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Abstract: A convenient, straightforward, and easy access to 2(2,3-dimethoxy-phenyl)-

cycloheptanone, which employs an heteroatom-facilitated ortho-lithiation coupled to a

carbonyl transposition strategy, is reported. The synthetic approach avoids using very

expensive reagents or difficult-to-prepare starting materials.

Keywords: 2-Arylcycloheptanone, carbonyl transposition, chemical synthesis,

epoxide rearrangement, ortho-lithiation

INTRODUCTION

Derivatives of 2-substituted cycloheptanone have been employed as synthetic

intermediates.[1] However, they are not easily available, because the efficient

synthesis of a-aryl alkanones and cycloalkanones is still a challenging

problem. Reagents and reactions employed for their preparation include diary-

liodonium salts,[2a – e] organobismuths,[2f,g] organoboron derivatives,[2h] iron

and chromium carbonyls,[3a,b] copper reagents,[3c – g] organoleads,[4a – c]

nickel,[4d] and palladium[4e – g] derivatives, as well as Grignard[5a] and organo-

cadmiums,[5b] photostimulated reactions[5c] with ketone enolates,[5d] and

arylation of enamines with highly reactive halides.[5e] Additional alternatives
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involve arylmethylene insertion through aryldiazomethane,[6a – c] b-oxido car-

benoid,[6d] and 1-arylmethylbenzotriazole chemistry,[6e] as well as the

rearrangement of halohydrins, derived from the addition of benzylmagnesium

chloride to carbonyl compounds followed by a-bromination.[7]

Methods employed for accessing 2-aryl-substituted cycloheptanones

include ring expansion of cyclohexanone with aryldiazomethane[8] and aryl-

methyl benzotriazole derivatives.[6e]

Stephaoxocanidine (1), shown in Figure 1, is a novel natural product

isolated from Stephania cepharantha.[9] We have synthesized AC- and

ABC-ring analogs[10] of this tetracyclic compound and demonstrated that

certain tricyclic derivatives possess interesting acetylcholinesterase-inhibiting

activity.[10d,e]

For a project related to the total synthesis of stephaoxocanidine and struc-

tural analogs incorporating the D-ring of the natural product, we required a

simple, inexpensive, and reliable route to 2(2,3-dimethoxyphenyl) cyclohep-

tanone (2). However, the available methods require either expensive,

unstable, or highly toxic reagents; not easily available starting materials; or

special equipment or are limited to aromatics carrying electron-withdrawing

groups.

RESULTS AND DISCUSSION

Compound 2 was previously prepared by Gutsche[8] employing the corre-

sponding phenyldiazomethane, an unstable compound for the preparation

of which the hazardous, highly toxic, and currently not readily available

anhydrous hydrazine is required; in addition, the transformation demands

important quantities of mercury(II) oxide, which is added in excess as

oxidant.

We envisioned a new synthesis of 2 as the result from the 1,2-addition of

ortho-metallated 1,2-dimethoxybenzene (3) to cycloheptanone (4), followed

by a carbonyl transposition. For reviews on carbonyl transposition, see[11]

Figure 1. Stephaoxocanidine (1) and target compound (2).
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Thus, compound 3 was subjected to an heteroatom-facilitated ortho lithiation

with n-butyllithium in dry Et2O, and the resulting organometallic derivative

was treated with cycloheptanone, resulting in 65% of alcohol 5, which was

easily dehydrated with catalytic amounts of oxalic acid in refluxing

toluene,[1c] furnishing aryl-cycloheptene 6.

However, submission of 6 to hydroboration-oxidation with BH3
. SMe2

gave mixtures of the expected secondary alcohol 7 and its epimer 8 (37%,

combined yield)[12] together with precursor 5, the latter being the most

abundant product.[12b,c] Despite literature precedents regarding product distri-

bution after hydroboration-oxidation of styrenes, the elevated proportion of 5

in the mixture was surprising, and consequently this approach was considered

inefficient.

Therefore, cycloheptene 6 was catalytically dihydroxylated with osmium

tetraoxide, employing NMO as stoichiometric co-oxidant. However, the trans-

formation proceeded sluggishly, and poor yields (30%) of diol 9 were realized

after prolonged exposure to the reaction conditions. Moreover, when 9 was

subjected to diol dehydration[13] with TsOH in toluene at 808C, the desired

ketone 2 and the rearranged aldehyde 10 were obtained as an approximate

1:6 mixture in 77% combined yield.

An analogous result was observed when 6 was epoxidized with m-CPBA

in chloroform and the resulting oxirane 11, obtained in 97% yield, was

rearranged with BF3
. Et2O at 2508C or with ZnI2 at room temperature in

CH2Cl2 as solvent.[13a] In the former case, only 11% of 2 was obtained,

together with 57% of aldehyde 10.

Scheme 1: Reagents and conditions: a) 1. n-BuLi, Et2O, rt, overnight; 2.

Cycloheptanone (4), 30 min, rt (65%); b) (COOH)2 (cat.), PhMe, 1108C, 3 h

(70%); c) 1. BH3
. SMe2, THF, 08C! rt, overnight; 2. H2O2, NaOH, 508C

(7þ 8, 37%); d) m-CPBA, Cl2CH2, NaHCO3, 08C, 1 h (97%); e) OsO4,

NMO, t-BuOH-H2O (2 : 1), 96 h, rt (30%); f) TsOH, PhMe, 808C, (77%); g)

ZnI2, CH2Cl2, rt, 2 h, (2, 27%; 10, 25%) or BF3Et2O, CH2Cl2, 2508C, 3 h

(2, 11%; 10, 57%); h) H2 (1 atm), 10% Pd/C (cat.), HCO2NH4, EtOH, rt,

1 h (78%); i) PCC/Al2O3, CH2Cl2, rt, overnight (88%).

The rearrangement of epoxides to carbonyl compounds is a useful

reaction; however, constitution of the rearranged product is determined by

the migratory aptitude of the substituents, as well as by the nature of the

Lewis acid and solvent employed. The mechanisms of the rearrangements

leading to both products are shown in Scheme 2. Coordination of the Lewis

acid to the oxygen of the epoxide in 11 results in weakening of the C–O

bond in intermediate 12, followed by cleavage of one of the C–O bonds to

give the most stable tertiary carbenium ion.

In this way, 12 can be rearranged through two alternative paths (a and b).

In path a, the oxirane is rearranged by way of a hydride shift giving intermedi-

ate 14, which provides ketone 2 after aqueous workup. However, when the

transformation takes place through competing path b probably for steric

reasons, a Meinwald rearrangement takes place, and alkyl migration to the
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tertiary carbenium center with concomitant ring contraction gives way to

cationic intermediate 13, which finally yields aldehyde 10.[14]

In view of the outcome of these transformations, epoxide 11 was submitted

to a catalytic hydrogenolysis in EtOH with 10% Pd/C and ammonium formate

as additive, easily furnishing a mixture of diastereomeric alcohols 7 and 8 in

combined 78% yield. Interestingly, the presence of ammonium formate[15]

was the key to avoid formation of undesirable side products.

Unexpectedly, however, the mixture of alcohols failed to oxidize under

Swern conditions (trifluoroacetic anhydride (TFAA), dimethyl sulfoxide

(DMSO), 2608C, then Et3N); therefore, it was conveniently treated with

pyridinium chlorochromate (PCC) supported on alumina, yielding 88% of

the ketone 2.

In conclusion, a simple and expedient synthesis of ketone 2 was

developed, based on an heteroatom-facilitated lithiation coupled with a

carbonyl transposition under conditions that avoid rearrangement to

aldehyde 11.

Scheme 1.
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EXPERIMENTAL

General Procedures

Melting points were taken on an Ernst Leitz Wetzlar model 350 hot-stage

microscope apparatus and are uncorrected. FT-IR spectra were determined

with a Shimadzu IR Prestige 21 spectrophotometer as thin films held

between NaCl cells or as dispersions in KBr disks. The 1H and 13C NMR

spectra were acquired in CDCl3 employing TMS as internal standard with a

Bruker AC200-E spectrometer operating at 200.13 and 50.33 MHz, respect-

ively. Distortionless enhancement by polarization transfer (DEPT) 135 and

DEPT 90 experiments aided the interpretation of the fully decoupled 13C

NMR spectra. HRMS data were obtained from Kent Electronics (UK). The

reactions were carried out under dry nitrogen or argon atmospheres,

employing oven-dried glassware. Commercial reagents were used without

further purification. Dry THF, Et2O, and toluene were prepared by distillation

from Na-benzophenone ketyl, and anhydrous CH2Cl2 was obtained by

refluxing 4 h over P2O5, followed by distillation. Anhydrous solvents were

stored in dry Schlenk bottles. All new compounds gave single spots on TLC

plates run in different hexane–EtOAc solvent systems. Spots were visualized

by exposure to UV light (254 and 365 nm), followed by spraying with ethanolic

p-anisaldehyde/sulfuric acid reagent and careful heating. Standard workup

procedures consisted of diluting the reaction with brine (5–10 mL) and

extracting the products with EtOAc (4 � 20–30 mL); the combined organic

extracts were washed once with brine, dried over Na2SO4, and concentrated

under reduced pressure, and the respective residues were chromatographed.

Flash column chromatographies were carried out with silica gel 60 H,

Scheme 2.
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eluting with hexane–EtOAc mixtures under positive pressure and employing

gradient techniques.

1-(20,30-Dimethoxyphenyl) Cycloheptene (6)

A solution of n-BuLi in hexanes (6.95 mL, 8 mmol) was added dropwise to an

ice-water-cooled solution of 3 (1000 mg, 7.25 mmol) in anhydrous Et2O

(10 mL). The reaction was stirred overnight at room temperature; then it

was cooled again and treated with 4 (0.895 mL, 7.6 mmol). After a reaction

period of 30 min, brine (10 mL) was added, and the reaction was submitted

to the conventional workup and chromatography procedure, giving 5
(1185 mg, 65%) as an oil. IR (film, n): 3515, 2925, 2857, 1581, 1473, 1385,

1298, 1168, 1075, and 746 cm21; 1H NMR (d): 1.15–2.35 (m, 13H, H-2,

H-3, H-4, H-5, H-6, H-7, and OH), 3.86 (s, 3H, OCH3), 3.96 (s, 3H, OCH3)

and 6.80–7.15 (m, 3H, ArH-40, ArH-50 and ArH-60); 13C NMR (d): 22.83

(C-3 and C-6), 29.83 (C-4 and C-5), 41.83 (C-2 and C-7), 55.65 (OCH3-30),

60.82 (OCH3-20), 77.59 (C-1), 111.30 (C-40), 117.86 (C-50), 123.42 (C-60),

142.61 (C-10), 146.60 (C-20), and 152.61 (C-30). Anal. calcd. for C15H22O3:

C, 71.97; H, 8.86. Found: C, 72.27; H, 8.68. Without further purification,

oxalic acid dihydrate (48 mg, 0.38 mmol) was added to a solution of 5

(1185 mg, 4.74 mmol) in dry toluene (10 mL), and the reaction was heated

at 1108C during 3 h until completed (TLC). Then most of the solvent was

removed under reduced pressure, and the remaining oil was chromatographed,

furnishing 6 (770 mg, 70%) as a solid; mp: 32–348C (Hexane–EtOAc). IR

(KBr, n): 2931, 2838, 1590, 1470, 1306, 1267, 1093, 1011, and 788 cm21;
1H NMR (d): 1.50–1.90 (m, 6H, H-3 and H-6), 2.20–2.31 (m, 2H, H-7),

2.45–2.53 (m, 2H, H-3), 3.78 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 5.88

(t, 1H, J ¼ 6.6, H-2), 6.72 (dd, 1H, J ¼ 1.3 and 7.5, ArH-40), 6.79 (dd, 1H,

J ¼ 1.3 and 8.2, ArH-60) and 6.95 (dd, 1H, J ¼ 7.5 and 8.2, ArH-50); 13C

NMR (d): 26.83 (C-5), 26.95 (C-4), 28.94 (C-6), 32.66 (C-3), 34.45 (C-7),

55.73 (OCH3-30), 60.22 (OCH3-20), 110.77 (C-40), 121.49 (C-60), 123.37

(C-50), 131.36 (C-2), 140.98 (C-10), 143.74 (C-1), 146.05 (C-20), and

152.58 (C-30). HRMS: Found: m/z ¼ 232.14644; C15H20O2 requires

m/z ¼ 232.14633. Anal. calcd. for C15H20O2: C, 77.55; H, 8.68. Found: C,

77.42; H, 8.71.

1-(2,3-Dimethoxyphenyl)-8-oxabicyclo [5.1.0] Octane (11)

A 0.5 M sodium hydrogen carbonate solution (2.05 mL, 1.025 mmol) was

added to a solution of 6 (95 mg, 0.41 mmol) in CH2Cl2 (2.7 mL) cooled in

an ice-water bath. The biphasic system was treated with a solution of

mCPBA (72%, 147 mg, 0.614 mmol) in CH2Cl2 (1.45 mL), and the reaction

was stirred 1 h at 08C. The reaction was diluted with brine and submitted to

conventional workup and chromatography procedure, furnishing 11 (99 mg,

97%), as a solid; mp: 58–628C. IR (KBr, n): 2929, 2849, 1683, 1464, 1302,
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1268, 1069, 787, and 748 cm21; 1H NMR (d): 1.17–1.32 (m, 1H, H-4), 1.46–

1.75 and 2.00–2.12 (m, 8H, H-2, H-3, H-4, H-5, and H-6), 2.20–2.35 (m, 1H,

H-2), 3.12 (t, 1H, J ¼ 4.4, H-7), 3.85 (s, 3H, OCH3), 3.89 (s, 3H, OCH3), 6.82

(dd, 1H, J ¼ 2.0 and 7.6, ArH-40), 6.92 (dd, 1H, J ¼ 2.0 and 7.7, ArH-60) and

7.00 (dd, 1H, J ¼ 7.6 and 7.7, ArH-50); 13C NMR (d): 24.27 (C-4), 24.39 (C-

5), 28.69 (C-3), 30.88 (C-6), 34.32 (C-2), 55.61 (OCH3-30), 60.43 (OCH3-20),

62.44 (C-7), 63.37 (C-1), 111.47 (C-40), 119.01 (C-60), 123.65 (C-50), 137.97

(C-10), 146.50 (C-20), and 152.40 (C-30). HRMS: Found: m/z ¼ 248.14093;

C15H20O3 requires m/z ¼ 248.14125. Anal. calcd. for C15H20O3: C, 72.55;

H, 8.12. Found: C, 72.61; H, 8.15.

2-(20,30-Dimethoxyphenyl) Cycloheptanone (2)

Ten percent Pd/C (26 mg) was added to a solution of oxirane 11 (74 mg,

0.166 mmol) and ammonium formate (56.4 mg, 0.895 mmol) in EtOH

(5 mL), and the system was hydrogenated under atmospheric pressure until

complete consumption of the starting material. Then the catalyst was

filtered through a Celite pad, and the filtrate was concentrated in vacuo.

Chromatography of the residue afforded 7 (38 mg, 51%) and 8 (20 mg,

27%). Compound 7: IR (film, n): 3461, 2929, 2834, 1583, 1464, 1266,

1168, 1086, 785, and 747 cm21; 1H NMR (d): 1.50–1.88 (m, 10H, H-3,

H-4, H-5, H-6 and H-7), 1.91–2.06 (m, 1H, H-2), 3.04–3.15 (m, 1H, H-1),

3.84 (s, 3H, OCH3), 3.86 (s, 3H, OCH3), 6.78 (dd, 1H, J ¼ 1.4 and 6.7,

ArH-40), 6.82 (dd, 1H, J ¼ 1.4 and 6.7, ArH-60) and 7.05 (t, 1H, J ¼ 8,

ArH-50); 13C NMR (d): 21.83 (C-6), 27.37 (C-5), 27.72 (C-4), 31.92 (C-3),

35.76 (C-7), 47.56 (C-2), 55.54 (OCH3-30), 60.73 (OCH3-20), 76.83 (C-1),

110.20 (C-40), 119.12 (C-60), 124.40 (C-50), 139.57 (C-10), 146.70 (C-20),

and 152.72 (C-30). Compound 8: IR (film, n): 3482, 2927, 2857, 1583,

1476, 1275, 1072, 783, and 749 cm21; 1H NMR (d): 1.45–1.91 (m, 10H,

H-3, H-4, H-5, H-6, and H-7), 1.94–2.21 (m, 1H, H-2), 3.25 (dt, 1H,

J ¼ 2.1, 2.3, and 11.1, OH), 3.84 (s, 3H, OCH3), 3.86 (s, 3H, OCH3), 6.80

(dd, 1H, J ¼ 1.6 and 7.9, ArH-40), 6.86 (dd, 1H, J ¼ 1.6 and 7.9, ArH-60)

and 7.02 (t, 1H, J ¼ 7.9, ArH-50); 13C NMR (d): 21.72 (C-6), 27.01 (C-5),

27.97 (C-4), 28.39 (C-3), 35.34 (C-7), 44.71 (C-2), 55.58 (OCH3-30), 60.70

(OCH3-20), 72.53 (C-1), 110.50 (C-40), 120.80 (C-60), 123.80 (C-50), 139.27

(C-10), and 152.61 (C-20 and C-30). Without further purification, sodium

acetate (12.2 mg, 0.15 mmol) and PCC/Al2O3 (276 mg, 3 equiv.) were succes-

sively added to a mixture of 7 and 8 (19 mg) in CH2Cl2 (5 mL). The reaction

was stirred overnight at room temperature until completion; the solids were

separated by filtration through Celite, the filter was washed with CH2Cl2,

and the filtrate was concentrated under reduced pressure and chromato-

graphed, affording 2 (10.7 mg, 88%) as an oil. IR (film, n): 2931, 2855,

1696, 1585, 1453, 1276, 1169, 1084, and 747 cm21; 1H NMR (d): 1.39–

1.78, 1.89–2.02 and 2.59–2.85 (m, 10H, H-3, H-4, H-5, H-6, and H-7),

3.75 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 3.89–3.99 (m, 1H, H-2), 6.77
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(dd, 1H, J ¼ 1.5 and 7.5, ArH-40), 6.81 (dd, 1H, J ¼ 1.5 and 8.0, ArH-60), and

7.01 (dd, 1H, J ¼ 7.5 and 8.0, ArH-50); 13C NMR (d): 24.41 (C-6), 29.63

(C-4), 29.79 (C-3), 31.86 (C-5), 43.73 (C-7), 53.16 (C-2), 55.54 (OCH3-20),

59.98 (OCH3-30), 110.96 (C-40), 120.78 (C-60), 123.74 (C-50), 145.80 (C-20),

152.34 (C-30), and 214.35 (C-1). HRMS: Found: m/z ¼ 248.14115;

C15H20O3 requires m/z ¼ 248.14125. Anal. calcd. for C15H20O3: C, 72.55;

H, 8.12. Found: C, 72.67; H, 8.19.

Rearrangement of Epoxide 11 under Lewis Acid Assistance, Synthesis

of 1-(2,3-Dimethoxyphenyl)-cyclohexanecarbaldehyde (10)

Method 1: A solution of oxirane 11 (20 mg, 0.08 mmol) in CH2Cl2 (1 mL) was

cooled to 2508C and treated with a 0.76 M solution of BF3
. Et2O in CH2Cl2

(0.03 mL, 0.023 mmol). After stirring at 2508C for 3 h, the reaction was

quenched with brine (5 mL), and after acquiring room temperature, the

products were submitted to the conventional workup and chromatography

procedure, furnishing aldehyde 10 (11.3 mg, 57%) as an oil. IR (film, n):

2931, 2858, 1722, 1580, 1456, 1301, 1225, 1148, 1095, 786, and 746 cm21;
1H NMR (d): 1.50–1.83 (m, 8H, H-2ax, H-3, H-4, H-5, and H-6ax), 2.10–

2.30 (m, 2H, H-2eq, and H-6eq), 3.76 (s, 3H, OCH3), 3.94 (s, 3H, OCH3),

6.84 (dd, 1H, J ¼ 1.8 and 7.8, ArH-40), 6.94 (dd, 1H, J ¼ 1.8 and 8.2,

ArH-60), 7.02 (dd, 1H, J ¼ 7.8, and 8.2, H-50), and 9.75 (s, 1H, CHO);
13C NMR (d): 22.69 (C3 and C-5), 25.43 (C-4), 32.35 (C-2 and C-6), 51.93

(C-1), 55.58 (OCH3-30), 60.02 (OCH3-20), 111.39 (C-40), 118.91 (C-60),

123.72 (C-50), 138.34 (C-10), 146.27 (C-20), 152.54 (C-30), and 204.07

(CHO); HRMS: Found: m/z ¼ 249.14914; C15H21O3 (Mþ 1) requires

m/z ¼ 248.14125. Anal. calcd. for C16H22O3: C, 72.55; H, 8.12. Found: C,

72.72; H, 8.20. Increasing solvent polarity furnished ketone 2 (2.2 mg,

11%). Method 2: Zinc iodide (31 mg) was added to a solution of 11 (16 mg,

0.065 mmol) in CH2Cl2. After stirring 2 h at room temperature, the mixture

was chromatographed, furnishing 10 (4.3 mg, 27%) and 2 (4.0 mg, 25%).

cis-1-(2,3-Dimethoxyphenyl)-cycloheptane-1,2-diol (9)

An OsO4 solution in t-BuOH (0.15 mL, 0.007 mmol) was added to an ice-

water-bath-cooled solution of olefin 6 (40 mg, 0.172 mmol) and NMO

(28 mg, 0.234 mmol) in 2 : 1 t-BuOH-H2O (3 mL). The reaction was left

overnight at room temperature, and then more NMO (28 mg) was added;

after 4 days the reaction was terminated by addition of 10% NaHSO3

(5 mL). The organics were extracted with EtOAc (4 � 25 mL), and the

combined organic phases were washed with brine (10 mL), dried (Na2SO4),

concentrated in vacuo, and chromatographed, furnishing diol 9 (13.5 mg,

30%) as a white solid; mp: 122–1248C (hexane–EtOAc). IR (KBr, n):

3448, 3249, 2924, 2859, 1582, 1472, 1253, 1182, 1054, 963, 833, and

753 cm21; 1H NMR (d): 1.50–2.15 (m, 10H, H-3, H-4, H-5, H-6 and H-7),
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3.36 (s, 3H, OCH3), 3.92 (s, 3H, OCH3), 4.18 (bd, 1H, J ¼ 10.8, OH-2), 4.26

(s, 1H, OH-1), 6.85 (dd, 1H, J ¼ 1.8 and 7.9, ArH-40), 7.11 (dd, 1H, J ¼ 7.8

and 8.0, ArH-50) and 7.14 (dd, 1H, J ¼ 1.8 and 8.0, ArH-60); 13C NMR (d):

19.93 (C-4), 22.52 (C-6), 26.69 (C-5), 30.32 (C-3), 37.91 (C-7), 55.64

(OCH3-30), 60.64 (OCH3-20), 77.11 (C-2), 78.50 (C-1), 111.45 (C-40),

118.77 (C-50), 123.61 (C-60), 140.14 (C-10), 146.26 (C-30), and 152.78 (C-

20). HRMS: Found: m/z ¼ 266.15206; C15H22O4 requires m/z ¼ 266.15181.

Anal. calcd. for C15H22O4: C, 67.64; H, 8.33. Found: C, 67.77; H, 8.29.
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