
Successive convex approximation for rate
maximisation in cooperative multiple-input–
multiple-output-orthogonal frequency-
division multiplexing systems

ISSN 1751-8628
Received on 24th June 2014
Revised on 19th April 2015
Accepted on 1st June 2015
doi: 10.1049/iet-com.2014.1136
www.ietdl.org

Chih-yu Hsu ✉, Phee Lep Yeoh, Brian Scott Krongold

Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne 3010, Victoria, Australia

✉ E-mail: cyhsu@student.unimelb.edu.au

Abstract: In this study, the authors propose a continuous rate and power allocation algorithm for multiuser downlink
multiple-input–multiple-output orthogonal frequency-division multiplexing systems with coordinated multi-point
transmission. The optimisation problem is formulated as a weighted sum-rate maximisation problem subject to per-
antenna power constraints across multiple cooperating base stations (BSs). The practical consideration of the per-
antenna power constraint limits the average transmit antenna power which indirectly controls the inherent issue of
high peak powers in OFDM. The proposed algorithm employs a successive convex approximation (SCA) technique to
dynamically allocate powers to multiple co-channel user terminals. They provide a convexity proof of the transformed
optimisation problem and they show that the proposed algorithm converges to a unique solution. They compare the
proposed SCA algorithm with two alternative approaches: (i) iterative waterfilling (IWF) and (ii) zero-forcing
beamforming (ZFB) with semi-orthogonal user selection under both per-antenna and per-BS power constraint
scenarios. Their simulation results highlight that the proposed SCA algorithm outperforms the existing IWF and ZFB in
noise-limited environments under both power constraint scenarios.

1 Introduction

Multiple-input–multiple-output (MIMO) orthogonal frequency-division
multiplexing (OFDM) has been featured prominently as the
broadband cellular platform for next generation LTE-advanced
systems [1–3]. When perfect channel state information (CSI) is
available to both transmitters and receivers, the overall throughput
of MIMO-OFDM systems can be improved significantly by
utilising the spatial diversity of the MIMO channel in each OFDM
subchannel. Furthermore, the utilisation of each MIMO-OFDM
spatial-subchannel can be optimised via dynamic resource
allocation algorithms in which substantial improvements on the
system performance have been demonstrated in [4, 5]. However,
the intercell interference (ICI) is the limiting factor on the
performance of multiuser MIMO-OFDM systems. This is
particularly true at the cell-edge where user terminals (UTs)
receive multiple signals from multiple base stations (BSs). For
each UTs, the data throughput depends on the tradeoff between
their own power and powers allocated to all other interfering UTs
in the shared OFDM subchannel.

The ICI can be mitigated by utilising coordinated multi-point
(CoMP) transmission techniques at multiple cooperating BSs [6,
7]. The downlink CoMP transmission technique can be classified
into two main strategies; coordinated scheduling/beamforming and
joint processing [8, 9]. In coordinated scheduling/beamforming,
ICI is avoided by transmitting to a UT from one BS at any time.
As a result, only CSI of the serving cell is shared amongst the
cooperating BSs. In joint processing, ICI is mitigated by
transmitting to a UT from all the cooperating BSs simultaneously.
As such, both user data and CSI of all the cells are shared
amongst the cooperating BSs. In this paper, we focus on the joint
processing strategy in a multicell scenario, where a central
processor (CP) is employed for executing our proposed resource
allocation algorithm.

In addition to mitigating interference through cooperating BSs,
adaptive resource allocation schemes can be employed to further

improve system throughput. The resource allocation problem for
downlink MIMO-OFDM systems has been studied extensively for
the single-user case. In the multiuser scenario, the problem
becomes mathematically challenging as the optimisation problem
is non-convex in the presence of interference. As a result, the
globally optimal solution is difficult to obtain efficiently. To obtain
the optimal solution, a coding scheme called dirty paper coding
(DPC) is proposed in [10]. The DPC employs a non-linear
precoding scheme which presubtracts interference. However, DPC
requires high computational demands in successive encodings and
decodings which are difficult to implement in practice.

A number of suboptimal strategies for multiuser MIMO-OFDM
have been proposed to solve this non-convex problem. The
iterative waterfilling (IWF) approach in [11] makes the problem
more tractable by treating the interference from the neighbouring
cells as a noise component. An equilibrium is achieved by
performing a competitive waterfilling-based algorithm iteratively
across all UTs in the network [11, 12]. Alternatively, the
zero-forcing beamforming (ZFB) in [13–15] simplifies the
non-convex structure of power allocations in multiuser
MIMO-OFDM systems by eliminating interference via
zero-forcing beamformers. This allows powers to be allocated to
co-channel UTs by the waterfilling strategy in interference-free
OFDM subchannels. However, the performance of ZFB is limited
by the number of transmit antennas and the mutual orthogonality
condition between the UT channel gains. Therefore, a user
scheduling algorithm based on semi-orthogonal user selection in
[16] is needed to select a subgroup of UTs that results in the
lowest mutual interference.

In this paper, we propose a new suboptimal resource allocation
algorithm for downlink multiuser MIMO-OFDM systems. The
algorithm applies a successive convex approximation (SCA)
technique in [17] to solve the optimisation problem of maximising
weighted sum-rates subject to per-antenna and per-BS power
constraints. In [17], the SCA technique is developed for solving a
non-convex dynamic spectrum management in the digital
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subscriber line (DSL) technology with cross-talk. The algorithm
attempts to jointly optimise desired signal powers and interference
powers through an iterative convex approximation procedure. The
same technique has been extended to solve resource allocation
problems for both single-cell MIMO-OFDM access (OFDMA) in
[18] and multicell OFDMA in [19] wireless networks. This approach
has been demonstrated to outperform the IWF algorithm [17].

The main contributions of this paper are summarised as follows:

† We establish an SCA-based optimisation framework for power
and rate allocations of multiuser downlink MIMO-OFDM systems
with CoMP with distributed transmit antennas to mitigate the
effect of ICI. We design the precoding and postprocessing
matrices based on the singular value decomposition (SVD) of each
MIMO-OFDM subchannel to maximise spatial degrees of freedom
of the MIMO channel. In doing so, we have applied the SCA
algorithm for DSL in [17] to a new construction of MIMO-OFDM
subchannels in our proposed system.
† We derive an iterative algorithm for solving the non-convex
resource allocation problem efficiently. In doing so, we adopt the
SCA algorithm in [17] to transform the non-convex problem into a
convex one. This transformation allows us to develop an efficient
algorithm to obtain a locally optimal solution via the dual
Lagrange decomposition technique with the aid of a subgradient
method [20]. We provide a convexity proof for the transformed
problem and we show that the proposed algorithm can converge to
a unique solution.
† We consider a practical aspect by imposing a power constraint on
individual transmit antennas. This approach ensures that every
transmit antenna will have the same average transmit power levels,
regardless of the channel condition. In addition to this, the average
transmit antenna power is limited in such a way that the resulting
high peak power problem is indirectly controlled without
exceeding the dynamic range of high-powered amplifiers (HPAs)
for non-linear transmission effects. These effects, including signal
clipping and saturation, are caused by the transmit signal
exceeding the dynamic range of HPAs. This practical issue is
often overlooked in resource allocation problems with a total
transmit power constraint, where the majority of the total transmit
power may be allocated to the antenna that has the best channel
condition. This may cause the peak power issue to be even more
problematic.
† We compare our proposed algorithm with two other suboptimal
algorithms, namely IWF [12] and ZFB with semi-orthogonal user
selection [16]. The comparisons between the algorithms are
performed under both per-antenna and per-BS power constraints.

We envision the proposed algorithm to be more suited
fixed-wireless applications in sparsely populated regions that
require high data rate to UTs over very large network areas. An
example is the provision of rural wireless broadband services to
household modems where the channel gains are quasi-stationary
[21]. Moreover, our proposed algorithm is also suitable for small
cells with low user mobility.

This paper is structured as follows. The system model is
introduced in Section 2. The formulation of weighted sum-rate
maximisation problem is presented in Section 3. The concept of
SCA-based algorithm is introduced in Section 4. Section 4 also
includes proofs for the convexity of approximated optimisation
problem transformed by the SCA-based algorithm and the
convergence of the algorithm. Section 5 presents the numerical
comparison between SCA, IWF and ZFB under both per-antenna
and per-BS power constraints. Concluding remarks are presented
in Section 6.

2 System model

We consider a multiuser MIMO-OFDM system with N subchannels
and CoMP transmission as shown in Fig. 1. The system consists ofM
cooperating BSs, each equipped with LT transmit antennas. These

BSs employ CoMP with joint processing to simultaneously
transmit to K UTs, each equipped with LR receive antennas. We
define L=min(MLT, LR) as the spatial degree of freedom of each
MIMO-OFDM subchannel. We assume that perfect knowledge of
the channel gains between all antennas and in each subchannel is
known to both transmitters and receivers. The BSs are connected
via high-speed optical backhaul links to a CP that allows the
exchange of channel gains and user data. This permits a
centralised implementation of our proposed power and rate
allocation algorithm at the cooperating BSs.

The discrete-time received signal for the kth UT in the nth
MIMO-OFDM subchannel, which is denoted as ykn [ C

LR×1, after
postprocessing is given by

ykn = UkH

n H k
nV

k
n

�����
Pn,m

√
xkn + wk

n, (1)

where UkH

n [ C
LR×LR , H k

n [ C
LR×MLT and V k

n [ C
MLT×MLT are the

postprocessing, complex channel gain and precoding matrices,
respectively. The transmitted signals is denoted as xkn [ C

MLT×1

and the complex Gaussian noise is denoted as wk
n [ CLR×1 with

variance s2
n. We define the diagonal matrix of transmitted powers

in the nth subchannel from the mth transmit antenna as�����
Pn,m

√ = diag
�����
Pn, 1

√
, . . . ,

��������
Pn,MLT

√( )
. The operator (·)H

represents the Hermitian transpose. In (1), the precoding and
postprocessing matrices are obtained from the SVD of the channel
matrix H k

n which is given by

H k
n = U k

nL
k
nV

kH

n , (2)

where Lk
n is the L × L diagonal matrix with non-negative singular

values of
����
gkn, l

√
, l = 1, . . . , L as the channel gain for the (n, l )th

spatial-subchannel [22].
The aim of employing SVD is to decouple each MIMO-OFDM

subchannel into L independent parallel spatial-subchannels with
the singular values squared as the subchannel gains. This
decomposition, known as eigenbeamforming [23], is accomplished
by applying the linear transformation V k

n to the transmitted symbol

vector and applying the linear transformation UkH

n to the received
symbol vector. The resulting cascaded channel can be written as

U kH

n H k
nV

k
n = UkH

n U k
nL

k
nV

kH

n V k
n = Lk

n. (3)

As a result, an N-subchannel MIMO-OFDM system is decomposed
to form a total of N × L spatial-subchannels. Assuming full
knowledge of the channel gains, the overall system throughput can
be optimised by implementing resource allocation algorithms
across all the spatial-subchannels.

In formulating the optimisation problem, we distinguish between
the following two domains: (i) ‘antenna domain’ and (ii) ‘spatial
domain’. The antenna domain consists of the signals and powers
that are physically transmitted by the antennas. The spatial

Fig. 1 Illustration of a MIMO-OFDM system with M= 2 CoMP BSs
transmitting to K = 2 UTs and LT = LR = 2
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domain, on the other hand, consists of the ‘effective’ powers and
signals sent in the spatial-subchannels. We define the following
terms:

R̃
k
n, l = spatial rate in (n, l)th spatial− subchannel for UT k

P̃
k
n, l = spatial power in (n, l)th spatial− subchannel for UT k

Pn,m = transmit power in subchannel n from antenna m,

where a spatial-subchannel pair is denoted by subscript (n, l ) with∼
and an antenna–subchannel pair is denoted by subscript (n, m).

In the optimisation problem for the proposed power and rate
allocation algorithm, we consider a continuous bit-loading scheme
and express the achievable rate of the kth UT in the (n, l )th
spatial-subchannel as

R̃
k
n, l P̃n

( )
= log2 1+ SINRk

n, l P̃n

( )[ ]
, (4)

where the signal-to-interference-plus-noise ratio (SINR) of the kth
UT in the (n, l )th spatial-subchannel is defined as

SINRk
n, l P̃n

( )
= Gk, k

n, l P̃
k
n, l∑K

j=k (l, :)P̃
j
n + sk2

n, l

,

∀l = 1, . . . , L. (5)

The term Gk, k
n, l is the (n, l )th spatial-subchannel gain obtained from

the SVD of the corresponding channel matrix Hk
n and the

interference channel gain Gk, j
n (l, :) is the lth row of the matrix Gk, j

n
for the nth OFDM subchannel between the kth UT and the jth UT.
We use the ‘:’ notation to refer to each column or row in the
corresponding matrix. For notational convenience, we write
P̃n = [̃P1

n . . . P̃
K
n ] as the L ×K spatial power matrix for the nth

OFDM subchannel, where each P̃k
n = [P̃

k
n, 1 . . . P̃

k
n, L]

T is the L × 1
spatial power vector for the kth UT in the nth OFDM subchannel.
The noise variance of the kth UT in the (n, l )th spatial-subchannel
is expressed as sk2

n, l and we assume the noise variances are
constant and equal across all the spatial-subchannels. The
interference channel gain Gk, j

n is defined as

Gk, j
n (x, y) = U kH

n (:, x)H k
nV

j
n(:, y)

∣∣∣ ∣∣∣2, ∀x, y = 1, . . . , L, (6)

where the terms UkH

n (:, x) and V j
n(:, y) are the xth and yth columns

of the matrices U kH

n and V j
n, respectively. The physical interpretation

of the SVD on the MIMO channel is particularly useful from the

antenna perspective. For a given eigenvalue gkn, l of H k
nH

kH

n , the

precoding matrix V k
n is the transmit beamforming weights on each

antenna for transmitting signals in the corresponding
spatial-subchannels. The conjugate match of the postprocessing

matrix U kH

n gives the receive power gain of gkn, l . A mismatch
between the precoding and postprocessing matrices in (6) results
in a weighted sum of all interfering signals, which are defined as
the interference function from the jth UT projecting onto the
receiving direction of the kth UT. Our proposed resource
allocation algorithm aims to provide an interference management
such that the total sum-rate in (4) is maximised for given antenna
power constraints.

3 Optimisation problem formulation

In this section, we formulate the MIMO-OFDM resource allocation
problem as a rate adaptive (RA) problem. The RA problem aims to
maximise the weighted sum-rate or the overall system throughput
subject to a total transmit power constraint. In this paper, however,

we consider a practical scenario by replacing the total transmit
power constraint with per-antenna power constraints. The
per-antenna power constraint prevents unbalanced power allocation
amongst all the transmit antennas. In the case of the total transmit
power constraint, the majority of the power would be allocated to
the BS and corresponding antennas with the most favourable
channel conditions. This would cause some transmit antennas and
their associated peak powers to be even higher compared to ones
with per-antenna power constraints, and thereby require more
expensive HPAs with a large dynamic range to transmit signals
without non-linear transmission effects. The consideration of
per-antenna power constraints limits the average transmit antenna
powers which indirectly control the resulting peak power to a
tolerable level.

We propose to compute the optimal power allocation that
maximises the weighted sum-rate of a downlink multiuser
MIMO-OFDM system subject to a set of individual antenna power
constraints. The optimisation problem can be formulated as

maximise
∀Pn,m≥0

∑K
k=1

∑N
n=1

∑L
l=1

vk R̃
k
n,l P̃n

( )
subject to

∑N
n=1

Pn,m ≤ Pm
max, ∀m = 1, . . . , MLT, (7)

where Pm
max is the mth antenna power constraint and ωk is the positive

weight associated with the kth UT. These weights can be used to
classify different quality of service constraints or to prioritise
services based on various data throughput requirements or the
premium paid by service subscribers.

To simplify the optimisation in (7), we establish a relationship
between spatial average powers and antenna average powers in the
following lemma. Provided the data symbols sent in each
spatial-subchannel are uncorrelated (as is expected) with zero
mean and normalised to unit variance, it can be shown by the
following lemma.

Lemma 1: The relationship between antenna powers Pk
n and spatial

powers P̃k
n is given by Pk

n = Ak
nP̃

k
n, where A

k
n(m, l) = V k

n(m, l)
∣∣ ∣∣2.

Proof: Let x̃kn be the uncorrelated data symbols sent in each
spatial-subchannel that have zero mean and normalised to unit
variance. Then x̃kn undergoes a linear transformation with the
precoding matrix V k

n, which is given by xkn = V k
ñx

k
n. The

relationship between antenna average powers and spatial average
powers can be derived as

Pk
n = Tr E xknx

kH

n

[ ]{ }

=
vk1, 1 . . . vk1,MLT

..

. . .
. ..

.

vkMLT, 1
. . . vkMLT ,MLT

⎡⎢⎢⎣
⎤⎥⎥⎦

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

E x̃kn
∣∣ ∣∣2[ ]

= V k
n

∣∣ ∣∣2P̃k
n, (8)

where Tr(·) is denoted as the trace of a matrix and |·|2 is denoted as
the squared magnitude operation. □

In other words, Ak
n is the ‘power gain transformation’ from spatial

powers to antenna powers in the nth OFDM subchannel for the kth
UT and is equal to the element-by-element squared magnitude of V k

n.
The optimisation problem in (7) presents a great challenge for

obtaining the globally optimal solution. Rewriting the objective
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function in (7) in the following expression:

R̃
k
n, l P̃n

( )
= log2 1+ SINRk

n, l P̃n

( )[ ]

= log2 1+ Gk, k
n, l P̃

k
n, l∑K

j=k
Gk, j

n (l, :)P̃n

j + sk2
n, l

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

= log2 Gk, k
n, l P̃

k
n, l +

∑K
j=k

Gk, j
n (l, :)P̃j

n + sk2

n, l

[ ]

− log2
∑K
j=k

Gk, j
n (l, :)P̃j

n + sk2

n, l

[ ]
. (9)

It can be seen that the expression in (9) is of the form of a difference
of concave functions (DoCFs) in P̃n. Functions with a DoCF
structure is difficult to solve as these functions are generally
non-convex and NP-hard for obtaining globally optimal solutions [24].

4 Proposed SCA algorithm

In this section, we introduce the SCA-based algorithm in [17] to
overcome the DoCF structure of the objective function in (9). The
SCA-based algorithm converts a non-convex optimisation problem
into a convex one by an iterative convex approximation technique.
This approximation is based on the following lower bound:

log2(1+ x) ≥ a log2 x+ b, (10)

where α and β are the convex approximation constants, which dictate
the accuracy of this lower bound approximation on the Pareto
boundary of the achievable rate region. The approximated lower
bound is tight at x = �x when the approximation constants are
chosen as

a = �x

1+ �x
(11a)

b = log2(1+ �x)− �x

1+ �x
log2�x. (11b)

The lower bound in (10) is improved successively by updating α and
β according to (11a) and (11b), respectively, at each iteration based
on the new value of �x. A locally optimal solution can be obtained as
the lower bound converges to the achievable rate region.

Applying the lower bound in (10) to the objective function in (9)
and converting the antenna powers to spatial powers using Lemma 1,
the RA optimisation problem in (7) can be approximated by

maximise
∀̃PnX0

∑K
k=1

∑N
n=1

∑L
l=1

vk ak
n,llog2 SINRk

n,l P̃n

( )[ ]
+ bk

n,l

{ }
subject to

∑K
k=1

∑N
n=1

Ak
n(m, :)̃P

k
n ≤ Pm

max, ∀m = 1, . . . , MLT,

(12)

where the approximation constants for the (n, l )th spatial-subchannel
are denoted as ak

n,l and bk
n,l . We note that the objective function in

(12) is still non-convex due to the presence of the DoCF structure.
To avoid the DoCF structure, we rewrite the objective function in

(12) using the substitution of P̃n = êPn , which is given by

R̃
k
n,l≥ak

n,llog2 SINRk
n,l êPn

( )[ ]
+bk

n,l

=ak
n,l log2

Gk,k
n,l e

P̂k
n,l∑K

j=k
Gk,j

n (l, :)êP
j
n +sk2

n,l

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦+bk

n,l

=ak
n,l

ln 2
lnGk,k

n,l +P̂k
n,l− ln

∑K
j=k

Gk,j
n (l, :)êP

j
n +sk2

n,l

[ ]{ }
+bk

n,l .

(13)

The achievable rate function in (13) is now a convex function in P̂n.
The convexity of the SCA transformation is formally presented in the
following lemma.

Lemma 2: The achievable rate function in (13) is convexified by the

transformation of P̃n = êPn .

Proof: To show the achievable rate function in (13) is a convex
function in P̂n, we need to show that the function

f (P̂n) = ln
∑K
j=k

Gk, j
n (l, :)êP

j
n + sk2

n, l

[ ]
(14)

is a convex function since the first term in the parentheses in (13),
ln Gk, k

n, l is a positive constant and the second term P̂k
n, l is an affine

function with respect to P̂n. To show the function f (P̂n) is a
convex function, we need to show that the Hessian of f (P̂n) is in

fact a positive semi-definite matrix. The Hessian of f (P̂n) is given
by Boyd and Vandenberghe [20]

∇2f (P̂n) =
1

Z2
Z diag(z)− zzT
( )

, (15)

where the term z is defined as

z = (Gk, 1
n (l, :)êP

1
n , . . . , Gk, k−1

n (l, :)êP
k−1
n ,

Gk, k+1
n (l, :)êP

k+1
n , . . . , Gk,K

n (l, :)êP
K
n ) (16)

and Z is defined as

Z =
∑K−1

j=1

zj + sk2

n, l. (17)

For y [ RK−1, we define L = yT∇2f (P̂n)y and show that [20]

Z2L = yT Z diag(z)− zzT
( )

y

=
∑K−1

j=1

yj
2zj

( ) ∑K−1

j=1

zj + sk2

n, l

( )
−

∑K−1

j=1

yjzj

( )2

≥ 0. (18)

The Cauchy–Schwarz inequality holds since sk2

n, l is non-negative.
Therefore, the Hessian ∇2f (P̂n) is a positive semi-definite matrix
which implies that the achievable rate function in (13) is convex. □

Next, we convert the convex approximation of the primal problem in
(12) into an unconstrained dual optimisation problem and solve it by
the Lagrange dual decomposition method. After obtaining the
antenna power allocation, the corresponding rate allocations can be
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evaluated using (4) and (5). By introducing a non-negative dual
variable vector, l, where each element of the vector corresponds
to an individual per-antenna power constraint in (7), the
Lagrangian of the primal problem in (12) is defined as

LRA P̂n, l
{ }

=
∑K
k=1

∑N
n=1

∑L
l=1

vk

× ak
n, l

ln 2
ln Gk, k

n, l + P̂k
n, l − ln

∑K
j=k

Gk, j
n (l, :)êP

j
n + sk2

n, l

( )[ ]
+ bk

n, l

{ }

−
∑MLT

m=1

lm
∑K
k=1

∑N
n=1

Ak
n(m, :)ê

Pk
n − Pm

max

[ ]
, (19)

where l = l1 . . . lMLT

[ ]
is the 1 ×MLT vector of Lagrange

multipliers associated with the transmit antennas. The Lagrange
dual objective function is then written as

gRA(l) = min
P̂nX0

LRA P̂n, l
{ }

(20)

and the Lagrange dual optimisation problem and the corresponding
dual optimal solution D∗

RA is expressed as

D∗
RA = maximise

lX0
g l( ). (21)

Since the approximated primal problem is convex and the feasible
set consists of a non-empty interior, which satisfies the Slater’s
condition [20], the duality gap between the optimal primal value
P∗
RA and the optimal dual value D∗

RA becomes zero, given by

P∗
RA = D∗

RA. (22)

Consider the gRA(l) in (21) for a given l, we note that it can be
simplified into KN independent optimisation problems as

gRA l( ) =
∑K
k=1

∑N
n=1

�gkn l( ) −
∑MLT

m=1

lmP
m
max, (23)

where the term �gkn l( ) is given by

�gkn l( ) = min
∀̂Pk

nX0

∑L
l=1

vka
k
n, l

ln 2

× ln Gk, k
n, l + P̂k

n, l − ln
∑K
j=k

Gk, j
n (l, :)êP

j
n + sk2

n, l

[ ]{ }
+ bk

n, l

−
∑MLT

m=1

lmA
k
n(m, :)ê

Pk
n . (24)

This result indicates that the dual problem can be solved by
optimising N independent dual subproblems for all K UTs. As a
result, the overall implementation cost can be reduced significantly
if the same procedure is executed repeatedly for each subproblem,
or alternatively, K parallel processors can be adopted for solving N
dual subproblems simultaneously to improve the convergence time
of the algorithm.

We solve the dual maximisation problem in (20) by finding the
stationary point of the Lagrangian in (19) with respect to P̂n, with

a fixed l

∂

∂P̂n

LRA P̂n, l
{ }

= vka
k
n, l

− êP
k
n clAk

n(:, l)+

∑
j=k

G j, k
n (l, :)aj

nvj∑
j=k

Gk, j
n (l, :)êP

j
n + sk2

n, l

⎡⎢⎢⎣
⎤⎥⎥⎦ = 0, (25)

where c = ln 2. By substituting P̂n = ln P̃n into (25) and rearranging
the terms, we get

P̃
k
n, l =

vka
k
n, l

clAk
n(:, l)+

∑
j=k

G j, k
n (l, :)aj

nvj

SINRj
n, l P̃n

( )
G j, j

n, l P̃
j
n, l

, (26)

where aj
n = [aj

n, 1 . . .a
j
n,L]

T is the L × 1 convex approximation
constant vector for the nth OFDM subchannel of the jth UT. To
prove that the solution to the RA problem in (7) is unique, we
show in Lemma 3 that (26) satisfies Yates’ definition of a standard
interference function given below.

Definition 1: An interference function I (p) is standard if for all
p X 0 the following properties are satisfied:

† Positivity: I (p) . 0.
† Monotonicity: If p X p′, then I (p) ≥ I (p′).
† Scalability: For all u . 1, uI (p) . I (up).

Lemma 3: The power allocation strategy in (26) is a standard
interference function.

Proof: We rewrite the power allocation in (26)

I k
n, l(P̃) W

vka
k
n, l

clAk
n(:, l)+

∑
j=k

G j, k
n (l, :)aj

nvj

Gk, j
n (l, :)P̃j

n + sk2
n, l

. (27)

We apply Definition 1 to (27) to show that the power allocation is
unique and it can converge to a solution.

† Positivity: This follows from the fact that each term in I k
n, l (̃P) in

(27) is non-negative.
† Montonicity: Suppose P̃ ≥ P̃′, the monotonicity property follows
from

I k
n, l(P̃) =

vka
k
n, l

clAk
n(:, l)+

∑
j=k

G j, k
n (l, :)aj

nvj

Gk, j
n (l, :)P̃j

n + sk2
n, l

≥ vka
k
n, l

clAk
n(:, l)+

∑
j=k

G j, k
n (l, :)aj

nvj

Gk, j
n (l, :)̃Pj

n
′ + sk2

n, l

= I k
n, l (̃P

′) (28)
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† Scalability: Suppose P̃ = uP̃′ for θ > 1, the scalability property
follows from

uI k
n, l(P̃) =

vka
k
n, l

1

u
clAk

n(:, l)+
1

u

∑
j=k

G j, k
n (l, :)aj

nvj

Gk, j
n (l, :)P̃j

n + sk2
n, l

.
vka

k
n, l

clAk
n(:, l)+

∑
j=k

G j, k
n (l, :)aj

nvj

Gk, j
n (l, :)uP̃j

n
′ + sk2

n, l

= I k
n, l(uP̃

′)

(29)

□

The term Gk, j
n (l, :) in (26) quantifies the mutual interference between

the kth UT on all other UTs in the network on a
spatial-subchannel-by-spatial-subchannel basis. The power
allocation strategy in (26) allocates power to co-channel UTs that
have the least amount of mutual interference between them. In the
case of high mutual interference between UTs, the strategy in (26)
allows no sharing of the subchannel and allocate power only to the
UT that has the largest channel gain. We note that there is no
explicit processing steps for the subchannels allocation, but that it
is performed implicitly based on the value of Gk, j

n (l, :).
By combining the result in (26) and the dual decomposition

method in (24), we propose an iterative SCA algorithm to solve
the RA problem in (7). We begin the algorithm by initialising
α = 1 and β = 0 based on a high-signal-to-noise ratio
approximation [17]. (With the initialisation of α = 1 and β = 0, we
assume that we have no previous knowledge of the initial power
allocation for all UTs across all OFDM subchannels (i.e.

P̃
k
n, l = 0, ∀k, n, l). Therefore, there is no interference at the

initial step of the proposed algorithm, which results in a high
SINR.) At each iteration, the lower bound is tightened by updating
the α and β, using on (11a) and (11b), respectively, based on the
new SINR values

xk[s+1]
n = SINRk

n P̃n

[s]
( )

, (30)

where s is the number of iterations. To obtain the optimal solution
from the dual domain, we employ a subgradient method in which
the Lagrange multipliers are updated toward satisfying the
per-antenna power constraint with equality and is given by

l[s+1]
m = l[s]m + n

∑K
k=1

∑N
n=1

Ak
n(m, :)̃P

k
n
[s+1] − Pm

max

[ ]{ }+
, (31)

where { · }+ = max (0, · ) and n is a fixed step size. The updated
Lagrange multipliers are then substituted into (26) to obtain new
power allocations.

Solving this optimisation problem consists of two main steps that
are applied iteratively:

† Step 1: For a given Lagrange multiplier vector l, find the
minimum Lagrangian cost function by performing power
allocations using in (26). This results in the optimal solution for a
set of antenna power constraints, but not necessarily those
specified in (12).
† Step 2: Update l based on the subgradient of the first step results
using (31) in order to increase gRA(l) and eventually achieve (21).
Go to step 1.

The iterative procedure terminates when a stopping criteria is
satisfied (i.e. the duality gap between the primal and dual objective
functions approaches zero). The SCA algorithm is summarised in
Fig 2.

5 Simulation results and discussion

Numerical simulation results are presented in this section based on a
two-cell fixed-wireless MIMO-OFDM downlink system with N = 32
OFDM subchannels as shown in Fig. 3. Each BS is equipped with
LT = 2 antennas with a per-antenna power constraint of 20 W. The
BSs are assumed to be connected to a CP by a high-speed optical
backhaul to execute the proposed algorithm. We set K = 5 UTs in
the simulation and each is equipped with LR = 2 antennas. The
UTs are randomly distributed within a circular radius of 100 m
located between the cells to model a cell-edge environment. The
MIMO channel gains for each OFDM subchannel are modelled as
zero-mean circularly symmetric complex Gaussian random
variables with a unit variance, that is, Hn � CN (0, I). The path
loss is modelled by the COST-231 Hata empirical model to
simulate a typical deployment in rural (flat) environments, which
is given by Goldsmith [22]

Ld = 46.3+ 33.9 log10 f − 13.82 log10 ht − a(hr)

+ (44.9− 6.55 log10 ht)log10 d + Cm, (32)

where f is the carrier frequency in megahertz, d is the distance
between BS and UT antennas in kilometres and ht is the height of
the BS above ground level in metres. The parameter Cm is defined
as 0 dB for suburban or rural environments and 3 dB for
metropolitan environments. The parameter a(hr) is defined for
rural environments as [22]

a(hr) = (1.1 log10 f − 0.7)hr − (1.56 log10 f − 0.8), (33)

where hr is the height of the UT above ground level in metres. The
simulation parameters from [22, 25, 26] are given in Table 1.

Fig. 2 SCA algorithm

Fig. 3 Two-cell MIMO-OFDM network with downlink CoMP and UTs
located at the cell-edge. We vary the distance between BSs to model
different CNRs
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In the simulation results, we vary the distance between the
cooperating BSs, which is denoted as d, ranging from 5 to 40 km
for a typical LTE macrocell deployment [26]. On the basis of
these distances, we can evaluate the received channel-to-noise ratio
(CNR) on the (n, l )th spatial-subchannel for the kth UT as [27]

CNRk
n, l =

Lk2

n, l

sk2
n, l

, (34)

where Lk
n, l is the effective channel gain after precoding and

postprocessing. The noise power is assumed to be equal across all
OFDM subchannels. We average the simulation results over a total
of 16,000 channel realisations, which is obtained from 100
simulation iterations for each UT subchannel. For simplicity, we
assume the positive weight ωk = 1 in (7) across all UTs.

Fig. 4 compares the sum-rate performance between the proposed
SCA, IWF in [12] and ZFB with semi-orthogonal user selection
scheme in [16]. The BS-to-BS separation distance is d = 40 km.
The resulting average received CNR =−4.54 dB models a
low-interference environment where the interference power is
insignificant compared with the noise power. We see that both
SCA and IWF provide similar sum-rate performances of
∼23 Mbits/s for a total transmit power of 80 W. ZFB achieves the
lowest sum-rate of 13 Mbits/s for 80 W between the cooperating
BSs. The sum-rate performance of ZFB is affected by the
reduction in effective channel gains for scheduled UTs as a result
of performing ZFB on the channel gains of the scheduled UTs.

Fig. 5 demonstrates the sum-rate performance for a BS-to-BS
separation of d = 20 km. The resulting average received CNR =
−0.11 dB indicates a medium interference environment where the

noise power is comparable with the interference power. In this
scenario, the proposed SCA algorithm achieves the highest
sum-rate performance compared with IWF and ZFB. For a total
transmit power of 80 W between BSs, we note that SCA provides
a better interference management compared with IWF which is
limited by the interference at a sum-rate of 70 Mbits/s in the high
transmit power regime. Despite cancelling interference for
scheduled UTs, ZFB offers a slightly better sum-rate performance
of 72 Mbits/s compared with 70 Mbits/s for IWF. The sum-rate
performance of ZFB is affected by the reduction in effective
channel gains for scheduled UTs as a result of performing ZFB on
the channel gains of the scheduled UTs.

Fig. 6 shows the sum-rate performance comparison for a
BS-to-BS separation distance of d = 5 km. This results in an
average received CNR = 21.12 dB to model a high interference
environment where the noise power is insignificant compared with
the interference power. The plot shows that both SCA and IWF
are limited by the severity of the interference power. However, we
see that SCA still provides a better interference management with
a sum-rate improvement of 110 Mbits/s compared with IWF for a
total transmit power of 80 W. As expected, ZFB achieves the best

Table 1 COST-231 path-loss model parameters [22, 25, 26]

Simulation parameters

bandwidth, MHz 10
carrier frequency, GHz 2
BS height, m 30
maximum Tx power, dBm 46
RF feeder cable/connector loss, dB 2
antenna gain, dBi 18
receiver height, m 5
antenna gain, dBi 8
noise figure, dB 7
thermal noise, dBm/Hz −174
receiver noise floor, dBm −97
slow fading margin, dB 8

Fig. 4 Sum-rate performance comparison between SCA, IWF and ZFB
in low-interference environments with per-antenna power constraints and
d = 40 km

Fig. 5 Sum-rate performance comparison between SCA, IWF and ZFB in
medium-interference environments with per-antenna power constraints and
d = 20 km

Fig. 6 Sum-rate performance comparison between SCA, IWF and ZFB in
high-interference environments with per-antenna power constraints and
d = 5 km
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performance of 520 Mbits/s for a total transmit power of 80 W as it
provides interference-free subchannels for the scheduled UTs.

Next, we consider the same system and simulation parameters
with per-BS power constraints instead of per-antenna power
constraints. As such we apply a power constraint of
LT × Pm

max, ∀m = 1, . . . , M on individual BSs. This results in a
simpler optimisation problem as the Lagrange search space
reduces to one dimension per BS (i.e.
lm = lm1 = . . . = lmLT , ∀m = 1, . . . , M ), which results in the
following optimisation problem

maximise
∀̃PnX0

∑K
k=1

∑N
n=1

∑L
l=1

vk ak
n, l log2 SINRk

n, l P̃n

( )[ ]
+ bk

n, l

{ }
subject to

∑LT
t=1

∑K
k=1

∑N
n=1

Ak
n(t, :)P̃

k
n ≤ Pm

max, ∀m = 1, . . . , M ,

(35)

where Pm
max is the individual transmit power constraint on each BS.

The Lagrange multipliers associated with each BS is updated by a

subgradient method which is given by

l[s+1]
m = l[s]m + n

∑LT
t=1

∑K
k=1

∑N
n=1

Ak
n(t, :)̃P

k
n
[s+1] − Pm

max

[ ]{ }+

. (36)

Fig. 7 shows the sum-rate performance comparison between SCA,
IWF and ZFB with d = 40 km in a low interference environment.
We see a similar performance trend compared with the
corresponding results with per-antenna power constraints in Fig. 3.
The sum-rate performance with per-BS constraints results in an
increase of ∼15 Mbits/s for both SCA and IWF, whereas ZFB
provides an increase of 10 Mbits/s with a 80 W of total transmit
power between BSs.

Fig. 8 compares the sum-rate performance between SCA, IWF and
ZFB in a medium interference environment with d = 20 km. ZFB
outperforms IWF by ∼30 Mbits/s, whereas SCA remains as the
highest sum-rate performer with 138 Mbits/s with a total transmit
power of 80 W.

Fig. 9 demonstrates the sum-rate performance comparison
between SCA, IWF and ZFB in a high-interference environment
with d = 5 km. Owing to severity of the interference, both SCA
and IWF can only achieve 280 and 120 Mbits/sec, respectively,
whereas ZFB provides 620 Mbits/s. We note that IWF still
achieves the lowest sum-rate performance for a total transmit
power of 80 W compared with SCA and ZFB under both
per-antenna and per-BS power constraint scenarios.

Table 2 summarises the resulting individual antenna transmit
powers for SCA, IWF and ZFB in various interference
environments with per-BS power constraints. These individual

Table 2 Resulting antenna transmit powers with per-BS power
constraints in various interference environments

BS1, dBm BS2, dBm

Antenna number Antenna number

#1 #2 #1 #2

high d = 5 km SCA 42.99 43.031 43.03 42.991
IWF 42.992 43.029 43.018 43.003
ZFB 42.999 43.022 43.012 43.009

medium d = 20 km SCA 42.977 43.044 43.001 43.02
IWF 42.911 43.108 43.146 42.871
ZFB 43.014 43.007 42.975 43.046

low d = 40 km SCA 42.979 43.042 42.982 43.039
IWF 42.827 43.187 42.56 43.419
ZFB 43.07 42.95 42.94 43.08

Fig. 7 Sum-rate performance comparison between SCA, IWF and ZFB in
low interference environments with per-BS power constraints and d = 40 km

Fig. 8 Sum-rate performance comparison between SCA, IWF and ZFB in
medium-interference environments with per-BS power constraints and
d = 20 km

Fig. 9 Sum-rate performance comparison between SCA, IWF and ZFB in
high interference environments with per-BS power constraints and d = 5 km
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antenna transmit powers are expressed in decibels and figures in
boldface represent the antenna transmit power that exceeds the
per-antenna power constraint of Pmax = 20 W or 43.01 dBm. The
excess power in one of the transmit antennas in each BS would
result in even a higher resulting peak power compared with the
per-antenna power constraint scenarios. As a result, expensive
HPAs with a large dynamic range maybe required in order to
mitigate the effect of non-linear transmission caused by the
exceeding peak powers.

6 Conclusion

We have introduced an optimisation approach for a downlink wireless
multiuser MIMO-OFDM system with cooperating BSs. The approach
utilised the SCA technique for maximising a sum-rate optimisation
problem subject to per-antenna power constraints. The individual
antenna power constraint offers the advantage of helping to
constrain the peak power on each antenna (i.e. lower average
powers result in lower peak powers) caused by the inherent
problem of the high peak power in MIMO-OFDM systems.

Our numerical results demonstrate that SCA outperforms two
common approaches: IWF and ZFB in low- and
medium-interference environments. Despite the nulling of
interference, the performance of ZFB is limited by the number of
transmit antennas and the mutual orthogonality of the channel
condition between serving UTs, which result in a much lower
sum-rate performance than the SCA and IWF in low-interference
environments. In high interference environments, ZFB outperforms
SCA and IWF as these two algorithms are limited by the
interference. The performance difference between the SCA and
IWF depends on the interference between co-channel UTs. In
general, the higher interference between UTs, the larger difference
in sum-rate performances of these two algorithms. The approach
of per-BS power constraints simplifies the optimisation problem to
a one-dimensional Lagrange search space in each BS. Moreover,
this approach results in higher sum-rate performances for SCA,
IWF and ZFB compared with the more complicated per-antenna
power constraints scenario. However, the practical issues of
resulting high peak powers and unbalanced powers in transmit
antennas need to be considered when designing and implementing
the system using the per-BS power constraints.

A much more complicated problem would be the joint design of
the spatial precoding and postprocessing matrices along with our
approach. While this problem tends to be intractable, our approach
could be applied on top of a coordinated beamforming method
across all cooperating BSs.

We note that we have examined the performance of SCA based on
the assumption of perfect knowledge of the channels. An interesting
extension to this paper is to consider the impact of channel
estimation errors in the proposed algorithm. It is expected that the
use of estimated channels will result in a loss of diversity at the
receiver as the SVD of the channel cannot effectively eliminate
interference between co-channel users.
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