼
X
s2S

Pðsjp0; qtÞHT�tðsÞ ð13Þ

As in Algorithm 2, randomly extract a sample qt from the possible policy space Q, and each
node in the tree is a belief state bi. For each encountered state xi, belief state bi is updated to
include the new state x0i . In each sample searching, the agent selects the policy b0 at the greatest
value. The sampling path terminates when it reaches a sufficient depth of the bounds of Tq, and
goes back to the root so as to improve the upper and lower bound estimates. The search moves
towards π� only with the acceptance probability P(b0), otherwise it remains at b0. At this point,
the node b0 becomes the root of the new search tree, and the remainder of the tree is pruned, as
all other beliefs are now impossible. The search in new sample trees would not stop until there
appears a policy to meet the resource requirements. Obviously, under a statistical hypothesis,
the searching process converges to the expected distribution at a rate of 1ffiffiffi

H
p , andH denotes the

sample size.
Algorithm 2: Sample extract-based search for agent ri.

Require:
random extract sample fqtig from Q; v(b0) = 0;

Ensure:
9 8 vðpiÞ � vðp�i Þ;

1: random extract sample fqtig from Q;
2: for each qti do
3: qualify Tq;
4: repeat
5: for each state xi from bi do
6: compute bðx0iÞ; x0i  Tðxi; a; x0iÞ;
7: if b0 2 qt then
8: continue to next bi;
9: else
10: add b0 to Tq;
11: if U(b)<U(b0) then
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12: b0 = b0;
13: end if
14: end if
15: prune qt other than b0;
16: end for
17: generate new qt0 from root b0;

18: until Pðb0Þ ¼ min 1; bðx0ÞTðx0 ja;xÞP
x2bbðxÞTðx

0 ja;xÞ

� �
;

19: end for
20: return ��;
A concise example is described in the following to illustrate our algorithmic process. We

demonstrate a minimize-scale: two agents coordination. For each agent ri, its action space has
two actions {Listen, Switch}. These actions achieve channel perception, switch to other chan-
nels or stay in current channel, respectively. Each agent can sense two channels and choose one
to access. The coordination has two states: establish a connection (R) or fail (W), denoted by S
=<R,W>. The channel state misread probability is 0.3. The action-state transfer probability
table as in Table 1, the initial joint action is<S, S>.

We define the highest reward (+50) to be the case when both agents get a good resource
acquisition. A lower reward (-20) is agents’ access in two different channels, and they can con-
nect but with low resource acquisition. The worst case is lose connection (-100), and the cost of
Listen is (-10). As shown in Fig 2, both agents start out with an initial belief state of b(s) = 0.5,
and the discount factor is γ = 0.9. The first joint action at this belief is< Listen, Listen>, the
reward is (-20). As such, each agent has its own observation and network belief. In order to get
a better reward, each agent removes all of the joint beliefs that are not consistent with its entire
observation. After policies sharing, there is only a single possible belief b(W) = 0.033, and the
optimal joint action for this belief is< Switch, Switch>.

Table 1. State-action transfer probability.

Action S,S L,S S,L L,L

State

W 0.09 0.21 0.21 0.49

R 0.49 0.21 0.21 0.09

doi:10.1371/journal.pone.0145526.t001

Fig 2. Beliefs Update Processing. A 3-step policy tree captured from Table 1, each of which can be conditioned on the outcome of previous actions. Each
node is labeled with the action that should be taken if it is reached.

doi:10.1371/journal.pone.0145526.g002
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It should be noted that there exists hidden competitions between agents for the finite
resources (each agent wants to get more resources), that is, there should exist optimal joint
policies to reach the Pareto optimal. But, it is infeasible for Dec-POMDP model because of
the partial observation that we briefly described in the previous sections. In our design, it
can finally reach the approximate Pareto optimal after a finite search. Therefore, it means
that, in the finite belief space, there exists a pair of policies π = (π1, π2) such that:
8p0

1
ðV1ðp1; p2ÞÞ 	 V1ðp01; p2Þ

V 8p0
2
ðV2ðp1; p2ÞÞ 	 V2ðp1; p

0
2Þ. That is, for each agent, playing

πi gives an equal or higher expected resource than playing p0i. So both policies are best
responses to each other.

Implicit Competition Modeling and Equilibrium Analysis
As aforementioned, there exists hidden competition between agents for the finite channel
resources, and techniques for eliminating dominated strategies in solving a POMDP are very
closely related to techniques for eliminating dominated strategies in solving games in normal
form [24]. From the game perspective, agents can get their locally optimal policy according to
the Best Response (BR) dynamic iteration. In a general game, each agent negotiates and
chooses the channels to maximize its payoff based on the channel situation in the last time slot
observation, but the other agents (interference) can not change their channels simultaneously.
However, BR does not guarantee convergence in all cases, and the stable state can not always
be with the optimal overall reward. Hence, we study the characteristics of the multi-channel
access game and its sub-optimal as in the following.

Implicit Competition Game Model
According to the aforementioned, the access problem can be defined as a cooperative game
G ¼ hR; S;Di;Ri, where the definitions ofR and S are unchanged, Di = ×1 � i � k{πi} is the
finite set of policies available to agent ri, R denotes the reward. We use θi(πi) to denote the prob-
ability distribution assignment over policies available to agent ri. Since agents select their policies
simultaneously, agent ri’s belief about the other agents’ likely policies can be denoted as θ−i. If
we define Vπi(s, θ−i) = ∑d−i θ−i(d−i)Vi(πi, d−i), then Biðy�iÞ ¼ fpi 2 DijViðpi; yvÞ 	 Viðp0i; y�iÞg
denotes the best response function of agent ri, which is the set of policies for agent ri that maxi-
mize its value of some belief about the policies of the other agents d−i. Any policy that is not a
best response to some belief can be abandoned.

Algorithm 3: General framework of competition equilibrium.
Require:
9 θ−i = {b1, . . ., bi−1, bi+1, . . .};

Ensure:
8 s 2 S and vðpiÞ � vðp�i Þ;

1: for each episode do
2: Initialize get state S and D;
3: repeat
4: compute Vpi ;d�iðbiÞ  Oðsi; a; s0iÞ;
5: if Vpi ;d�iðbiÞ < R

i
min then

6: prune pi and get new p0i;
7: else
8: return πi to D0;
9: end if
10: until UiðbiÞ ¼ max

P
pi2D0

biðs; d�iÞVpi
ðs; y�iÞ;

11: end for
12: return �i! ��;
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As in Algorithm 3, in a cooperative game, the reward functions for the game correspond to
the reward functions of the POMDP, and an agent’s belief is a distribution synthesization over
the possible policies of the other agents. For each agent ri, a belief is defined as a distribution
over S×D−i, where the distribution is still denoted by bi, and the utility of bi is:

UiðbiÞ ¼ max
X
pi2D0

biðs; d�iÞVpi
ðs; y�iÞ ð14Þ

Given the set of policies and the reward function for a horizon-t’s game, the sets of policies
and value functions for the t horizon game are constructed by exhaustive backup. When a hori-
zon-t’s POMDP is represented in the normal form with implicit competition, the policy sets
include all depth-t policy trees. Each policy profile is associated with a belief vector B, reresent-
ing the expected t-step cumulative reward achieved for each potential start state by following

an apposite joint policy, whiles the size of the policy set for each agent ri is more than AjOj
t

i ,
which is doubly exponential in the horizon-t. Because of the large sizes of the candidate policy
sets, it is usually not feasible working directly. The search algorithm (Algorithm 2) we present
in this paper only partially alleviates this problem by performing iterative elimination of domi-
nated policies at each stage in the construction of the normal form representation, rather than
waiting until the construction completes. Considering an N-player implicit competition game,
we can formulate the game subject as:

XK

n¼1
olnð1þ Vðbi;nÞGi;i;ns3

d2i þ
XK
j¼1

pj;n gj;i;n

Þ � R
i
min 	 0

XK

n¼1
olnð1þ Vðbi;nÞGi;i;ns3

d2i þ
XK

j¼1; j 6¼i
pj;n gj;i;n

Þ � R
i
exp 	 0

ð15Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

In this constraints equations, ri’s desired reward is no less than R
i
min, and this guarantees a

minimum level of resources achieved by each agent. v(bi, n) is value of the belief distribution of

agent ri’s access in channel cn, d
2

i is the variance of the white Gaussian noise, and s3 ¼ s2
lns1

. Ri
exp

is the expected resource reward, and Gi, j, n is the channel gain between two agents in channel

cn, and all policies should meet
PK

i¼1 vðbi;nÞ � Rp� ðb;KÞ. The existence and stability of the
competition will be investigated in the following subsection.

Evolutionary Equilibrium Analysis with Replicator Dynamics
In a multi-agent multi-channel access game, the stable state can be defined as the following:
a joint policyP� is and only if, for each agent and an arbitrary policy π in its policy space,
vi(π�)	 vi(π, θ−i) is always satisfied. Consequently, the process of this game can be modeled as
a replicator dynamics, and this can be derived for each agent separately.

We consider a concise example with two new access agents r1 and r2. These agents appear
first in the network with some spared channel opportunity (i.e., c1 to cn). With this specifica-
tion, we analyze the evolutionary equilibrium for both deterministic and stochastic models. For
the hidden competition among agents, the evolutionary equilibrium can be obtained as Repli-
cator Dynamics solution [25], where χi denotes the proportion of the eager channel resources
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that agents can get, and the replicator dynamics can be defined as the following:

@wbii ðtÞ
@t

¼ swbi
i ðtÞ½vbii � �vbi �

¼ swbi
i ðtÞ½Uðp;P�iÞ � �U ðP�iÞ�

ð16Þ

where �v ðciÞ is the estimated average reward for other agents in channel ci, and the function U is
defined in Eq (7). With the two agents case, the evolutionary equilibrium is obtained as the
solution of the following equation:

m1log ðm2

wb11 Uðb1Þ
wb11 Uðb1Þ þ ð1� wb22 Uðb2ÞÞ

Þ � vp1ðb1Þ

¼ m1logðm2

wb22 Uðb2Þ
ð1� wb1

1 Uðb1ÞÞ þ wb22 Uðb2Þ
Þ � vp2ðb2Þ

ð17Þ

where the terms on both sides of the equation are the rewards that the new access agents can
get from their beliefs b1 and b2, respectively. Accordingly, the stability of the evolutionary equi-
librium can be analyzed using the following Jacobian matrix:

@swb1
1 ½Uðp;P�1Þ � �U ðP�1Þ�

@wb1i

@swb1
1 ½Uðp;P�1Þ � �U ðP�1Þ�

@wb2i

@swb2
1 ½Uðp;P�2Þ � �U ðP�2Þ�

@wb1i

@swb2
1 ½Uðp;P�2Þ � �U ðP�2Þ�

@wb2i

2
666664

3
777775
¼

J 1;1J 1;2

J 2;1J 2;2

2
4

3
5 ð18Þ

where

J 1;1 ¼ sfZ2 � vp1ðb1Þ � wb11 ðZ2 � vp1ðb1ÞÞ � ð1� wb11 Þ � ½m1p
p
1;2log

m2c
h
1k1

Z1

� vp2ðb2Þ�g

�swb1
1 f

m1Uðb1Þ
wb11 Uðb1Þ þ ð1� wb22 Uðb2ÞÞ

þ Z2 � vp1ðb1Þ

� m1w
b1
1 Uðb1Þ

wb11 Uðb1Þ þ ð1� wb22 Uðb2ÞÞ
� m1p

p
1;2log

m2c
h
2k2

Z1

þ vp2ðb2Þ þ
1� wb11 m1Uðb1Þ

Z1

g

ð19Þ

J 1;2 ¼ swb11 f�
m1Uðb1Þ

wb11 Uðb1Þ þ ð1� wb22 Uðb2ÞÞ
� ð1� wb11 Þm1Uðb1Þ

Z1

þ m1w
b1
1 Uðb1Þ

wb11 Uðb1Þ þ ð1� wb2
2 Uðb2ÞÞ

g
ð20Þ
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J 2;1 ¼ swb11 f�
m1Uðb1Þ

wb11 Uðb1Þ þ ð1� wb22 Uðb2ÞÞ
� ð1� wb22 Þm1Uðb1Þ

Z1

þ m1w
b1
1 Uðb1Þ

wb11 Uðb1Þ þ ð1� wb2
2 Uðb2ÞÞ

g
ð21Þ

J 2;2 ¼ sfZ2 � vp1ðb1Þ � wb11 ðZ2 � vp1ðb1ÞÞ � ð1� wb11 Þ � ½m1p
p
1;2log

m2c
h
1k1

Z1

� vp2ðb2Þ�g

�swb2
2 f

m1Uðb2Þ
wb11 Uðb1Þ þ ð1� wb22 Uðb2ÞÞ

þ Z2 � vp1ðb1Þ

� m1w
b2
2 Uðb2Þ

wb11 Uðb1Þ þ ð1� wb22 Uðb2ÞÞ
� m1p

p
1;2log

m2c
h
2k2

Z1

þ vp2ðb2Þ þ
1� wb22 m1Uðb2Þ

Z1

g

ð22Þ

where Zi specified as Z1 ¼ ð1� wb11 ÞUðb1Þ þ ð1� wb22 ÞUðb2Þ and Z2 ¼ m1log
m2c

h
1
k1

w
b1
1
Uðb1Þþw

b2
2
Uðb2Þ

. The

two eigenvalues of J can be obtained from DðJ Þ ¼ J 1;1þJ 2;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J 1;2J 2;1þðJ 1;1�J 2;2Þ2
p

2
, and the evo-

lutionary equilibrium is stable if these two eigenvalues have negative real parts [23].

Approximate Fair Maximization Policy Analysis
Among the different Cooperative Game solutions, it is important to note that the issue about
fairness in this context, e.g., new access agents, is different from the case of resource occupation
among the early-existing agents in the network. In this section we will analyze approximate
fairness of the game, and discuss the feasibility of the proposed neighbor-aware channel access
scenario in the previous section. In this scenario, the approximate Pareto optimal result can
satisfy all agents’minimum requirements. Typically, if a channel is occupied, the other agents
should be denied access to the frequency band.

In the proposed competitive game model, a virtual-feasible resource access assignment set is

existent, hence, we can use a bounded set F = f℧1

min;℧
2
min; :::;℧

C2
mingT , which denotes the mini-

mum resource required of the game. The vector r = fR1
exp;R

2
exp; :::;R

C2
expgT represents the set of

rewards for the access agents. The reward vector r 2 R
Kþ1 in the K channels can form the fair-

ness problem �ðF; rÞ. It has been shown that there exists a unique equilibrium, which can be
calculated by Eq (17):

fðF; rÞ ¼ argmax
YK
i¼1

R
i
exp � vwið℧iÞ ð23Þ

Hence, we can use Eq (23), to confirm the selected solution for stable point in the previous
section. This is also the point where “egalitarian” solutions of the game come in, and one such
method is applicable to the equal gains principle, a Pareto optimal. For the 2 agents case in the
previous section, the proportion χi in f, which is weakly efficient and satisfies the equal gain
condition w1ð℧1Þ � r1 ¼ w2ð℧2Þ � r2, is called the “egalitarian” solution. As mentioned earlier,
in our resource access method, the stable acts as a marketplace where the primary and second-
ary systems can do bargaining. The fair solution for two agents about one channel access is at
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the intersection of the egalitarian solutions:

U1 � w1ð℧1Þ ¼ U2 � R
2
exp

U1 þ U2 ¼ argmaxwiðU 01 þ U 02Þ
ð24Þ

8><
>:

Condition Eq (24) dictates that the operating point should be on the boundary of the mini-
mum region. Therefore, the intersection gives the unique approximate fairness solution. For a N
agents game, the fairness problem Eq (23), should be solved by calculating the χi, i = 1, 2, . . ., N.
To verify the case, we note that the stable point in the proposed design is also on the perpendicu-
lar boundary to (24) at its intersection. The corresponding optimization satisfies Eqs (15) and

(17), defined by max
wi
½U1 � w1ð℧1Þ� � ½R2

exp � U2�, which is subject to ðri;BÞ, i = 1, 2, . . .N. It is

straightforward to confirm the solution of Eq (18), as it satisfies the description at the beginning
of this section.

Experiments and Results
In this section, we designed several experiments to evaluate the proposed methods in above
sections. We employed the multi-agent platform in [4] to simulate the multi-agent Ad-hoc net-
work. The data unit length was fixed at 1,024 bytes. We evaluate the performance of the pro-
posed scheme with wide band available by simulation and compare it with the priced-based
centralized channel allocation method (OPTIMAL) [26] and the RANDOMmethod to vali-
date the efficiency, which allows agent randomly accesses channels from its current belief on
each channel. The simulation parameters are shown in Table 2.

In order to facilitate the numerical statistics, we use one channel for global listening (espe-
cially for the OPTIMAL method of the centralized resource allocation), the rest of 10 channels
allow agents to access. We conducted the simulations under various scale agents and the simu-
lation results are the average value of 100 runs.

Resource Lost Rate
As in Fig 3, the results show that the influences of different channel access strategies, have
direct impact on the available channel resources. The axes represent the number of agents and
the resource loss rates. Agents adopt a RANDOMmethod, and with the expansion of scale
(20–200, from 0 agent there has no conflict), the congestion and resource loss rates continue to
rise closing to 90%. Meanwhile, in our algorithm, agents communicate with their neighbors to
exchange decision policies, and acquire a better joint behavior through continuous negotiation
and iterations (the average max amount of loss is 65.38%, the average sample variance is
8.12%), the variance shows that our algorithm is more stable.

Table 2. Simulation parameters.

Simulation Parameters Value

Number of agents 200–1000

Maximum number of channels 11

Number of perception channels 5

Number of access channels 3

Maximum resources for a channel 100

Data frame size 1

doi:10.1371/journal.pone.0145526.t002
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The OPTIMAL method can provide a better result, but the resource consumption of global
consultations could not be avoided (the average max amount of loss is 21.92%, the average
sample variance is 5.67%). Furthermore, due to agents’misperception and accessing, the
resource loss (conflicts) is inevitable, and will increase sharply with the expansion of the
agents.

Resource Available Rate
With the premise of partial observation, we set the RANDOM and our algorithm to start from
the initial belief probability 0.5, as shown in Fig 4. But the difference is, our algorithm can
reach an average resource showed at 52.67% and the average sample variance is 3.32%. RAN-
DOM’s resource obtain rapid descent, and when there has 200 agents, the available resources
only remain 33.48%, but with 12.16% average sample variance. When the number of agents
and network resources are relatively homogeneous, the available resources rate can approach

Fig 3. Resources Loss Rate.With the increased size of the agents, the randomness of the RANDOMmethod increased interference between agents,
which brings down the network resources utilization. OPTIMAL method can maintain an efficient use of the resources, but its time consumption is much
larger than the self-decision methods. POMDPmethods maintain a relative balance to the above methods.

doi:10.1371/journal.pone.0145526.g003
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the expected value. Then due to the increase of the agents’ number, the available rates decrease.
The OPTIMAL can keep an average resource obtained at 68.23% and with a very stable average
sample variance 2.37%.

Obviously, agents can obtain more resources with our design than RANDOM provides.
Especially, with the increase of the agents’ number and passing time (agents can exchange
information with neighbors and accumulate from known knowledge), the resource availability
rate remains in a relatively stable state until agents reaching network’s saturation.

Available Resource in Different Interaction Frequencies
In this simulation, we test the average available channel resources for the new accessed agents
under different interaction frequencies of the other agents in the network. We set 5 channels
and 100 per slot new accessed agents, which are uniformly distributed in these 5 channels, the
max agents number is 1000. The interaction frequency of the other agents was set to r = [0.2,

Fig 4. Resources Available Rate.Under the same experimental setup, with the increasing size of the agents, RANDOMmethod reduces the resources
available for each agents. Because of neighbor’s awareness in POMDP, the agents can be maintained in a state of relative balance (less variance than
RANDOM).

doi:10.1371/journal.pone.0145526.g004
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0.4, 0.6, 0.8]. X-axis represents the agents’ number. As in Fig 5, we can find two significant
changes for the new accessed agents: with increasing numbers of network agents or the higher
interaction frequency, the available resources decline. In addition, when the number of agents
is more than the maximum number the network can support, the available resources for the
entire network will be sharply reduced.

According to the experiment’s results, we can make a bold hypothesis that while the number
of agents and the resource relatively balance, there should be a suitable interaction frequency
that makes each agent obtain available resources to maximize its utility.

Resource Available in Different Assignments
In this simulation, we discuss the relationship between different team sizes when agents access
channels under different assignment. We divide 100 agents into different team sizes, and allow
them to access 5 channels. Simulation results are shown in Fig 6. Caused by new access agent,

Fig 5. Available Resources in Different Interaction Frequencies. In different interaction frequencies, the available resources shrink with the increasing
number of agents. Similar to the allocation of limited resources in human society, the average gain decreases with the increasing number of people.
Experimental results are consistent with the general understanding.

doi:10.1371/journal.pone.0145526.g005
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blocking rate of channel will increase and influence the original agents due to the partial
observation.

Obviously, we can see that when the combination in each channel distribution is more uni-
form, the greater resource available, as assignment [10, 20, 20, 20, 30] and [20, 20, 20, 20, 20].
In an extreme access situation with [100, 0, 0, 0, 0], all agents are in one channel. When com-
munication demand escalates, all agents almost have no chance to obtain available resources.
From above analysis, we can conclude that agents will gain more available resources when they
distribute more uniformly.

Resource Available Comparison
Fig 7 displays the contrast of channel resources awareness between our algorithm and RAN-
DOM. In this simulation, we set 100 agents with freedom interactive frequency.

It can be seen that, with 500 tests for the same channel (distribution within the circles),
agents can obtain the actual state of the channel. The red trail denotes the search result by

Fig 6. Resource Available in Different Assignments. In the 5 specified channel, the more uniform distribution of the agents, the higher the probability of
their available resources, whereas the performance reduces (more crowded, no elimination of competition that makes the average income is lower).

doi:10.1371/journal.pone.0145526.g006
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POMDP, and black trail denotes the RANDOMmethod. It is obvious that the randomness and
divergence of RANDOM far outweigh that of POMDP.

Conclusion
We assumed in this paper that channel state transition probabilities can be entirely perceived,
but in practice, this may not be available. The problem then becomes a decision model with
unknown transition probabilities, but such mode is beyond the scope of this paper. In our
design, we reduce a Dec-POMDP model to a simplified one by separating the problem into sin-
gle-agent decision coordination, which may result in a low-complexity but potentially subopti-
mal design. In practical applications, systems Dynamics making use of pure policy space
searching to solve all the problems become impractical, and need to be adjusted according to
the actual situation and dynamics, and add more factors. In our future work, we will pursue the
optimal joint design of the tradeoff between complexity and optimality, and will apply rein-
forcement learning theory on real multi-robots platform.
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