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Abstract: The expected operating scenarios of fifth-generation (5G) pose a great challenge to orthogonal frequency
division multiplexing which has poor out of band spectral properties, stringent synchronisation requirements and large
symbol duration. Generalised frequency division multiplexing (GFDM) which is the focus of this work has been
suggested in the literature as one of the possible solutions to meet 5G requirements. In this study, the analytical
performance evaluation of minimum mean square error (MMSE) receiver for GFDM is presented. The authors also
proposed precoding techniques to enhance the performance of GFDM. A simplified expression of signal-to-interference
and noise ratio (SINR) for MMSE receiver of GFDM is derived using special properties related to the modulation matrix
of GFDM, which are described in this study. This SINR is used to evaluate the bit error rate performance. Precoding
schemes are proposed to reduce complexity of GFDM–MMSE receiver without compromising on the performance.
Block inverse discrete Fourier transform (BIDFT) and discrete Fourier transform (DFT)-based precoding schemes are
found to outperform GFDM–MMSE receiver due to frequency diversity gain while having complexity similar to zero-
forcing receiver of GFDM. It is shown that both BIDFT- and DFT-based precoding schemes reduce peak-to-average
power ratio significantly. Computational complexities of different transmitters and receivers of precoded and uncoded
GFDM are also presented.

1 Introduction

The need for wireless links, from proximity to a large distance
communication, has been on the rise since its origin without ever
showing any signs of distaste to growth. Toward this, several
applications with diverse needs have driven the development of
technical solutions. Amongst many, the domain of public wireless
communication has provided one of the greatest benefits and drive
to the development of society. The success is powered by
standardisation, which led to mass production and adoption of
technology due to cost effectiveness. The developments of 1G–4G
[1, 2] have fundamental drivers as the ‘need for speed’ (higher
data rate and higher spectral efficiency) and the requirement of
lower latency. The next generation, fifth generation (5G) is also
expected to be driven by similar demands but with added needs
such as flexibility. Some of the important applications operating
5G [3–6] are flexible radio (cognitive radio), tactile internet (TI),
machine type communication (MTC), great service in crowd, super
real-time services, super reliable communication and others.
Orthogonal frequency division multiplexing (OFDM) is de-facto
transmission technology for broadband wireless access due to the
robustness to multipath fading, high spectral efficiency and ease of
implementation but has limited capability in meeting the needs of
new requirements of 5G [7, 8]. MTC demands relaxed
synchronisation requirement which is a limitation in OFDM as it
is sensitive to frequency errors. Small symbol duration is needed
for low-latency applications and due to the cyclic prefix (CP),
OFDM will lead to low efficiency. High out of band (OoB)
radiation of OFDM limits, its use for opportunistic use of
spectrum and dynamic spectrum allocation.

To meet above requirements, filter bank multi-carrier (FBMC) [9–
12], constant envelope-OFDM [13], generalised frequency division
multiplexing (GFDM) [14], unified filtered multi-carrier (UFMC)
[15] have been proposed, where each has its own special features.
FBMC, whose concept dates back to 1967 [16], is currently being

considered as a candidate for 5G waveform due to its good
frequency localisation capabilities as well as low OoB radiation.
However, FBMC signal suffers from inter-symbol interference as
no CP is used. The FBMC signal stretches in time, and hence
limits spectral efficiency gains. Hence, FBMC is not suitable for
low-latency applications [17]. UFMC (proposed for low-latency
applications) has limited suppression of OoB radiation. In this
paper, we focus on GFDM, which is another competitive
waveform. GFDM has been shown to be flexible [3, 18, 19] in
terms of using time–frequency resources. It has good OoB
radiation properties [20]. It is also quite resilient to
synchronisation requirement [19] and has good spectral efficiency
as it uses circular pulse shaping which reduces CP length in
frequency selective fading channel (FSFC).

Although GFDM has attractive features, yet there remain
sufficient investigations to be done before it can be adopted into
practical communication systems. One of the fundamental
differences between GFDM and OFDM is that the former uses
non-rectangular pulse shape on each subcarrier where it was
rectangular for the latter. This causes inter-carrier interference
(ICI) [21]. Therefore, receiver design is an important issue in
GFDM. It was earlier quite simple in the case of OFDM which led
to its mass adoption. GFDM receiver in FSFC has been proposed
as a two-stage receiver [22]. Frequency-domain zero-forcing (ZF)
equalisation is used to mitigate the effect of the wireless channel
in the first stage [19]. In the second stage, linear as well as
non-linear receivers have been proposed to mitigate
self-interference in GFDM systems [23, 24]. Linear receivers of
GFDM such as matched filter (MF), ZF and minimum mean
square error (MMSE) are proposed in [23]. It has been shown that
MF is not able to mitigate self-interference. It has also been shown
in [22, 23] that MMSE performs better than ZF, especially when
signal-to-interference and noise ratio (SINR) is low. For high
SINR, MMSE performance matches with ZF. Analytical
expression for bit error rate (BER) for MF and ZF receivers over
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additive white Gaussian noise (AWGN) channel is given in [19, 20].
Analytical expression of SINR is an essential part of performance
analysis of a system as it leads to the calculation of error
probability and capacity. BER computation for MMSE receiver is
still not available in the literature.

Since implementation of MMSE receiver requires very high
amount of complexity, successive interference cancellation (SIC)
receivers to mitigate self-interference in AWGN channel were
proposed in [24]. Double-SIC (D-SIC) receiver introduced in [24]
cancels interference from two adjacent subcarriers of all symbols.
D-SIC can cancel out self-interference entirely in AWGN channel
but requires few iterations thus induce processing delay at the
receiver. For usability of GFDM, low-complexity signal processing
techniques remain to be investigated.

Peak-to-average power ratio (PAPR) is an important issue in the
multi-carrier communication. We expect GFDM to have a higher
PAPR than OFDM as the use of identical non-rectangular pulse
shapes increase PAPR in multi-carrier system [25]. Michailow and
Fettweis [26] have compared PAPR of GFDM with OFDM for
unequal number of subcarriers. As far as we know, PAPR
comparison of GFDM with OFDM for equal number of
subcarriers has not been investigated. Apart from that PAPR
reduction schemes also need to be studied.

A detailed exposition of the product of the modulation matrix with
its Hermitian reveals some interesting properties which help in
performance analysis and developing precoding techniques. The
details are described in this paper. A simplified expression for
SINR of MMSE receiver is developed using the above-mentioned
special properties. It is also shown that interference plus noise
values can be approximated as a Gaussian random variable.
Analytical BER is computed in AWGN and FSFC using derived
SINR expressions.

A detailed complexity analysis of different schemes is presented
in this paper which shows that D-SIC is not quite simple to
implement in comparison with ZF receiver. To reduce the
self-interference at the receiver, precoding techniques for GFDM
are investigated in this paper. A generalised framework for
precoding-based GFDM is developed. On the basis of the
properties related to the modulation matrix as mentioned above,
block inverse discrete Fourier transform (BIDFT)-based precoding
is proposed. Performance of BIDFT, discrete Fourier transform
(DFT) and singular value decomposition (SVD)-based precoding
techniques are compared with uncoded GFDM. PAPR of precoded
GFDM is compared with uncoded GFDM and OFDM as well.

The rest of this paper is organised as follows. The system model is
developed in Section 2. Analytical BER for MMSE receiver is
presented in Section 3. The precoding schemes proposed in this
paper are presented in Section 4. Results related to the proposed
works are given in Section 5. Section 6 has the conclusion.

In this paper, vectors are represented by bold small letters,
matrices are represented by bold capital letters and scalars are
represented as normal small letters. The operation a(n modulus l )
is written as a(n)l, IN represents identity matrix with order N and
‘*’ represents convolution operation. E is expectation operation
and j = ����−1

√
.

2 System model

GFDM is a multi-carrier modulation technique with some similarity
to OFDM. We begin by considering a block of quadrature amplitude
modulation (QAM) modulated symbols d = [d0d1 · · · dMN−1]

T. We
assume that data symbols are independent and identical, that is,
E[dld

∗
l ] = s2

d , ∀l and E[dld
∗
q ] = 0 when l≠q. Let the total

bandwidth B be divided into N number of subcarriers where
symbol duration T = N/B second and B/N Hz is the subcarrier
bandwidth. In case of OFDM this leads to orthogonal subcarriers.
Let the symbol duration, T, be one time slot. GFDM is a
block-based transmission scheme and we consider a block to have
M such time slots. Hence, in one block there are N subcarriers ×M
timeslots = NM QAM symbols. The flow of operations, as
described below, can be understood in the light of Fig. 1.

2.1 Transmitter

Since we consider precoding, let P be a precoding matrix of size
MN ×MN, which is defined in Section 4. The data vector d be
multiplied with precoding matrix P and we obtain precoded data
vector d̃ = Pd. The MN × 1 precoded data vector
d̃ = [d̃0, 0 · · · d̃k,m · · · d̃N−1,M−1]

T, where k = 0 · · ·N− 1 denote
subcarrier index and m = 0 · · ·M− 1 indicates time slot index.
Conventional GFDM system [19] can be seen as a special case of
precoded GFDM system when P = INM. The precoded data vector,
d̃, is modulated using GFDM modulator. Precoded data d̃k,m is
first upsampled by N, which is represented as

d̃
up
k,m(n) = d̃k,md(n− mN ), n = 0, 1, . . . , MN− 1. (1)

Now, this upsampled data is pulse shaped. Impulse response of pulse
shaping filter is represented by g(n). Its length isMN. The upsampled
precoded data d̃

up
k,m(n) is circularly convoluted with such pulse

shaping filter g(n) and can be written as

xfk,m(n) =
∑MN−1

r=0

d̃k,mg(n− r)MNd(r− mN )

= d̃k,mg(n− mN )MN . (2)

Now the filtered data is up-converted to kth subcarrier frequency and
is given as,

xk,m(n) = d̃k,mg(n− mN )MNe
j2pkn/N = d̃k,mak,m(n), (3)

where ak,m(n) = g(n−mN)MNe
j2πkn/N for n = 0, 1, …, MN− 1 is

called the kernel of GFDM for the kth subcarrier and the mth time
slot. Now, output samples of all subcarrier frequencies and time
slots are added and the GFDM signal can be given as,

x(n) =
∑M−1

m=0

∑N−1

k=0

xk,m(n) =
∑M−1

m=0

∑N−1

k=0

d̃k,mak,m(n). (4)

Fig. 1 Transmitter and receiver architecture for precoding-based GFDM system
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If we let, l =mN + k for m = 0, 1, …, M− 1 and k = 0, 1, …, N− 1.
Then, we may write (4) as,

x(n) =
∑MN−1

l=0

aNl (n)d̃
N
l , (5)

where superscript N is the identifier of the specific mapping between
index l and time slot and subcarrier index tuple (k, m) which takes N
as scalar multiplier in the mapping. If we collect all output samples
of GFDM signal in a vector called x = [x(0)x(1) · · · x(MN− 1)]T

and all samples of aNl (n) is a vector called
aNl = [aNl (0)a

N
l (1) · · · aNl (MN− 1)]. Then using (5), x can be

written as,

x =
∑MN−1

l=0

aNl d̃
N
l ;

∑MN−1

l=0

d̃
N
l × lth column vector aNl = AN d̃

N
, (6)

where AN = [aN0 a
N
1 · · · aNMN−1] is the modulation matrix,

d̃
N = [d̃0d̃1 · · · d̃l · · · d̃NM−1]

T is the precoded data vector. If we
collect all samples of ak, m(n) is the vector called
ak,m = [ak,m(0)ak,m(0) · · · ak,m(MN− 1)]T, then AN can also be
written as, (see (7)). Where ρ = ej2π/N. At this point, it is also
interesting to look into the structure ak, m vectors which constitute
columns of AN. The first column of AN, that is, a0,0 holds all
coefficients of pulse shaping filter and other columns of AN or
other vectors in the set of ak, m’s are time and frequency shifted
versions of a0,0 where frequency index k denotes k/N shift in
frequency and time index m denotes m time slot or mN sample
cyclic shift. Taking clue from description of column vectors ak, m,
structure of AN can be understood by (7). Columns having same
time shift are put together. Columns which are N column index
apart are time shifted versions of each other. Columns having
same time shift are arranged in increasing order of frequency shift.
We will explore time-domain and frequency-domain behaviour for
an example AN with total subcarriers N = 4 and total time slots
M = 5. Pulse shaping filter is taken to be root raised cosine (RRC)
with roll of factor (ROF) of 0.9. Fig. 2 shows the absolute values
of each column index u = 0, 1, …, MN− 1 with sample index n =

0, 1, …, MN− 1. It can be observed that first N = 4 columns have
0 time shift and next N columns have unit time shift and so on.

Alternatively, if we take l = kM +m in (4), modulation matrix AM

can be represented as, (see (8)). Matrixes AN and AM can be related
as AN = ζAM, where ζ is a permutation matrix which permutes
column of matrix applied. CP is added to GFDM modulated block
to prevent inter-block interference in FSFC. CP of length NCP is
prepended to x. After adding CP, transmitted vector, xcp, can be
given as

xcp = [x(MN− Ncp + 1:MN ); x] (9)

In the rest of this paper, for equations which are valid for both AM

and AN, modulation matrix will be denoted as A. However,
wherever required AN and AM will be specified.

2.2 Receiver

Let, h = [h1, h2, …, hL]
T be the L length channel impulse response

vector, where, hr, for 1≤ r≤ L, represents the complex baseband

Fig. 2 Time-domain view of columns of A for N = 4, M = 5 and ROF= 0.9

AN = [ a0, 0
︷︸︸︷1st freq.

a1, 0
︷︸︸︷2nd freq.

· · · aN−1, 0
︷��︸︸��︷N th freq.

︸�������������������︷︷�������������������︸
1st time slot

| a0, 1a1, 1 · · · aN−1, 1︸���������︷︷���������︸
2nd time slot

| · · · | a0,M−1a1,M−1 · · · aN−1,M−1︸���������������︷︷���������������︸
M th time slot

]

=

g(0) g(0) · · · · · · g(0)

g(1) g(1)r · · · · · · g(1)rN−1

..

. ..
. · · · · · · ..

.

..

. ..
. · · · · · · ..

.

g(MN− 1)︸�����︷︷�����︸
a0, 0

g(MN− 1)rMN−1︸���������︷︷���������︸
a1, 0

· · · · · · g(MN− 1)r(N−1)(MN−1)︸�������������︷︷�������������︸
aN−1, 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
g(MN− N ) · · · · · · g(MN− N ) · · ·

g(MN− N+ 1) · · · · · · g(MN− N+ 1)rN−1 ..
.

..

. · · · · · · ..
.

(M− 2)N terms

..

. · · · · · · ..
. ..

.

g(MN− N− 1)︸��������︷︷��������︸
a0, 1

· · · · · · g(MN− N− 1)r(N−1)(MN−1)︸����������������︷︷����������������︸
aN−1, 1

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(7)

AM = [ a0, 0
︷︸︸︷1st
time

a0, 1
︷︸︸︷2nd
time

· · · a0,M−1
︷��︸︸��︷M th

time

︸�����������︷︷�����������︸
1st frequency

| a1, 0a1, 1 · · · a1,M−1︸����������︷︷����������︸
2nd frequency

| · · · | aN−1, 0aN−1, 1 · · · aN−1,M−1︸���������������︷︷���������������︸
N th frequency

]. (8)
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channel coefficient of the rth path [27], which we assume is
zero-mean circular symmetric complex Gaussian. We also assume
that channel coefficients related to different paths are uncorrelated.
We consider, Ncp≥ L. Received vector of length NCP + NM + L− 1
is given by,

ycp = h× xcp + ncp, (10)

where ncp is the AWGN vector of length MN +Ncp + L− 1 with
elemental variance s2

n. The first Ncp samples and last L− 1 samples
of ycp are removed at the receiver, that is, y = [ycp(Ncp + 1:Ncp +MN)].
Use of CP converts linear channel convolution to circular channel
convolution when Ncp≥ L [1]. The MN length received vector after
removal of CP can be written as,

y = HAd̃ + n, (11)

where H is the circulant convolution matrix of sizeMN ×MN, which
can be written as,

H =

h1 0 · · · 0 hL · · · h2
h2 h1 · · · 0 0 · · · h3

..

. . .
.

hL hL−1 · · · · · · · · · · · · 0
0 hL · · · · · · · · · · · · 0

..

. . .
.

0 0 hL · · · · · · h1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

and n is the WGN vector of length MN with elemental variance s2
n.

Received vector y is distorted due to (i) self-interference as
subcarriers are non-orthogonal [23] and (ii) ICI due to FSFC.

3 BER computation for MMSE receiver

3.1 MMSE receiver

To equalise the channel and GFDM induced self-interference, a joint
MMSE equaliser [19] is considered here. Equalised data can be
given as,

d̂ = IMN
sn2

sd2
+ (HA)H(HA)

[ ]−1

(HA)Hy

= Bd + Cn,
(13)

where B = [IMN (sn2/sd2 )+ (HA)H(HA)]−1(HA)H(HA) and
C = [IMN (sn2/sd2 )+ (HA)H(HA)]−1(HA)H. First term in the
above equation holds desired plus interference values and second
term holds the post-processing noise values.

3.2 SINR computation

Suppose we want to detect lth symbol. Estimated lth symbol can be
given as,

d̂l = [B]l, ldl +
∑MN−1

r=0, r=l

[B]l, rdr +
∑MN−1

r=0

[C]l, rnr, (14)

where first term is the desired term, second term is the interference
term and third term is the post-processed noise term. Using
the above equation, E[|d̂l|2] = s2

d[B]2l, l + s2
d

∑MN−1
r=0, r=l |[B]l, r|2+

s2
n

∑MN−1
r=0 |[C]l, r|2, where the first term is the average signal power

PSig,l, the second term is the average interference power PSig + Inr,l

and the third term is the average post-processing noise power PNpp,l.
Using (13), E[d̂d̂H] = s2

dBBH + s2
nCCH, where diagonal values of

the first matrix term holds average signal plus interference power
PSig + Inr,l, diagonal values of the second matrix term holds
average post-processing noise power, BBH = [[IMN (sn2/sd2 )+
(HA)H(HA)]−1(HA)H(HA)]2 = B2 and CCH = [IMN (sn2/sd2 )+
(HA)H(HA)]−1(HA)H(HA) [IMN (sn2/sd2 )+ (HA)H(HA)]−1. Using
this, average signal power PSig,l and average interference power
PInr,l, average signal plus interference power PSig+Inr,l and
post-processed noise power PNpp,l for the lth symbol can be given as,

PSig, l = sd2 |[B]l, l|2, PSig+Inr, l = sd2 |[BBH]l, l|,
PInr, l = PSig+Inr, l − PSig, l and PNpp, l = sn2 |[CCH]l, l|.

(15)

SINR for the lth symbol can be computed as,

gl =
PSig, l

PInr, l + PNpp, l
(16)

Now we will compute SINR for FSFC and AWGN channel
separately.

3.2.1 FSFC: Both B and CCH involve (HA)H(HA). To compute
(16) we explore the product. (HA)HHA is a Hermitian matrix and
hence it can be diagonalised as, (HA)HHA = VΛVH, where, V is a
unitary matrix which holds eigenvectors of (HA)HHA in its
columns and Λ = diag{l0, l1, …, lMN−1} is a diagonal matrix
which holds eigenvalues of (HA)HHA. We can write, B = VL̃VH,
where L̃ = diag{l̃0, l̃1, . . . , l̃MN−1}, l̃s = ls/((s

2
n/s

2
d)+ ls)

and CCH = V ˜̃
LVH, where ˜̃

L = diag{ ˜̃l0,
˜̃l1, . . . , ˜̃lMN−1} and

˜̃ls = ls/((s
2
n/s

2
d)+ ls)

2. Putting values of B and C into (15), we
can get,

PSig, l = sd2 |[VL̃VH]l, l|2, PInr, l = sd2 |
∑MN−1

r=0, r=l

[VL̃VH]l, r|2 and

PNpp, l = sn2 |[V ˜̃
LVH]l, l|2.

(17)

Through the reduction, complex expression involving matrix inverse
as in (14), is brought to a simpler form (using eigenvalue
decomposition of (HA)HHA), that is, instead of computing B we
can proceed directly with HA.

3.2.2 AWGN: In case of AWGN, H = IMN, hence we can write the
following,

B = s2
n

s2
d

I + AHA

[ ]−1

AHA, C = s2
n

s2
d

I + AHA

[ ]−1

AH and

CCH = s2
n

s2
d

I + AHA

[ ]−1

AHA
s2
n

s2
d

I + AHA

[ ]−1

.

(18)

It can be seen that AHA is a major component of the analysis. It is
important to study the AHA before we proceed further. We will
see the properties of AH

NAN below.
AH
NANMatrix, AN, can be decomposed as

AN = [G0E]MN×N · · · [GM−1E]MN×N

[ ]
MN×MN

, (19)

where Gp’s be a set of MN ×MN matrices, where p = 0, …, M− 1.
Suppose the first matrix in the set G0 = diag{gT}, where
g = [g(0)g(1) · · · g(MN− 1)]T. Any matrix in the set can be
written as a circularly shifted version of G0 along its diagonals,
that is, pth matrix in the set can be written as
Gp = diag{circshift[gT, − pN ]}, where circshift represents right
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circular shift operation. Gp can be described as

Gp =
g(− pN )MN

. .
.

g(− pN+MN− 1)MN

⎡
⎢⎣

⎤
⎥⎦

MN×MN

(20)

and E = [WN · · ·M times · · ·WN ]
T is an MN × N matrix, whereWN

is the N ×N normalised inverse DFT matrix [28].
[AH

NAN ]r, q = EHGH
r GqE, where r, q = 0, …, M− 1 and EHGH

r GqE

is the N ×N matrix. [AH
NAN ]r, q can be written as

[AH
NAN ]r, q(a, b) =

∑MN−1
k=0 bk, a = b∑MN−1
k=0 v(b−a)kbk, otherwise

{
, (21)

where ω = ej2π/N, bκ = g((−rN + κ)MN)g((−qN + κ)MN),
r, q = 0 · · ·M− 1 and a, b = 0 · · ·N− 1. Let, s = 0 · · ·N− 1

[AH
NAN ]r, q((a− s)N , (b− s)N ) =

∑MN−1

k=0

v(b−s−a+s)kbk

= [AH
NAN ]r, q(a, b) (22)

This proves that each block [AH
NAN ]r, q of A

H
NAN is circulant. Let, ς =

0, …, M−1.

[AH
NAN ](r−6)M , (q−6)M

(a, b)

=
∑MN−1

k=0

v(b−a)kg((−rN+ 6N+ k)MN )g((− qN+ 6N+ k)MN ).

(23)

As ω is periodic with N and g(β) is periodic with MN,
[AH

NAN ](r−6)M , (q−6)M
(a, b) = [AH

NAN ]r, q(a, b); hence, A
H
NAN is the

block circulant matrix with circulant blocks (BCCBs) with blocks
of size N × N. In the same way, it can be proved that AH

MAM is
also BCCB with blocks of size M ×M.

Using the properties of BCCB matrix one gets that [29] (i) inverse
of BCCB matrix is a BCCB matrix, (ii) addition of a diagonal matrix
with equal elements to a BCCB matrix is a BCCB matrix, (iii)
multiplication of two BCCB matrix is a BCCB matrix. Hence, it
can be easily proved that B and CCH are also a BCCB in case of
AWGN channel.

For any BCCB matrix [29] it can be shown that (i) diagonal
elements are identical, (ii) all rows have equal power and (iii) all
columns have equal power. Using this it can be then concluded
that PSig,l = PSig, PSig + Inr,l = PSig + Inr, PInr,l = PInr and PNpp,l = PNpp,
∀l. Therefore we can write, [B]l, l = trace{B}/MN ,
[B2]l, l = trace{B2}/MN and [CCH]l, l = trace{CCH}/MN . Using
this and (15), we can write

PSig =
s2
d

(MN )2
trace{B}2, PSig+Inr =

s2
d

MN
trace{B2} and

PNpp =
s2
n

MN
trace{CCH}.

(24)

Now, using (18) in the above equation

PSig =
s2
d

(MN )2
∑MN−1

s=0

ls
ls + (s2

n/s
2
d)

∣∣∣∣∣
∣∣∣∣∣
2

,

PSig+Inr =
s2
d

MN

∑MN−1

s=0

ls
ls + (s2

n/s
2
d)

∣∣∣∣
∣∣∣∣2 and

PNpp =
s2
n

MN

∑MN−1

s=0

ls

(ls + (s2
n/s

2
d))

2 .

(25)

SINR can be computed as

g = Psig

PInr+PNpp

. (26)

Hence, SINR can be computed using the eigenvalues of AHA.
Through the above, because of the BCCB property, we can
compute SINR easily than by using the direct form. Inversion of
matrix (s2

n/s
2
d)I + AHA needs complexity of O(M3N3), whereas

eigenvalue computation of AHA needs complexity of O(NM log2
N ) [29]. Hence, SINR computation using the above method is
much simpler than using direct matrix computation.

3.3 BER computation

3.3.1 FSFC channel: Fig. 3a shows cumulative distribution plot
of noise plus interference value for 4-QAM modulated system for 3
and 9 dB Eb/N0 values. Cumulative Distribution Function (CDF)
plot for both cases is compared with Gaussian CDF with measured

Fig. 3 CDF plot of interference plus noise value in AWGN channel and FSFC for 4-QAM (pulse shaping filter is RRC with ROF = 0.5). (a) FSFC channel, (b)
AWGN channel
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mean and variance values. It is clear from this figure that interference
plus noise values closely follow Gaussian distribution.

Therefore, the BER for the lth QAM symbol with M modulation
order can be computed as [30] by

Pb(E|gl) ≃ 4

����M√ − 1����M√
log2(M)

∑ ���M√
/2−1

r=0
Q (2r+ 1)

����������
3gl

(M− 1)

√{ }[ ]
,

(27)

γl is the post-processing SINR for the lth symbol at the receiver given
in (16). Average probability of error can be found as

Pb(E) =
1

MN
×

∑MN−1

l=0

∫1
0
Pb(E|gl) fgl (gl)dgl , (28)

where fgl (gl) is the probability density function of γl.

3.3.2 AWGN channel: Fig. 3b shows cumulative distribution
plot of interference plus noise value (14) for 4-QAM modulated
system for 3 and 9 dB Eb/N0 values. As in case of FSFC,
interference plus noise values closely follow Gaussian distribution.
BER for QAM symbol with M modulation order can be
computed as [30]

Pb(E) ≃ 4

����M√ − 1����M√
log2(M)

∑ ���M√
/2−1

r=0
Q (2r+ 1)

����������
3gl

(M− 1)

√{ }[ ]
,

(29)

where γ is the post-processing SINR given in (26).

4 Precoded GFDM system

In this section, precoding schemes to enhance performance of
GFDM are described. The first precoding scheme BIDFT is
described in Section 4.1. The scheme is developed using special
properties of (HA)HHA (detailed in Section 4.1.1) and AHA
(detailed in Section 3.2.1). For this precoding scheme there can be
two kinds of receiver processing, namely, (i) joint processing:
described in Section 4.1.1, which equalises channel and GFDM
modulation matrix simultaneously, whereas (ii) two-stage
processing: described in Section 4.1.2, first stage equalises for the
channel and second stage equalises for GFDM modulation matrix.
Two types of precoding matrices are defined for BIDFT
precoding, namely, (i) BIDFT-M: where A is structured in blocks
of M ×M, that is, AM and (ii) BIDFT-N: where A is structured in
blocks of N ×N, that is, AN. BIDFT-N precoded GFDM is
processed using joint processing as well as two-stage processing,
whereas BIDFT-M precoded GFDM is processed using two-stage
processing only.

DFT-based precoding is described in Section 4.2. SVD-based
precoding is described in Section 4.3. For each precoding scheme,
precoder matrix P, corresponding receivers and post-processing
signal-to-noise ratio (SNR) are described in detail. Both BIDFT
and DFT-based precoding does not require channel state
information (CSI) at the transmitter to compute P, whereas
SVD-based precoding needs CSI at the transmitter to compute P.
Channel knowledge at the transmitter can be maintained via
feedback from the receiver or through the reciprocity principle in a
duplex system [31]. BER for precoded GFDM system is presented
in Section 4.4. Computational complexities of GFDM and
precoded GFDM system are given in Section 4.5.

4.1 BIDFT precoded GFDM

Received signal in (11) can be processed in two ways, (i) joint
processing: channel and self-interference are equalised

simultaneously and (ii) two-stage processing: channel and
self-interference and equalised separately.

4.1.1 Joint processing: Suppose the received signal in (11)
passed through an MF. Equalised vector which can be given as

yMF = (HAP)Hy

= PH(HA)HHAPd + (HA)Hn.
(30)

Since, (HA)HHA is multiplied to desired data vector in above
equation. Now we will explore some properties of (HA)HHA.

(HA)HHA: Using, description of AN given in Section 3.2.1,
(HAN)

HHAN matrix can be given as

(HAN )
HHAN =

[L0, 0]N×N
· · · [L0,M−1]N×N

..

. . .
. ..

.

[LM−1, 0]N×N
· · · [LM−1,M−1]N×N

⎡
⎢⎣

⎤
⎥⎦

MN×MN

,

(31)

where Lu, v = EHGH
uYGvE is an N × N submatrix or block, where

Y = HHH is an MN ×MN matrix and u, v = 0 · · ·M− 1.
Channel convolution matrix H is a circulant matrix and it can be
shown that Y = HHH is also a circulant matrix using the
properties of circulant matrices [28]. (HAN)

HHAN will be a block
circulant matrix, iff, L(u+s)M , (v+s)M

= Lu, v, where s = 0 · · ·M− 1.
In the expression of Lu, v, matrix EH and E are independent of
block indices u, v. Therefore, it can be said that, G is a block
circulant matrix, iff, F(u+s)M , (v+s)M

= Fu, v, where Fu, v = GH
uYGv

is an MN ×MN matrix. Let, Y = {yr, q}MN×MN and using the
definition of Gp, it can be shown that

Fu, v(r, q) = g(−uN+r)MN
g(−vN+q)MN

yr, q and (32)

F(u+s)M , (v+s)M
(r, q) = g(−(u+s)N+r)MN

g(−(v+s)N+q)MN
yr, q. (33)

Substituting, r′ = r− sN and q′ = q− sN, and since Y is a circulant
matrix and hence y(r′+sN , q′+sN )MN

= yr′ , q′ . Then, substituting r′ and
q′ with r and q,

F(u+s)M , (v+s)M
(r, q) = g(−uN+r)MN

g(−vN+q)MN
yr, q

= F(u)M , (v)M
(r, q) (34)

Hence (HAN)
HHAN is a block circulant matrix with blocks of size

N × N. (It may be noted here that (HAM)
HHAM will not be block

circulant with blocks of size M ×M.). Since (HAN)
HHAN is block

circulant matrix with blocks of size N × N, it can be decomposed
as given in [29, 32], as, (HAN )

HHAN = FbNDbNF
H
bN ,

where FbN = W 0
N WN · · · WM−1

N

[ ]
MN×MN

, where W i
N =

IN wi
N IN · · · wi(N−1)

N IN
[ ]T

N×MN���
N

√ , where wN = ej2π/N and

DbN = diag{D0
bND

1
bN · · ·DM−1

bN } is block diagonal matrix with
blocks of size N ×N, where Dr

bN is the rth diagonal matrix of size
N × N.

Using this decomposition and taking A as AN, MF output in (30)
can be written as

yMF = PHFbNDbNF
H
bNPd + (HAN )

Hn. (35)

BIDFT-N precoding: If we choose, P =FbN (call it BIDFT-N
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(BIDFTN) precoding), then

yMF = DbNd + (HAN )
Hn

=

D0
bN

D1
bN

. .
.

DN−1
bN

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

dN0
dN1

..

.

dNM−1

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦+ �n,

(36)

where �n is the MF processed noise vector. In the above equation,DbN

being block diagonal matrix, adds only N− 1 interfering symbols
instead MN− 1 (in case of uncoded GFDM). This shows that
precoding reduces the number of interfering symbols significantly.
ZF equalisation is applied to reduce interference further.
Multiplying D−1

bN in the above equation we get

d̂JPBIDFT = d + nJPBIDFT, (37)

where nJPBIDFT = D−1
bN (HAN )

Hn is the post-processing noise vector
and superscript JP signifies that signal processing steps followed in
this method are joint processing (channel and self-interference are
equalised jointly). DbN can be computed as

DbN = FH
bN (HAN )

HHANFbN . (38)

Post-processing SNR for the lth symbol can be obtained as

gJPBIDFT, l =
sd2

E[nJPBIDFT(n
JP
BIDFT)

H]l.l
, (39)

where denominator in the above equation is post-processing noise
power for the lth symbol.

4.1.2 Two-stage processing: In the above method, channel and
GFDMwere equalised together. In this method, we will first equalise
channel distortions, and then GFDM induced self-interference. As
explained in Section 1, H is a circulant matrix. Hence, H can be
decomposed as

H = WNMCWH
NM , (40)

where WNM is the normalised IDFT matrix of size MN ×MN and
Ψ = diag{υ0, υ1, …, υMN−1} is a diagonal matrix. Channel
equalised vector can be obtained as

yFDE = WH
NMC

−1WNMy = APd +WNMC
−1WH

NMn, (41)

where first term is the transmitted signal which is free from channel
distortions completely, second term is an enhanced noise and
subscript FDE is acronym for frequency-domain equalisation (as
above-described channel equalisation is FDE [1]). Ψ can be
obtained as C = WH

NMHWNM which equivalently obtained by
taking NM point fast Fourier transform (FFT) of zero padded
channel convolution vector h which is also the first column of H
[1, 2].

Now passing channel equalised data yFDE to MF receiver, we can
get

yFDE−MF = (AP)HyFDE

= PHAHAPd + (AP)HWNMC
−1WH

NMn. (42)

It has been proved in Section 3.2.2 that AHA is the BCCB matrix
with blocks of size either N × N or M ×M, which depends on
whether A = AN or A =AM. Which are described next.

BIDFT-N precoding: When modulation matrix is defined as AN,
AH
NAN can be decomposed as

AH
NAN = FbN D̃bNF

H
bN , (43)

where D̃bN = diag{D0
bN , D

1
bN , . . . , DM−1

bN } is the MN ×MN block
diagonal matrix where Dr

bN is the rth diagonal block of size N × N.
Choosing, P =FbN (BIDFTN precoding) and using the above
decomposition, MF output in (42) can be written as

yFDE−MF = D̃bNd + (AFbN )
HWNMC

−1WH
NMn. (44)

Now multiplying D̃
−1
bN in the above equation

d̂NFDE−MF−ZF = d + nNFDE−MF−ZF, (45)

where nNFDE−MF−ZF = D̃
−1
bN (AFbN )

HWNMC
−1WH

NMn is an enhanced
noise vector. Since D̃bN needs to be computed to obtain d̂NFDE−MFZF

,
it can be computed as, D̃bN = FbNA

HAFH
bN . Post-processing SNR

for the lth symbol can be obtained as

gNFDE−MF−ZF, l =
sd2

E[nNFDE−MF−ZF(n
N
FDE−MF−ZF)

H
]l, l

, (46)

where denominator in the above equation is an enhanced noise
power for the lth symbol.

BIDFT-M precoding: Now, if modulation matrix is defined as AM,
AH
MAM =FbMDbMF

H
bM , where FbM = W 0

M WM ···
[

WN−1
M ]MN×MN ,

where W r
M = IM wr

M IM ··· wr(M−1)
M IM

[ ]T
M×MN���

M
√ , where wM = ej2p/M

and DbM =diag{D0
bMD

1
bM ···DN−1

bM } is the block diagonal matrix with
blocks of size M ×M, where Dr

bM is the rth diagonal matrix of size
M ×M. Using this decomposition, choosing P =FbM (BIDFT-M
(BIDFTM) precoding) and following same signal processing steps as
in case of AN, equalised data vector can be given as

d̂MFDE−MFZF
=d+nMFDE−MF−ZF, (47)

where nMFDE−MF−ZF=D−1
bM (AFbM )

HWNMC
−1WH

NMn is enhanced
noise vector. Since DbM needs to be computed to obtain d̂MFDE−MFZF

,
it can be computed as

DbM =FbMA
HAFH

bM . (48)

Post-processing SNR for the lth symbol can be obtained as

gMFDE−MF−ZF,l =
sd2

E[nMFDE−MF−ZF(n
M
FDE−MF−ZF)

H]l, l
, (49)

where denominator in above equation is enhanced noise power for the
lth symbol.

In summary, BIDFT precoding can be understood by Fig. 4a.

4.2 DFT precoded GFDM

DFT precoding has been used in OFDM systems [1, 2]. It has been
shown that DFT precoding reduces PAPR significantly and is one of
the optimum precoding matrices to reduce PAPR in OFDM systems
[33]. This motivates us to investigate DFT precoded GFDM for
reducing PAPR in GFDM system. Suppose, Q is spreading factor
of the system then DFT order/size can be computed as, NDFT =N/
Q. We assume that Q divides N completely. Two subcarrier
mapping schemes are considered in this paper [34]: (i) localised
frequency division multiple access (LFDMA) and (ii) interleaved
frequency division multiple access (IFDMA).

Precoding matrix P can be defined as P = PmPc, where Pc is a
block diagonal matrix with each block being a DFT spreading

IET Commun., 2015, Vol. 9, Iss. 15, pp. 1829–1841
1835& The Institution of Engineering and Technology 2015



matrix and Pm is a permutation matrix which implements subcarrier
mapping, that is, LFDMA or IFDMA. The precoding spreading
matrix Pc can be written as

Pc =

WNDFT

WNDFT

. .
.

WNDFT

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦, (50)

where WNDFT
is the normalised DFT matrix of size NDFT × NDFT.

Permutation matrix Pm for LFDMA is an identity matrix. DFT
precoded GFDM system can be understood from Fig. 4b.
Precoded data vector is GFDM modulated using the modulation
matrix A. Received signal can be equalised using conventional
linear [19, 23] or non-linear [24] equaliser. We will present here
ZF receiver for DFT precoded GFDM. ZF equalised precoded data

vector can be obtained as

ˆ̃dZF = (HA)−1y = d̃ + (HA)−1n. (51)

Equalised data vector d̂DFT−spread can be obtained as

d̂DFT−spread = PH ˆ̃dZF = PH
c︸︷︷︸

de−spreading

× PH
m︸︷︷︸

subcarrier de−mapping

× ˆ̃dZF

= d + nDFT−ZF, (52)

where nDFT-ZF = PH(HA)−1n is the post-processing noise vector.
Post-processing SNR for the lth symbol can be obtained as

gNDFT−ZF, l =
sd2

E[nNDFT−ZF(n
N
DFT−ZF)

H]l, l
, (53)

where denominator in above equation is enhanced noise power for
the lth symbol.

Fig. 4 Block diagram of BIDFT and DFT precoded GFDM system. (a) BIDFT Precoded GFDM, (b) DFT Precoded GFDM
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4.3 SVD precoded GFDM

The product of the channel matrix and the modulation matrix (HA)
can be decomposed as

HA = USVH, (54)

where U and V are unitary matrixes and S is the diagonal
singular-value matrix, that is, S = diag{s0, \s1, …, sr, …, sMN−1},
where sr is the rth singular value. Then, y in (11), can be written as

y = USVHPd + n. (55)

At transmitter, by choosing P = V (assuming ideal feedback channel)
and multiplying both sides with UH, the estimated symbol vector can
be written as

d̂svd = Sd + UHn. (56)

The estimated lth symbol is then given by

d̂svdl = sldl +
∑MN−1

q=0

[UH]l, qn(q). (57)

From the above, it can be seen that by using SVD-based precoding,
interference is completely removed by orthogonalisation of HA
without the need for matrix inversion, which is required in ZF and
MMSE receiver. SINR for the lth symbol, can be computed as

gSVDl = s2
d

s2
n

|sl|2. (58)

4.4 BER performance of precoding techniques

Expression for estimated data symbols, given in (37), (45), (47), (52)
and (57), are summations of desired data symbols and enhanced
noise vector. The enhanced noise vector is weighted sum of
complex Gaussian random variable for a given channel realisation.
Hence, enhanced noise is also complex Gaussian random vector
for a given channel realisation. BER for QAM symbol with
modulation order M over FSFC can be obtained as

Pb(E|gl) ≃ 4

����M√ − 1����M√
log2(M)

∑ ���M√
/2−1

r=0
Q (2r+ 1)

����������
3gl

(M− 1)

√{ }[ ]
,

(59)

where γl is the post-processing SNR computed in (39), (46), (49),
(53) and (58). Average probability of error can be found as

Pb(E) =
1

MN
×

∑MN−1

l=0

∫1
0
Pb(E|gl) fgl (gl)dgl , (60)

where fgl (gl) is the probability distribution function of SINR for the
lth symbol.

4.5 Computational complexity

Precoding schemes for GFDM are proposed in previous sections. It
is utmost important to compute and compare the complexity of these
systems as it is directly proportional to the cost of the system. Out of
different mathematical operations, number of complex multiplication
is a significant contributor to computational complexity [35].
Computation complexity is computed in terms of number of
complex multiplication required to implement transmitter and
receiver of precoded and uncoded GFDM systems. It has been
assumed that modulation matrix A is known at the receiver, hence

any matrix that is derived from A is also known to receiver, such
as AH, A−1 etc. All known receivers for uncoded GFDM are
considered for complexity computation of uncoded GFDM and
DFT precoded GFDM. Minimum number of complex
multiplication required to perform various matrix and vector
operations is computed. Complexity of SVD precoded GFDM
receiver is computed for two cases, namely, (i) SVD of channel is
(useful when channel is static for multiple transmit instances) and
(ii) SVD of channel is unknown. Complexity computation can be
found following Table 1.

5 Results

In this section, the results related to works described in earlier
sections are presented. Analytical evaluation of BER of MMSE
receiver with GFDM is given in Section 5.1. BER evaluation of
precoded GFDM system is provided in Section 5.2. Complexities
of different transmitters and receivers of GFDM and precoded
GFDM are given in Section 5.3. Finally, PAPR of proposed
precoding schemes is compared with GFDM and OFDM in
Section 5.4. GFDM system with parameters given in Table 2 is
considered here. It is assumed that the subcarrier bandwidth is
larger than the coherence bandwidth of the channel for FSFC.
SNR loss due to CP is also considered for FSFC.

5.1 BER evaluation of GFDM with MMSE receiver

BER against Eb/No for 16-QAM in AWGN and FSFC for MMSE
receiver is presented in Fig. 5. Legends ‘GFDM without
self-interference’ are obtained by using gl = s2

d/s
2
n in (28) for flat

fading and in (29) for AWGN channel. This is a reference BER
result for GFDM with zero self-interference and 16-QAM
modulation in flat fading (28) and AWGN (29). The legends
marked ‘Analytical’ are obtained by first computing γl using (16)
for FSFC and using (26) for AWGN and then using this γl in (28)
and (29) to obtain average BER for FSFC and AWGN,
respectively. The legends marked ‘Simu’ are obtained using Monte
Carlo simulations using parameters given in Table 2. It is seen that
BER from simulation matches quite well with the analytical for
both FSFC and AWGN. The gap between GFDM curve
(analytical and simulation) and GFDM with no self-interference
curve is due to self-interference encountered in GFDM [21]. From
the above discussion, it can be concluded that the expressions
developed in this paper are useful in estimating the theoretical
BER for MMSE-based GFDM receiver in FSFC and AWGN
channels.

5.2 BER evaluation of precoded techniques

BER of precoded GFDM system is evaluated via Monte Carlo
simulations. Simulation parameters are given in Table 2. One
thousand channel realisations are used to obtain the BER results.
The legends GFDM–ZF, GFDM–MMSE and GFDM–D-SIC are
used to represent the performance of the corresponding receivers
for GFDM. The legends SVD precoded (SVD-Prec), BIDFTN,
BIDFTM, BIDFT-JP, LFDMA-ZF and IFDMA-ZF are used to
indicate the result of SVD-based precoding, BIDFTN precoding
with two-stage processing, BIDFTM with two-stage processing,
BIDFTN with joint processing, DFT precoding with IFDMA and
DFT precoding with LFDMA, respectively. Legend OFDM-CP is
used to indicate theoretical BER performance of OFDM-CP. Fig. 6
shows BER against Eb/No for ROF = 0.1 in AWGN channel and
FSFC. The following observations can be made.

Under AWGN, all schemes have similar performance. It may be
noted that in AWGN there is no SNR loss as CP is not required.
The performance of GFDM is only slightly worst than OFDM. In
the case of FSFC, it is seen that SVD, BIDFT-N-based precoding
has performance similar to OFDM, as ICI is low because of small
ROF. The better performance of DFT and BIDFT-M precoded
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GFDM over OFDM can be attributed to frequency diversity gain,
which can be understood from Fig. 7.

In this figure, it can be seen that one symbol in BIDFT-M has
larger frequency spread compared with IFDMA which is larger
than LFDMA. Accordingly, BIDFTM precoded GFDM is
performing better than IFDMA precoded GFDM which is
performing better than LFDMA precoded GFDM.

Next we look at Fig. 8 which shows similar performance analysis
for ROF 0.9, which indicates higher ICI. In case of AWGN,

degradation can be observed as compared with Fig. 6. We see a
similar degradation for all precoding schemes in FSFC. This is
expected for ROF 0.9 as significant overlapping of pulses in
frequency.

It is clear that the performance of precoding schemes is sensitive
to ROF. In this paper, we have only considered RRC pulse shape. It
is shown in [19, 20] that performance of uncoded GFDM is sensitive
to pulse shape choice. Proposed precoded GFDM system will also be
sensitive to pulse shape choice as the enhanced noise expressions in

Table 1 Number of complex multiplication of different techniques in GFDM

Technique Operations Number of complex multiplications

GFDM Tx one vector matrix multiplication for y =Ad (MN)2

GFDM Rx ZF–MF (1) frequency-domain (ZF)

† one FFT operation for y′ =Wy

† one diagonal complex valued matrix inversion and one
diagonal matrix and vector multiplication for y″ =Λ−1y′
† one FFT operation for yFDE =Wy″
(2) MF for AWGN: one matrix vector multiplication for
d̂ZF = AHyFDE

3MN

2
log2(MN)+ 2MN + (MN)2

GFDM Rx ZF–ZF (1) frequency-domain (ZF): same operations as in ZF–MF
(2) ZF for AWGN: one matrix vector multiplication for
d̂MF = A−1yFDE. Considering A−1 to be known and precomputed at
the receiver

3MN

2
log2(MN)+ 2MN + (MN)2

GFDM Rx ZF–MMSE (1) frequency-domain (ZF): same operations as in ZF–MF
(2) MMSE for AWGN
† MN complex value addition for computing C = I

g
+ AHA

† one matrix inversion for computing C−1

† one matrix vector multiplication for ytemp =AHy
† one matrix vector multiplication for d̂MMSE = C−1y temp

3MN

2
log2(MN)+ (MN)3

3
+ 2(MN)2 + 2MN

3

GFDM Rx ZF–SIC (1) frequency-domain (ZF): same operations as in ZF–MF
(2) D-SIC for AWGN
† MF operation to compute yMF and MN(

�������������
modorder

√ − 1)
comparators for detection of MF d̂detect
† 2M complex multiplication and 2M−1 complex addition are
needed for each subcarrier and iteration index to compute yk =Adk

where k is subcarrier index
† MN complex subtraction is needed for each subcarrier and
iteration index to compute yinterfree,k = yMF−yk

3MN

2
log2(MN)+ 2MN + 2(MN)2J

SVD-Prec GFDM Tx two vector matrix multiplication for computing AVd 2(MN)2

SVD-Prec GFDM Rx
(known SVD)

one vector matrix multiplication for computing UHy (MN)2

SVD-Prec GFDM Rx
(unknown SVD)

(1) SVD computation
(2) one vector matrix multiplication for computing UHy

(MN)2 + 26(MN)3

BIDFT precoded GFDM
Tx

one vector matrix multiplication for computing AFbd as AFb can be
precomputed at transmitter

(MN)2

BIDFT precoded GFDM
Rx ( joint processing)

(1) one vector matrix multiplication to compute HAFb
(2) computation of block diagonal matrix Db
(3) inversion D−1

b which can be computed by inverting M square
matrices of order N

(MN)2log2(N ) + 2(MN)2 +MN2

BIDFT precoded GFDM
Rx (ZF–ZF)

(1) frequency-domain equalisation: same as in ZF–MF
(2) AWGN processing:
† one vector matrix multiplication for computing yMF = (AFb)

Hy.

† computation of block diagonal matrix D−1
b† N times square matrix inversion of order M and block diagonal

matrix and vector multiplication to compute d̂BIDFT = D−1
b yMF

3MN

2
log2(MN)+ 2MN +NM2 + (MN)2 + NM2︸�︷︷�︸

BIDFTM

or MN2︸�︷︷�︸
BIDFTN

DFT precoded GFDM Tx
(additional over
GFDM Tx)

(1) additionally, MQ times NDFT point FFT and subcarrier mapping
(2) same operation as in GFDM Tx

MN

2
log2 NDFT

DFT precoded GFDM Rx
(additional over
GFDM Rx)

(1) same operation as in GFDM Rx
(2) additionally, MQ times NDFT point FFT and subcarrier mapping
(3) same operation as in GFDM Tx

MN

2
log2 NDFT
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(36), (43), (46), (51) and (56) are functions of modulation matrix A
which is a function of pulse shape as given in (7).

It can be concluded that precoding schemes are giving good
performance over FSFC. BIDFTM precoded GFDM performs best
among all precoding schemes.

5.3 Complexity computation

Table 3 compares the complexity of different transmitters and
Table 4 compares the complexity of different receivers for two
different application scenarios given in [19]. Table 5 shows values
of N and M considered for different application scenarios.
Complexity is computed in terms of number of complex
multiplications. Complexities of precoded GFDM systems and
uncoded GFDM systems are compared with OFDM system.
Spreading factor, Q = 4, is considered for DFT precoded GFDM.
GFDM receiver processing for DFT precoded GFDM is
considered to be GFDM–ZF. Number of iterations for D-SIC
receiver is considered to be 4 [24].

It is observed that the complexity of uncoded GFDM transmitter is
about 100 times higher than OFDM transmitter in case of TI and,
about 50 times greater than OFDM transmitter in case of wireless
RAN (WRAN). BIDFT precoded and DFT precoded GFDM
transmitters have the same order of complexity as uncoded GFDM
transmitter. Complexity of SVD-Prec GFDM is around two times
higher than uncoded GFDM transmitter. Therefore, it can be
concluded that there is no significant increase in complexity for
BIDFT and DFT precoded transmitters when compared with
uncoded GFDM transmitter. However, for SVD-Prec transmitter
complexity is doubled, which is also not a significant increment.

GFDM–ZF receiver complexity is much higher than OFDM
receiver for instance 50 times in TI scenario. SVD-Prec GFDM
receiver when SVD is known, two-stage BIDFT precoded receiver
and DFT precoded receiver have around same complexities as
GFDM–ZF receiver. GFDM–MMSE receiver has very high
complexity, for example, 2000 times higher than GFDM–ZF in TI
scenario. BIDFT precoded receiver complexity, when SVD of
channel is not known, is even higher, for instance; it is 100 times
higher than the complexity of GFDM–MMSE. It is also important
to note that GFDM–D-SIC has higher complexity than GFDM–
ZF, DFT precoded GFDM and two-stage BIDFT precoded GFDM.

5.4 PAPR of precoding techniques

The impact of precoding on PAPR is presented in Fig. 9.
Complementary cumulative distribution function of PAPR is
computed using Monte Carlo simulation. About 105 transmitted
blocks were generated, where each block has two precoded GFDM
symbols. For each precoded GFDM symbol: N = 128, M = 5 and
ROF for RRC pulse shaping filter = 0.5. For OFDM, N = 128.

Fig. 5 BER against Eb/No for MMSE GFDM receiver over AWGN and frequency selective channel for 16-QAM (RRC pulse shaping filter is used with
ROF= 0.5)

Table 2 Simulation parameters of GFDM receivers

Number of subcarriers N 128
Number of timeslots M 5
Mapping 16-QAM
Pulse shape RRC with ROF = 0.1 or 0.5 or 0.9
CP length NCP 16
Channel AWGN and FSFC
Channel length Nch 16
Power delay profile [10−α/5]T, where α = 0, 1, …, Nch− 1
Subcarrier bandwidth 3.9 kHz
RMS delay spread 4.3 µs
Coherence bandwidth 4.7 kHz

Fig. 6 BER against Eb/No for Precoded GFDM Receiver over Frequency
Selective and AWGN Channel using 16-QAM with N = 128, M = 5 and
ROF= 0.1 (RRC)
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Randomly generated data symbols are considered to be quadrature
phase shift keying modulated.

As expected, GFDM has worst performance than OFDM.
Precoding has a positive effect on GFDM. We compare the PAPR

value that is exceeded with probability <0.1% (Pr{PAPR >
PAPRo = 10−3}). SVD-Prec GFDM and BIDFTN precoded
GFDM reduces the PAPR by 0.3 dB but it is still higher than
OFDM. DFT precoded GFDM with LFDMA subcarrier mapping
reduces PAPR by 3.4 dB and is lower than OFDM. DFT precoded
GFDM with IFDMA subcarrier mapping and BIDFTM precoded
GFDM reduces PAPR by 9 dB.

6 Conclusion

GFDM, a possible waveform for 5G with flexibility to access time–
frequency radio resources, is investigated in this paper. Two
properties of GFDM system are proved (i) product of modulation
matrix with its Hermitian is a BCCBs and (ii) product of circulant
convolution channel matrix with the modulation matrix when
multiplied with its Hermitian is block circulant matrix. An
expression of SINR for MMSE receiver for GFDM is developed
using matrix representation for the signal model. The SINR
expression is determined in terms of eigenvalues of the product of
modulation matrix with its Hermitian matrix for AWGN channel
and in terms of eigenvalues and eigenvectors of product of
circulant convolution channel matrix with the modulation matrix
when multiplied with its Hermitian for FSFC. It is also shown that
the addition of interference and noise values are Gaussian
distributed. Using this BER is found. It is found that the BER
obtained from simulation and that from the expression developed
here match quite well in AWGN channel as well as in FSFC.

Three new precoding techniques which improve performance of
GFDM system are proposed. The SVD-based precoding for
GFDM removes interference by orthogonalising the received
symbols. It does not require matrix inversion yet its performance
is quite close to that of GFDM–MMSE result. The complexity of
the receiver for such precoding is quite high when compared with
GFDM–ZF receiver when SVD of channel is not known.
However, when SVD of channel is known complexity of the

Fig. 7 Frequency spread of one symbol for different transmission schemes

Fig. 8 BER against Eb/No for precoded GFDM receiver over frequency
selective and AWGN channel using 16-QAM with N = 128, M = 5 and
ROF= 0.9 (RRC)

Table 3 Number of complex multiplications for different transmitters

CASE OFDM Uncoded
GFDM

SVD-Prec
GFDM

BIDFT
precoded
GFDM

DFT
precoded
GFDM

TI 4.4 ×
103

4.09 × 105 8.19 × 105 4.09 × 105 4.12 × 105

WRAN 8.1 ×
103

4.1 × 105 8.25 × 105 4.12 × 105 4.13 × 105

Table 4 Number of complex multiplications for different receivers

CASE OFDM GFDM–
ZF

GFDM–
MMSE

GFDM–
D-SIC

SVD–GFDM Rx
(known SVD)

SVD–GFDM Rx
(unknown SVD)

BIDFT–GFDM joint
processing

BIDFT–GFDM
two-stage processing

DFT–
GFDM

TI 8.9 ×
103

4.19 ×
105

8.8 × 107 3.2 × 106 4.09 × 105 6.8 × 109 3.7 × 106 5 × 105 4.2 × 105

WRAN 1.62 ×
104

4.16 ×
106

2.8 × 109 3.3 × 107 4.1 × 106 2.1 × 1011 2.4 × 107 4.19 × 106 4.16 ×
106
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receiver is comparable with GFDM–ZF. Hence, SVD-based
precoding can be used in cases when channel is constant for
multiple transmit instances. Performance of BIDFTN precoding is
found to be better than GFDM–ZF and GFDM–D-SIC. Two-stage
BIDFTN precoded GFDM has complexity similar to GFDM–ZF
and lesser than GFDM–D-SIC as well as gives lower PAPR.
Hence, two-stage BIDFTN precoded GFDM should be preferred
than GFDM–ZF. BIDFTM precoded as well as DFT precoded
GFDM receivers which require complexity similar to GFDM–ZF
performs much better than even GFDM–MMSE receiver under
FSFC. Apart from this, BIDFTM and DFT precoded GFDM
reduces PAPR significantly. Precoded GFDM system proposed in
this paper can give better BER performance than GFDM system
with no increase in complexity with the added advantage of
decreased PAPR. It can be concluded that BIDFTM precoded
GFDM should be preferred to other precoding schemes as it gives
better BER performance than other precoded and uncoded
receivers and decreases PAPR significantly without any increase in
complexity.
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