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Abstract: This study investigates resource allocation problems for a point-to-point multi-carrier multiple-input multiple-
output cognitive radio network. Different from conventional resource optimisation problems, a joint power and
bandwidth resource optimisation framework using the novel optimisation metric, namely bandwidth-power product, is
developed. Besides, rate requirement of the secondary system is satisfied, and the interferences introduced to the
primary users (PUs) are below threshold of tolerance. The optimal source precoding matrix is designed and two
methods, namely the project-channel singular value decomposition (SVD) and direct-channel SVD methods, are applied
to satisfy interference power constraints for PUs. Then the unified power and channel allocation problem is derived
and found to be a mixed-integer programming problem. Hence, a sub-optimal and tractable algorithm with low
complexity is proposed. The innovative idea is to determine the channel resource budget by selecting the best
channels, where the criterion for evaluating the quality of channel is detailed discussed. Then the power optimisation
subproblem and channel allocation subproblem can be performed independently using the Lagrange-duality theory
and Gauss–Newton method, respectively. The simulation results show significant improvement in spectral efficiency by
using this framework compared to classical power optimisation framework using the waterfilling scheme.

1 Introduction

Radio spectrum is one of the most scarce and valuable resources for
wireless communication, and the greatly increasing demand for
wireless applications results in a usage crisis of current spectrum.
In contrast to scarcity, the majority of licensed spectrum is
underutilised at given location and time [1]. Cognitive radio (CR)
is a promising technique to improve spectrum efficiency by
allowing unlicensed CR nodes to share spectrum with licensed
primary radio (PR) nodes under two kinds of spectrum sharing
mechanisms, i.e. underlay spectrum sharing and overlay spectrum
sharing. As to underlay spectrum sharing, the CR can transmit
simultaneously with the PR over the same spectrum under the
constraint that interferences introduced to the PR must be limited
by predefined interference temperature. Whereas in overlay
spectrum sharing, the CR can only make use of the idle spectrum
that has not been utilised by the PR [2].

As is well known, orthogonal frequency-division multiplexing
access (OFDMA) is proposed and regarded as a promising air
interface technology for CR networks (CRNs) [3]. Resource
allocation for OFDMA wireless systems has attracted great
attention. The resource optimisation problem was divided into two
categories in [4]: rate-adaptive (RA) and margin-adaptive (MA).
For conventional OFDMA wireless systems, power optimisation,
and channel allocation were extensively investigated in [5]. Taking
the unique nature of CR into consideration, several works were
done to evaluate their performance in CRNs by adding the
primary user (PU) interference limits as an additional constraint
[6–9].

Majority of prior studies on the resource optimisation problem for
CRNs focus on frequency and/or time domain, assuming that both
the primary and secondary transceivers own single antenna.
Multiple-input multiple-output (MIMO) has attracted great

attention during the past decade. MIMO, taking advantage of
multiple antennas equipped by transceivers, extends resource
allocation to space domain. The superiority of MIMO was fully
validated in [10–12]. Opportunistic spectrum sharing in CRNs
exploiting multi-antennas was fundamentally investigated in [13].
Furthermore, in [14], the author designed the optimal MIMO
transceiver via majorisation theory. As research goes deep, by
properly employing the MIMO structure, the secondary
transmission, which is treated as interference by the PR should lie
in the subspace orthogonal to the space spanned by the primary
signal. Therefore, interference alignment (IA) has become a hot
topic [15, 16]. However, IA fails to work in some cases due to the
limited system resource [17], then interference cancellation (IC) is
applied. By introducing cooperation at the transmitter and receiver,
IA and cancellation (IAC) was presented in MIMO CRNs [18,
19]. Note that all these works tried to minimise the transmit power
while the channel resource was totally ignored.

In addition to the total power and the system throughout metrics
used in the resource optimisation problem, the space–bandwidth
product (SBP) has been proven to be a valid metric in CRNs. SBP
can be used to grasp the efficiency of spectrum utilisation, which
is driven by the fact that wireless communication consumes space
[20]. In [21], optimum spectrum sharing was proposed with the
SBP metric in multi-hop CRNs. However, the spectral footprint
was controlled only through the spectral bandwidth while the
transmit power spectral density was fixed. A joint bandwidth and
power optimisation problem in CRNs was introduced and
fundamentally solved in [22]. Bandwidth–power product (BPP)
has been put forward as a typical implementation of SBP and
demonstrated to improve performance effectively in CRNs.
However, to the best of our knowledge, few research works have
been done to regulate optimum spectrum sharing using the BPP
metric for MIMO-OFDMA CRNs.
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Different from the aforementioned works using conventional
performance metrics, e.g. using total power or system throughout
as the objective function, we propose the BPP metric for resource
optimisation in MIMO-OFDMA CRNs. We extend the work in
[22] to the MIMO area while the BPP rather than the transmit
power is optimised compared to [15–19]. The contributions of this
paper are summarised as follows:

† Apply the novel optimisation metric (BPP) to the joint power and
channel resource optimisation framework and formulate the
corresponding optimisation problem mathematically.
† Design the optimal structure of source precoding matrix and
propose the project-channel singular value decomposition
(PC-SVD) and direct-channel singular value decomposition
(DC-SVD) methods to deal with the interference power constraints
at the PUs. Besides, the advantages and disadvantages of each
method are detailed analysed.
† Derive the simplified power and channel allocation problem and
propose a sub-optimal and tractable algorithm with low
complexity. Besides, a simple criterion for evaluating the quality
of the channel is introduced.
† Provide the persuasive simulation results, whose meaning is
twofold. Firstly, the proposed sub-optimal algorithm achieves the
acceptable performance with significant reduction of computation.
Secondly, compared to the conventional resource optimisation in a
MIMO CR area that employs the water-filling scheme, the
efficiency of spectrum utilisation is well improved by our scheme.

The rest of this paper is organised as follows. The system model is
briefly described in Section 2. In Section 3, we formulate the
resource allocation problem. Then, detail analysis is made to
fundamentally solve the corresponding resource optimisation
problem in Section 4. In Section 5, we provide simulation results
and demonstrate the performance of the proposed solution. Finally,
we conclude this paper in Section 6.

2 System model

In this paper, the CRN uses the OFDMA transmission scheme. It
comprises of a single pair of secondary transmitter–receiver and K
primary receivers as shown in Fig. 1. The underlay spectrum
sharing mechanism is applied, namely the secondary transmitter
can share the same spectrum simultaneously with all the primary
receivers under the constraints that interferences introduced to the
primary receivers are below threshold of tolerance. Besides, we
assume multiple antennas for both the secondary transceiver and

all the primary receivers. Here, we denote N as the total number of
channels available for allocation and B as the bandwidth of each
channel. Mt,s, Mr,s, and Mk,p stand for the number of antennas at
the secondary transmitter, secondary receiver and the kth primary
receiver, respectively.

We assume that the secondary transmitter precisely knows
channel information from the secondary transmitter to the
secondary and primary receivers. Based on accurate channel
knowledge, the transmitter can optimally balance between
lowering interferences at primary receivers and maximising its
own benefit by adapting its transmit resources, such as power and
spatial spectrum. In practice, the secondary receiver estimates
channels from the secondary transmitter to it and then feeds
channel-state information (CSI) back to the transmitter. While
primary receivers have no duty to help the transmitter sense
channels between them. By exploiting the channel reciprocity
between the secondary transmitter and primary receivers, the
secondary transmitter can directly obtain the CSI by periodically
sensing transmitted signals from the primary receivers provided
that the primary transmission employs time-division-duplex. In a
deep fading condition, it may be difficult for the secondary
transmitter to perfectly sense instantaneous channels. For such
cases, the results shown in this paper provide upper-bounds of
performance.

In [20], the author showed us the fact that wireless communication
needs to consume space. Therefore, the novel bandwidth-power
product metric, which is clearly defined as the multiplication of
occupied bandwidth and sending power (a typical measurement for
coverage space), can be used to embody the efficiency of spectrum
utilisation. Classical resource allocation algorithms using the
waterfilling scheme attempt to utilise as much bandwidth as
possible so that transmit power can be minimised. This greedy
allocation of channels leads to a big waste of spectral
opportunities in CRNs using the overlay spectrum sharing
mechanism. On the contrary, the spectral footprint optimisation
method, aiming to minimise spectral footprint (the BPP metric),
reduces the number of channels occupied by increasing sending
power. This motivates the deeper research below.

3 Problem formulation

In this section, we evolve mathematical formulation of the resource
optimisation framework for a MIMO-OFDMA CRN, which aims to
minimise the BPP metric. The Mt,s × 1 signal vector transmitted on
the nth channel by the secondary transmitter is given by

sn = Unbn, (1)

where bn is the Mb,n × 1 source symbol vector, and Un is the Mt,s ×
Mb,n source precoding matrix. We assume that E bnb

H
n

[ ] = IMb,n
,

where E[·] denotes statistical expectation, ( · )H stands for
Hermitian transpose, and In is an n × n identity matrix. Also we
define the transmit covariance matrix as Sn = E sns

H
n

[ ]
. The

consumed transmit power on the nth channel by the secondary
transmitter can be written as

Pn = tr Sn

( ) = tr UnU
H
n

( )
, (2)

where tr(X) denotes the trace of matrix X.
The Mr,s × 1 signal vector received on the nth channel at the

secondary receiver is expressed as

yn = Hnsn + vn, (3)

whereHn is theMr,s ×Mt,s MIMO fading channel matrix between the
secondary transmitter and secondary receiver, and vn is the Mr,s × 1
independent and identically distributed additive white Gaussian
noise vector. We assume that the noises are complex circularly
symmetric with zero mean and a variance of ρ.

Fig. 1 CR network: secondary user shares same transmit spectrum with K
primary users
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By employing the linear minimum-mean-square-error (MMSE)
method, the estimated signal vector at the secondary receiver on
the nth channel is

b̂n = WH
n yn, (4)

where Wn is the Mb,n ×Mr,s weight matrix of the linear MMSE
receiver. According to [23], Wn can be derived as

W n = HnUnU
H
nH

H
n + Cvn

( )−1
HnUn, (5)

where (·)−1 denotes the matrix inversion, and Cvn
is the noise

covariance matrix, which can be clearly defined as
Cvn

= E vnv
H
n

[ ] = rIMr,s
. In [24], mathematical deductions were

conducted to show that the diagonal elements of the
mean-square-error (MSE) matrix can be used to measure system
performance and accurately formulate important parameters, such
as signal-to-interference-noise ratio (SINR) and mutual
information. The estimated MSE matrix of the linear MMSE
receiver is given by

En = E b̂n − bn
( )

b̂n − bn
( )H[ ]

= r−1UH
nH

H
nHnUn + IMt,s

( )−1
.

(6)

The SINR of the jth data stream on the nth channel is expressed as

SINR j,n = 1/ En

[ ]
j,j − 1, (7)

where [X]m,n denotes the (m, n)th element of matrix X.
The total interference constraint on the nth channel introduced to

each primary receiver over all receive antennas is

tr Gk,nSnG
H
k,n

( ) ≤ Gk , k = 1, . . . , K, (8)

where Gk,n is the Mk,p × Mt,s MIMO fading channel matrix between
the secondary transmitter and the kth primary receiver, and Γk

stands for the total power interference constraint for the kth
primary receiver over all receive antennas. In [13], the author
proved the fact that the capacity loss of the kth primary receiver
because of the interference from the secondary transmitter is
limited if the transmit covariance matrix Sn satisfies (8). Then the
quality of service of primary transmission can be exactly
guaranteed through dynamically adapting parameter Γk.

Now we are ready to develop the mathematical optimisation
problem described as follows: P1( ):

min FBFP

{ }
:FB =

∑N
n=1

xnB, FP =
∑N
n=1

xntr UnU
H
n

( )
, (9)

subject to

∑N
n=1

tr Gk,nSnG
H
k,n

( ) ≤ Gk , k = 1, 2, . . . , K , (10)

∑N
n=1

∑Jn
j=1

xnR j,n ≥ f, (11)

∀xn [ 0, 1{ }, n = 1, . . . , N , (12)

where xn is a binary variable. It is equal to zero if the nth channel is
not used for the secondary transmission, and is one otherwise. We
define the channel resource budget C for the secondary
transmission as C = n|xn = 1

{ }
. Besides, f is the minimum rate

requirement for the secondary transmission and Jn is the total
number of data streams that the nth channel can bear. Rj,n is the

rate of the jth data stream on the nth channel, and written as

Rj,n = B log 1+ SINR j,n

( )
. (13)

Equation (10) is equivalent to the interference power constraints at
the primary receivers. Here, the total interferences over all receive
antennas and channels for each primary receiver are limited.
Besides, the constraint in (11) corresponds to satisfying the
minimum rate requirement for the secondary transmission.

4 Performance analysis

In this section, detailed analysis is made to fundamentally solve the
problem P1. The complete process consists of three steps. We begin
by calculating the optimal structure of the source precoding matrix
for each channel while the interference power constraints (10) are
not considered. Then, the PC-SVD and DC-SVD methods are
introduced to properly solve the interference constraints. Besides,
advantages and disadvantages of each method are discussed in
detail. Finally, the simplified power and channel resource
optimisation problem is derived and found to be a mixed-integer
programming problem. Hence, we propose a sub-optimal and
tractable algorithm with low complexity. The innovative idea is to
relax the channel selection so that the power optimisation
subproblem and channel allocation subproblem can be
independently performed using the Lagrange-duality theory [25]
and Gauss–Newton method [26], respectively. Note that as to
determining the channel resource set C in the power optimisation
process, we design a simple criterion to measure the quality of
each channel and sort all channels in the decreasing order, then C
can be easily obtained by choosing the best N* channels if N*
channels are assumed to be occupied.

4.1 Optimal source precoding matrix

In this subsection, we are ready to design the optimal structure of the
source precoding matrix for each channel by neglecting interference
power constraints (10). The corresponding subproblem can be
expressed as P2( )

min
Un

tr UnU
H
n

( )
, (14)

s.t.
∑Jn
j=1

R j,n ≥ f. (15)

Before putting forwarding the critical theorem on the solution of the
subproblem, two important definitions in majorisation theory need to
be introduced according to [27].

Definition 1: [18, 1.A.1]: Consider any two N × 1 vectors x, y, sorted
in the decreasing order, which means x[1]≥ x[2]≥ · · · x[N ], y[1]≥
y[2]≥ · · · y[N ]. Vector y majorises vector x, represented as x ≺ y, if∑n

i=1 x i[ ] ≤
∑n

i=1 y i[ ], n = 1, 2, . . . , N − 1, and∑N
i=1 x i[ ] =

∑N
i=1 y i[ ].

Definition 2: [18, 3.A.1]: A real value function f is called
Schur-concave if f (x)≥ f(y) for x ≺ y, and called Schur-convex if
f (x)≤ f (y) for x ≺ y.

Equation (15) can be identically expressed as

q d En

( )( ) ≥ f, (16)

where d(X) denotes a column vector including all the main diagonal

entry of matrix X, and q x( ) =∑Jn
j=1 −B log xj

( )
.
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Denote the singular value decomposition (SVD) of Hn as

Hn = VHn
L1/2

Hn
VHn

( )H
, (17)

where the dimensions of VHn
, LHn

, and VHn
are Mr,s ×Mr,s, Mr,s ×

Mt,s, and Mt,s ×Mt,s respectively. Also, we assume the diagonal
elements of LHn

are sorted in the decreasing order.

Theorem 1: We assume Jn =Mb,n = rank(Hn). As to the problem P2,
the optimal source precoding matrix Un is given by

Un = VHn ,1
L1/2

Un
, (18)

where the Mt,s ×Mb,n matrix VHn
,1 contains the rightmost Mb,n

columns from VHn
. The Mb,n ×Mb,n matrix LUn

can be expressed

as LUn
=diag sUn

( )
, where sUn

= s1,n, . . .sMb,n ,n

[ ]T
is the Mb,n×1

vector whose elements need to be optimised and diag(x) stands for a
diagonal matrix whose main diagonal elements vector is x.

Proof: See Appendix 1. □

The assumption we make in Theorem 1, namely Jn =Mb,n = rank
(Hn), maximises the number of independent data streams on each
channel so that no transmit power is wasted. Note that the optimal
source precoding matrix diagonalises the source–destination
channel matrix and converts the MIMO channel into multiple
parallel single-input single-output (SISO) spatial-channels.

4.2 Interference power constraints analysis

In this subsection, we will take (10) into consideration for the
optimisation problem. From Theorem 1, we can infer that
solutions on interference power constraints depend on the SVD of
Hn. Besides, the projected-channel and direct-channel methods
were introduced to properly solve this problem in [13]. Therefore,
we apply the PC-SVD and DC-SVD algorithms to deal with (10)
in this paper. Also the advantages and disadvantages of each
algorithm are explicitly analysed.

4.2.1 Projected-channel SVD: In the PC-SVD, using the zero-
forcing technique, Un is properly designed so that the interferences at
the primary receivers introduced from the secondary transmission are
completely avoided. Note that the PC-SVD is effective if and only if
the number of transmit antennas is larger than that of total PUs’
receive antennas, as the reason will be discussed later. We denote
the Mp ×Mt,s matrix Gn as the nth channel from the secondary
transmitter to all the primary receivers, where Mp =

∑K
k=1 Mk,p.

Alternatively, Gn = GT
1,n, . . . , G

T
K,n

[ ]T
, where XT stands for the

transpose of X. The SVD of GH
n is expressed as

GH
n = VGH

n
L1/2

GH
n
VH

GH
n
, (19)

where the dimensions of VGH
n
, LGH

n
, and VGH

n
are Mt,s ×Mt,s, Mt,s ×

Mp, and Mp ×Mp, respectively. As to the PC-SVD, the secondary
channel Hn is first projected into the null space of GH

n , which is

H⊥,n = Hn IMt,s
−VGH

n ,1
VGH

n ,1

( )H( )
, (20)

where the Mt,s × rank GH
n

( )
matrix VGH

n ,1
contains the rightmost

columns corresponding to non-zero singular values. According to
(20), H⊥,n becomes a zero matrix if Mt,s ≤Mp. Therefore, the
PC-SVD can only be meaningful when Mt,s >Mp. Define the SVD

of H⊥,n as

H⊥,n = VH⊥,n
L1/2

H⊥,n
VH⊥,n

( )H
, (21)

where the diagonal elements of LH⊥,n
are sorted in the decreasing

order. By applying Theorem 1 to (20), we can obtain

Un = VH⊥,n ,1
L1/2

Un
, (22)

where the Mt,s ×Mb,n matrix VH⊥,n
,1 contains rightmostMb,n columns

from VH⊥,n
and Mb,n = rank(H⊥,n) = min(Mr,s, Mt,s−Mp).

Theorem 2: The interferences introduced to primary receivers can be
completely eliminated by designing Un according to (22).

Proof: See Appendix 2. □

4.2.2 Direct-channel SVD: In the DC-SVD, (18) is applied to
design the Un, while the interference constraints are satisfied by
adjusting the power allocation LUn

. Then Mb, n =min(Mt,s, Mr,s).

We denote GH
k,n = gk1,n, . . . , g

k
Mk,p ,n

[ ]
, k = 1, . . . , K, n = 1, . . . ,

N , and VHn ,1
= [v1,n, . . . , vMb,n ,n

], n = 1, . . . , N . Note that

gk1,n, . . . , g
k
Mk,p ,n

, k = 1, . . . , K, n = 1, . . . , N , and v1,n, . . . ,vMb,n
,

n = 1, . . . ,N are all Mt,s × 1 vectors. Besides, we define Ikj,m,n as the
interference introduced from the jth data stream transmission to the mth
receive antenna of the kth primary receiver on the nth channel. Then, it
is not difficult to find that

Ikj,m,n = ak
j,m,ns j,n, (23)

where ak
j,m,n = gkm,n

( )T
v j,n

( )2
, j = 1, …, Mb,n, k= 1, …, K, m = 1, …,

Mk,p, and n= 1, …, N. According to (23), constraints (10) can be
equivalently expressed as

∑Mb,n

j=1

∑Mk,p

m=1

∑N
n=1

Ikj,m,n =
∑Mb,n

j=1

∑N
n=1

�ak
j,ns j,n ≤ Gk ,

k = 1, 2 . . . , K,

(24)

where �ak
j,n =

∑Mk,p
m=1 a

k
j,m,n.

In order to make deduction much more tractable, this paper places
more stringent requirements on interference constraints. Here, the
interference introduced from each data stream transmission on the
nth channel to each primary receive antenna is guaranteed to be
below threshold of tolerance. Under such restriction, the power
allocated in a data stream, which is transmitted on an excellent
secondary channel, may be greatly reduced because of severe
interference to a single primary receive antenna. Hence the results
obtained in this paper provide a lower-bound for the DC-SVD
algorithm.

In the similar way, we denote GH
n = ĝ1,n, . . . , ĝMp,n

[ ]
, where

ĝ1,n, . . . , ĝMp,n
are all Mt,s × 1 vectors. Besides, the interference

introduced from the jth data stream transmission to the kth primary
receive antenna on the nth channel is defined as Î j,k,n. Then, the
interference constraints can be derived as

Î j,k,n = â j,k,ns j,n ≤ G, (25)

where â j,k,n = ĝTk,nv j,n

( )2
, j = 1, …, Mb,n, k = 1, …, Mp, and n = 1,

…, N. Also Γ stands for the corresponding interference threshold
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and is set equal for all the interference constraints. Furthermore, (25)
can be equivalently written as

s j,n ≤ G/ã j,n, ∀j [ 1, . . . , Mb,n

{ }
, ∀n [ 1, . . . , N{ }, (26)

where ã j,n = max
k

â j,k,n

{ }
, k [ 1, . . . , Mp

{ }
.

4.2.3 Performance comparison: As discussed above, both the
PC-SVD and DC-SVD algorithms rely on the SVD of the secondary
channel matrix Hn and decompose the secondary MIMO channel
matrix into multiple SISO spatial-channels. The main difference
between them lies in that, the PC-SVD performs the channel
decomposition which is based on the SVD of H⊥,n (the projection
of Hn into the null space of Gn), while for the DC-SVD, the
channel decomposition directly depends on the SVD of Hn. Then,
the DC-SVD accordingly maintains the maximum number of data
streams each channel can hold and restricts the transmit power of
each data stream to satisfy the interference constraints. Meanwhile
the PC-SVD reduces the total number of data streams in order to
make the transmit space lie in the null space of primary channels
and removes the interferences totally.

Furthermore, as to the computational complexity, the PC-SVD has
a larger complexity for obtaining the optimal precoding matrix
because of the extra channel projection (20), while so does the
DC-SVD for determining the optimal power allocation due to
the interference constraints (24). Besides, according to [13], the
PC-SVD is optimal if the interference threshold Γ is exactly zero.
On the other hand, while the Γ is sufficiently large so that (26) is
inactive, then the DC-SVD is optimal indeed. Finally, under the
good condition, which means the channel allocation rather than the
power optimisation dominates the optimisation problem, it is
conjectured that the DC-SVD outperforms the PC-SVD, while on
the contrary, the PC-SVD provides a better performance than the
DC-SVD under the poor condition. Simulation results discussed in
Section 5 validate this conjecture.

4.3 Power optimisation and channel allocation

In this subsection, a unified framework considering both power
optimisation and channel allocation is developed. To start with,
several important definitions are listed below in order to make the
deduction simpler. We denote LHn ,1

and LH⊥,n ,1
as the diagonal

matrices, whose diagonal elements contain all the non-zero
diagonal elements from LHn

and LH⊥,n
, respectively.

Correspondingly, they can be expressed as

LHn ,1
= diag l1

Hn

( )
, LH⊥,n ,1

= diag l1
H⊥,n

( )
, (27)

where l1
Hn

= lHn ,1
, . . . , lHn ,Mb,n

[ ]T
, and l1

H⊥,n
= lH⊥,n ,1

, . . . ,
[

lH⊥,n ,Mb,n
]T. Both the l1

Hn
and l1

H⊥,n
are Mb,n × 1 vectors, while

their elements are sorted in the decreasing order. Besides, we
denote �ln as

�ln =
l1
H⊥,n

, PC− SVD

l1
Hn
, DC− SVD

{
. (28)

Note that Mb,n can be easily obtained as

Mb,n =
min Mt,s −Mp, Mr,s

( )
, PC− SVD

min Mt,s, Mr,s

( )
, DC− SVD

⎧⎨
⎩ . (29)

Furthermore, we define �s j,n as

�s j,n =
1, PC− SVD

G/ã j,n, DC− SVD

{
, (30)

where ∞ means the threshold is sufficiently large so that σj,n is not
restricted by �s j,n any more. Note that, as to the DC-SVD, we use (26)
instead of (24) to satisfy the interference constraints, thus a
lower-bound for the DC-SVD is provided in this paper.

Next, we are ready to deal with the joint power optimisation and
channel allocation problem. Based on the analysis results and
definitions discussed above, the problem P1 can be equivalently
written as P5( ):

min FBFP

{ }
:FB =

∑N
n=1

xnB, FP =
∑N
n=1

∑Mb,n

j=1

xns j,n, (31)

subject to

s j,n ≤ �s j,n, j = 1, . . . , Mb,n, n = 1, . . . , N , (32)

∑N
n=1

∑Mb,n

j=1

xnB log 1+ s j,n
�l j,n

r

( )
≥ f, (33)

∀xn [ 0, 1{ }, n = 1, . . . , N , (34)

where �l j,n denotes the jth element in �ln. It is not difficult to see that
(34) makes the problem P5 a mixed integer programming, and an
exhaustive search over all feasible regions is required to achieve
the optimal solution. Hence, a sub-optimal and tractable algorithm
with low-complexity is developed in this subsection. Here, the
problem P5 is further decomposed into two parts: the power
optimisation subproblem and channel allocation subproblem. The
innovative idea is to relax the channel selection so that each
subproblem can be performed independently. As to the power
optimisation subproblem, for the given channel resource budget C,
a simple and iterative algorithm using the Lagrangian–dual method
[25] is proposed. While in the channel allocation subproblem, in
order to minimise the BPP, the optimal channel resource set C is
iteratively obtained using the Gauss–Newton method [26]. Note
that the critical point for determining the set C is to sort all the N
channels in a decreasing order according to the quality of each
channel. Designing the quality evaluation criterion is a challenging
issue and will be discussed later. Once channels are ordered,
determining the set C is refined to select the best N* channels if
N* channels are occupied.

4.3.1 Power-optimisation: For the given channel resource
budget C, namely the best N* channels are occupied for the
secondary transmission, the power optimisation problem can be
written as (P6):

min F∗
BFP

{ }
:F∗

B = |C|B, FP =
∑
n[C

∑Mb,n

j=1

s j,n, (35)

subject to

s j,n ≤ �s j,n, j = 1, . . . , Mb,n, n [ C, (36)

∑
n[C

∑Mb,n

j=1

B log 1+ s j,n
�l j,n

r

( )
≥ f, (37)

where |X| denotes the cardinality of set X . Here, according to the
assumption, we can obtain |C| = N∗. Then, based on the
Lagrangian–dual theory [25], the corresponding Lagrangian
function is derived by taking (37) into consideration as

L = F∗
BFP + n f−

∑
n[C

∑Mb,n

j=1

B log 1+ s j,n
�l j,n

r

( )( )
, (38)

where n is a Lagrange multiplier corresponding to constraint (37)
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and n≥ 0. Based on the Karush–Kuhn–Tucker (KKT) condition, the
optimal solution of σj,n can be derived by minimising the function L
respect to σj,n as

s j,n = n− 1
�l j,n/r

[ ]+
, (39)

where [x]+ = max{0, x}. In order to satisfy the constraint (36), (39) is
adjusted as

s j,n = min �s j,n, n− 1
�l j,n/r

[ ]+{ }
, (40)

where j = 1, …, Mb,n and n [ C. Furthermore, the Lagrange
multiplier n can be obtained when the equality of (37) holds. It is
not difficult to see that in (40), a smaller n will result in a lower
system throughout [the left part of (37)], and vice versa.
Therefore, the optimal n can be efficiently obtained by the
bisection method [25] through comparing the optimal system
throughout for a given n with predefined throughout threshold f.
In conclusion, the following Algorithm 1 (see Fig. 2) can be
properly used to solve the power optimisation problem.

As to determining the set C, designing the criterion for evaluating
the quality of channels is the key step and still left to be discussed.
Here, we consider a special case, where
�s j,n, j = 1, . . . , Mb,n, n [ C are all sufficiently large so that (36)
is inactive, in other words, the PC-SVD method is applied or
channels between the secondary transmitter and primary receivers
are all in severe fading. Besides, we denote the S × 1 vector l̃ as

l̃ = l̃1, . . . , l̃S
[ ]T

, where S =∑n[C Mb,n. The l̃ can be directly
obtained by sorting all the elements of the gain set
�l j,n, j = 1, . . . , Mb,n, n [ C
{ }

in the decreasing order. Define Qn as

Qn =
1∏

l̃j[Cn
l̃j
, (41)

where Cn = �l j,k , j = 1, . . . , Mb,n, k = n [ C
{ }

.

Remark 1: Qn is indeed an outstanding and simple criterion for
evaluating the quality of channels, and the smaller Qn is, the better
quality of the channel is. This conjecture is proved in Appendix

3. The numerical results discussed in Section 5.1 further validate
this remark.

4.3.2 Channel allocation: Once the power optimisation process
is accomplished for a given channel resource set C, we continue to
determine the optimal C in order to minimise the BPP. As
discussed above, based on the assumption that all channels are
sorted in the decreasing order, the channel allocation problem is
refined to select the best N channels, where N need to be optimised as

min
N

NB×
∑N
n=1

∑Mb,n

j=1

min �s j,n, n∗ − 1
�l j,n/r

[ ]+{ }( ){ }
, (42)

where n* is the optimal solution of n according to Fig. 2. Problem
(42) can be iteratively solved using the Gauss–Newton method [26].

Although the closed-form expression of optimal N is hard
to obtain, it can be tractable under the special case: (i)
�s j,n, j = 1, . . . , Mb,n, n [ C are sufficiently large so that (36) is
inactive; (ii) the variations of the channel gain-
to-interference-and-noise ratio over all the candidate subspaces are
very small and all the secondary channel matrices are full-rank,
namely l̃j ≃ l̃, j = 1, . . . , S and Mb,n = �M , n = 1, . . . , N ; and
(iii) the rate requirement f is large enough to make all the
subspaces be occupied for the secondary transmission for a given
C, i.e. S∗ = S = N �M . Note that this case is more likely to happen
in indoor communication where the coherence bandwidth is usually
larger compared with outdoor communication [28]. Then, (42) can
be derived as

min
N

NB×
∑N �M

s=1

r2
f

(BN �M )

l̃
− 1

l̃/r

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎧⎨
⎩

⎫⎬
⎭. (43)

Based on the KKT condition, we can obtain Nopt =
0.435f

B �M
.

4.3.3 Complexity analysis: As mentioned above, the
sub-optimal algorithm proposed in this paper decomposes the
unified resource optimisation problem into two independent parts,
namely power optimisation subproblem and channel allocation
subproblem. The bisection method is applied to deal with the
power optimisation subproblem (Fig. 2), while the channel
allocation subproblem is optimised using the Gauss–Newton
method. Note that both the bisection method and Gauss–Newton

Fig. 2 Algorithm 1 Power optimisation algorithm
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method have low complexity for obtaining the optimal solutions, we
can conclude that the corresponding algorithm indeed is
low-complexity. As to the worst case, the channel resource budget
C takes N possibilities into consideration, and for each case,
Nv

∑N
n=1 Mb,n calculations are needed to obtain the optimal

solution for the power allocation subproblem, where Nv is the
number of iterations for the bisection method. Therefore, the
sub-optimal algorithm proposed takes at most NNv

∑N
n=1 Mb,n

operations. Note that
∑N

n=1 Mb,n in the DC-SVD is larger than that
in the PC-SVD, therefore the DC-SVD has a larger complexity for
determining the optimal resource allocation, while so does the
PC-SVD for obtaining �ln, as discussed above.

4.4 Summary of the analysis

In conclusion, the original optimisation problem P1 has been
completely solved. The total solution consists of three procedures.
Firstly, the optimal precoding matrix for each channel has been
designed. Secondly, two methods, namely the PC-SVD and the
DC-SVD, have been proposed to properly solve the interference
power constraints. Thirdly, the unified power optimisation and
channel allocation problem has been derived and a sub-optimal and
tractable algorithm with low-complexity has been introduced. To
be clear, the following Algorithm 2 (see Fig. 3) gives a summary
of the solution in detail, where N(t) stands for the number of the
channels used for the secondary transmission in the tth iteration.

5 Numerical results

In this section, several numerical results are provided to validate the
performance of the proposed scheme. All channel gainsH = {H1,…,
HN} and G = {G1,1, …, G1,N, …, GK,1, …, GK, N}, are assumed
to be independent of each other and follow circularly-
symmetric-complex-Gaussian distribution as CN(0, 1) for H, and
CN(0, 0.1) for G, respectively. Without loss of generality, we set
N = 64, B = 1, and Mt,s =Mr,s = 4. One thousand independent
Monte Carlo simulations are implemented to average the
experimental results.

5.1 Performance comparison for different criteria of
evaluating the channel quality

Fig. 4 compares performance for different criteria of evaluating the
channel quality. We set Γ = 0.1, f = 50, K = 3, and Mk,p = 1, k = 1,
…, 3. Also the noise variance can be obviously obtained by
r = 1/10^ SNR/10

( )
. Three criteria to measure the quality of

channel are considered: Ca = minnQn = minn 1/
∏Mb,n

j=1
�l j,n

( ){ }
,

Cb = maxn
∑Mb,n

j=1
�l j,n

{ }
and Cc = {disorder/random}. Then the

circular, asteroid, and triangular shapes correspond to Ca, Cb, and
Cc, respectively. Besides, the solid and dash-dotted lines represent
the PC-SVD and the DC-SVD, respectively. According to Fig. 4,
we can see that our proposed measuring criterion Ca outperforms
both Cb and Cc. Furthermore, for the given parameters, the
DC-SVD is superior to the PC-SVD, which is because the
PC-SVD wastes too much transmit space resource under a good
circumstance (large Γ and small f).

Fig. 3 Algorithm 2: Resource optimisation algorithm using the BPP for the MIMO-OFDMA CRN

Fig. 4 Example 1: Relationship between BPP and SNR for the proposed
scheme under different evaluating criteria
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5.2 Performance evaluation for different f

In this subsection, we are ready to study the relationship between
BPP and f as shown in Fig. 5 and relationship between optimum
N and f as shown in Fig. 6. We set ρ = 1, K = 3, and Mk,p = 1, k =
1, …, 3. Also the circular, asteroid, and triangular shapes stand for
Γ = 0.001, Γ = 0.01, and Γ = 0.1, respectively. Besides, the solid
and dash-dotted lines correspond to the PC-SVD and the
DC-SVD, respectively.

In Fig. 5, we can observe that the PC-SVD converges to the same
performance regardless of the Γ. This is because the PC-SVD
confines the transmit space in the null space of primary channels
and is independent of interference power constraints Γ.
Furthermore, we can find that the PC-SVD is superior to the
DC-SVD under the poor condition, namely stringent interference
power constraints (small Γ) and high data rate requirement (large
f), and inferior to the DC-SVD under the good condition (large Γ
and small f). As analysed above, the PC-SVD sacrifices part of
transmit space resource for unconstrained power optimisation in
available transmit space. Then, under the good condition, the
inferiority of the PC-SVD is due to wasting transmit space
resource, while superiority of the PC-SVD results from optimising
power resource without constraints under the poor condition.
Particularly, as to Γ = 0.001, it is impossible to meet rate demand

for the DC-SVD under given parameters when f≥ 130, which is
referred to as outage event.

In Fig. 6, we can find that as the condition becomes poor (small Γ
and large f), the optimum N increases. This is because under the
poor condition, power optimisation is dominated while channel
resource optimisation becomes critical under the good condition.
Furthermore, the optimum N converges to the same regardless of
Γ for the PC-SVD, as the reason has been discussed above.

5.3 Performance gap between the proposed resource
optimisation scheme and the optimal one using the
discrete particle swarm optimisation (DPSO) algorithm

As to the power optimisation and channel allocation problem
discussed in Section 4.3, the optimal solution of P5 can only be
obtained through an exhaustive search over all feasible regions due
to its mixed integer programming. Therefore, a sub-optimal
algorithm is proposed to solve P5 with significant reduction of
computation in this paper. Then, it is necessary to make a
comparison between the proposed sub-optimal algorithm and the
optimal one. In this subsection, the DPSO [29] is applied to
provide an approximate upper bound instead of the brutal search
method to make the amount of computation acceptable. The
DPSO employs a simple mechanism that mimics swarm behaviour
in birds flocking to search for globally optimal solutions. Fig. 7
presents the performance gap between the proposed resource
optimisation algorithm and the DPSO algorithm. Note that as to
the DPSO, we consider both the PC-SVD and the DC-SVD to
address the interference power constraints. We set Γ = 0.1,
r = 1/10^(SNR/10), K = 3, and Mk,p = 1, k = 1, …, 3. To be clear,
‘case 1’ and ‘case 2’ in Fig. 7 denote f = 90 and f = 180,
respectively. It is not difficult to observe that the performance of
the proposed sub-optimal resource optimisation algorithm is very
close to that of the DPSO for any given case. Furthermore,
simulation processes show that the CPU time the DPSO spends is
50 times more than that of the proposed algorithm. Then, we can
conclude that the proposed sub-optimal algorithm achieves the
acceptable performance with great reduction of computation,
which embodies the significance of this work. Finally, the
consumed resource (BPP) increases as the condition becomes poor
(small SNR and large f).

5.4 Performance comparison between the proposed
scheme and waterfilling scheme

In this subsection, we prepare to make a comparison between our
proposed scheme and waterfilling scheme as shown in Fig. 8. Note

Fig. 5 Example 2: Relationship between BPP and f for the proposed
scheme under different Γ

Fig. 6 Example 3: Relationship between Optimum N and f for proposed
scheme

Fig. 7 Example 4: Performance gap between the proposed sub-optimal
resource optimisation algorithm and the optimal DPSO algorithm
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that as to waterfilling scheme, both the PC-SVD and the DC-SVD
have been taken into account to deal with the interference power
constraints. We set Γ = 0.1, r = 1/10^(SNR/10), K = 3, and Mk,p

= 1, k = 1, …, 3. Also the solid and dash-dotted lines represent f
= 90 and f = 180, respectively. It is easy to find that the proposed
scheme provides a better performance than waterfilling scheme for
any given case, which embodies the significance of this work.
Furthermore, we see that as the condition becomes poor (small
SNR and large f), consumed resource (BPP) increases for both
two schemes.

5.5 Performance evaluation for different number of total
PUs’ receive antennas

Fig. 9 compares the performance of PC-SVD with DC-SVD as the
total number of primary receivers’ antennas increases from 1 to
8. Without loss of generality, we assume single-antenna for each
primary receiver and range K from 1 to 8. Also we set ρ = 1 and
f = 80. The solid and dash-dotted lines correspond to Γ = 0.001
and Γ = 0.1, respectively. Observations from Fig. 9 are threefold.
Firstly, as to the PC-SVD, an outage event happens when K≥ 4,
validating that PC-SVD is practicable if and only if the number of
transmit antennas is larger than that of total PUs’ receive antennas.
Emphasise again that the PC-SVD converges to the same

performance regardless of Γ. Secondly, as mentioned above, the
PC-SVD is superior to the DC-SVD under the poor condition and
inferior to the DC-SVD under the good condition. Especially, note
that as to the G = 0.001, outage event occurs for the DC-SVD
when K≥ 5. Thirdly, for any given case, the proposed scheme
provides a better performance than waterfilling scheme.

6 Conclusion

In this paper, we have developed a novel resource allocation
optimisation framework for a MIMO-OFDMA CRN. We aim to
minimise spectral footprint of the CRN using the BPP metric. The
optimal source precoding matrix structure has been designed and
mathematically proved. Meanwhile, two methods, namely the
PC-SVD and DC-SVD, have been introduced to satisfy
interference power constraints for the multiple primary receivers.
In addition, a simple and a tractable algorithm with low
complexity has been proposed to deal with the unified power and
channel optimisation problem. Note that as to determining the
channel resource budget, a simple quality evaluation criterion has
been developed. Furthermore, the mean of numerical results
presented in this work is twofold. Firstly, the proposed
sub-optimal algorithm achieves the acceptable performance with
significant reduction of computation. Secondly, the proposed
framework greatly improves spectrum efficiency by striking an
optimal balance between the consumed bandwidth and power.
Further spectral opportunities are available compared to what can
be obtained by waterfilling scheme in CRNs using overlay
spectrum sharing mechanism. Hence, the framework proposed in
this article offers an efficient way for resource allocation for the
MIMO-OFDMA system in CRNs.

7 Acknowledgments

This work was supported by the Fundamental Research Funds for
the Central Universities, and the 5th Generation Mobile
Communication Program in China (863 Project) under Grant
number 2012AA01A507, 2014AA01A707.

8 References

1 Federal Communications Commission. ‘Spectrum policy task force report’. FCC
Report, ET Docket 02-135, November 2003

2 Haykin, S.: ‘Cognitive radio: brain-empowered wireless communication’, IEEE
J. Sel. Areas Commun., 2005, 23, (2), pp. 201–220

3 Bansal, G., Hossian, M.J., Bhargava, V.K.: ‘Optimal and suboptimal power
allocation schemes for OFDM-based cognitive radio systems’, IEEE Trans.
Wirel. Commun., 2008, 7, (11), pp. 4710–4718

4 Sadr, S., Anpalagan, A., Raahemifar, K.: ‘Radio resource allocation alogrithms for
the downlink of multiuser OFDM communication system’, IEEE Comm. Survey
Tutor., 2009, 11, (3), pp. 92–106, Quarter

5 Wong, C.Y., Chen, R.S., Letaief, K.B., Murch, R.D.: ‘Multiuser OFDM with
adaptive subcarrier, bit and power allocation’, IEEE J. Select. Areas Commun.,
1999, 17, (10), pp. 1747–1758

6 Ngo, D., Tellambura, C., Nguyen, H.: ‘Resource allocation for OFDMA-based
cognitive radio multicast networks with primary user activity consideration’,
IEEE Tran. Veh. Technol., 2010, 59, (4), pp. 1668–1679

7 Wang, P., Zhao, M., Xiao, L., Zhou, S., Wang, J.: ‘Power allocation in
OFDM-based cognitive radio systems’. Proc. IEEE GLOBECOM, November
2007, pp. 4061–4065

8 Ma, Y., Kim, D.I., Wu, Z.: ‘Optimization of OFDMA-based cellular cognitive
radio networks’, IEEE Trans. Commun., 2010, 58, (8), pp. 2265–2276

9 Hoang, A.T., Liang, Y.C.: ‘Power control and channel allocation in cognitive radio
networks with primary users’ cooperation’, IEEE Trans. Mob. Comput., 2010, 9,
(3), pp. 348–360

10 Telatar, I.E.: ‘Capacity of multi-antenna Gaussian channels’, Eur. Trans.
Telecommun., 1999, 10, (6), pp. 585–595

11 Tarokh, V., Seshadri, N., Calderbank, A.R.: ‘Space-time block codes for high data
rate wireless communication:perform criterion and code construction’, IEEE Trans.
Inf. Theory, 1998, 44, (2), pp. 744–765

12 Farrokhi, F.R., Tassiulas, L., Liu, K.: ‘Joint optimal power control and
beamforming in wireless networks using antenna arrays’, IEEE Trans. Commun.,
1998, 46, pp. 1313–1323

13 Zhang, R., Liang, Y.C.: ‘Exploiting multi-antennas for opportunistic spectrum
sharing in cognitive radio networks’, IEEE J. Select. SP, 2008, 2, (1)

Fig. 8 Example 5: Relationship between BPP and SNR for the proposed
scheme and waterfilling scheme under different f

Fig. 9 Example 6: Relationship between BPP and total PUs’ receive
antennas for the proposed scheme

IET Commun., 2015, Vol. 9, Iss. 14, pp. 1710–1720
1718 & The Institution of Engineering and Technology 2015



14 Palomar, D.P., Jiang, Y.: ‘MIMO transceiver design via majorization theory’,
Found. Trends Commun. Inf. Theory, 2006, 3, (4–5), pp. 331–551

15 Ayach, O.E., Peters, S.W., Heath, R.W.: ‘The practical challenges of interference
alignment’, IEEE Wirel. Commun. Mag., 2013, 20, (1), pp. 35–42

16 Shin, W., Noh, W., Jang, K., et al.: ‘Hierarchical interference alignment for
downlink heterogeneous networks’, IEEE Trans. Wirel. Commun., 2012, 11,
(12), pp. 4549–4559

17 Razaviyayn, M., Lyubeznik, G., Luo, Z.: ‘On the degrees of freedom achievable
through interference alignment in a MIMO interference channel’, IEEE Trans.
Signal Process., 2012, 60, (2), pp. 812–821

18 Xin, Q., Kang, C.G.: ‘On feasibility of interference alignment and cancellation for
Gaussian interference multiple access channel’. IEEE Int. Conf. on
Communications, 2012, pp. 2467–2471

19 Li, Z., Shen, B., Li, J.: ‘Interference alignment and cancellation based concurrent
transmission and scheduling scheme for multiuser CR-MIMO system’, IEEE
Wirel. Commun. Mag., 2013, 10, (8), pp. 36–43

20 Gupta, P., Kumar, P.: ‘The capacity of wireless networks’, IEEE Trans. Inf. Theory,
2000, 46, (2), pp. 388–404

21 Hou, Y., Shi, Y., Sherali, H.: ‘Optimal spectrum sharing for multi-hop software
defined radio networks’. Proc. IEEE INFOCOM., May 2007, pp. 1–9

22 Tachwali, Y., Lo, B.F., Akyildiz, I.F., Agusti, R.: ‘Multiuser resource allocation
optimization using bandwidth-power product in cognitive radio networks’, IEEE
J. Select. Areas Commun., 2013, 31, (3), pp. 451–463

23 Kay, S.M.: ‘Fundamentals of statistical signal process: estimation theory’
(Prentice-Hall, Englewood Cliff, NJ, 1993)

24 Rong, Y., Tang, X.J., Hua, Y.B.: ‘A unified framework for optimizing linear
nonregenerative multicarrier mimo relay communication systems’, IEEE Trans.
SP, 2009, 57, (12), pp. 4837–4851

25 Boyd, S., Vandenberghe, L.: ‘Joint convex optimization’ (Cambridge University
Press, 2004)

26 Bertsekas, D.P.: ‘Nonlinear programming’ (Athena Scientific, 1999, 2nd edn.)
27 Marshall, A.W., Olkin, I.: ‘Inequalities: theory of majorization and its application’

(Academic Press, New York, 1979)
28 Hinostroza, V.: ‘Frequency selectivity parameters for broadband signals’. ITST,

June 2007, pp. 1–6
29 Kennedy, J., Eberhart, R.C.: ‘A discrete binary version of the particle swarm

algorithm’, IEEE Inter. Conf. Comput. Cybern. Simul., 1997, 5, pp. 4104–4108,
Oct. .SS

30 Palomar, D.P., Cioffi, J.M., Lagunas, M.A.: ‘Joint tx-rx beamforming design for
multicarrier MIMO channels: a unified framework for convex optimization’,
IEEE Trans. Signal Process., 2003, 51, pp. 2381–2401

9 Appendix

9.1 Appendix 1: Proof of Theorem 1

Proof of Theorem 1 consists of three stages. Firstly, the dual problem
of P2 can be written as P3( ):

max
Un

q d En

( )( )
, (44)

s.t. tr UnU
H
n

( ) ≤ Pn. (45)

Based on the duality theory [25], P2 and P3 have the same optimal
structure for Un. Furthermore, P3 can easily be converted to P4
stated below

min
Un

g d En

( )( )
, (46)

s.t.(45),

where g(x) =∑Jn
j=1 B log xj

( )
. In [30], the author proved that the

function g in (46) is Schur-concave. Also it is not difficult to find
that g is increasing with d[En].

Secondly, based on [27], a few lemmas represented by the
majorisation theory are introduced before proceeding to the proof
of Theorem 1.

Lemma 1: [18, 9.B.1]: For a Hermitian matrix X, d[X] denotes the
vector containing diagonal elements, while l[X] denotes the vector
containing eigenvalues. There is d X[ ] ≺ l X[ ].

Lemma 2: [18, 3.A.8]: If a real-valued function f is increasing and
Schur-convex, then f satisfies x ≺ y ⇒ f (x) ≤ f (y).

Lemma 3: [18, 9.H.1.h]: If X and Y are both N ×N positive
semi-definite Hermitian matric with eigenvalues lX,i and lY,i, i = 1,

2…N, sorted in the same order, then there is
tr(XY ) ≥∑N

i=1 lX ,ilY ,N+1−i.

Thirdly, we are ready to confirm that (18) is the optimal source
precoding matrix for the problem P4, which is equal to prove
Theorem 1. Note that a similar proof was done in [24]. Let us define

Xn = HnUnU
H
nH

H
n = VXn

LXn
VXn

( )H
, (47)

where the Mb,n ×Mb,n matrix LXn
is a diagonal matrix whose

diagonal elements are the non-zero eigenvalues of Xn and sorted in
the decreasing order, and VXn

is a Mr,s ×Mb,n matrix containing
associated eigenvectors. From (47), we can derive

HnUn = VXn
LXn

( )1/2
Qn, (48)

where the Mb,n ×Mb,n matrix Qn is an arbitrary unitary matrix
satisfying Qn Qn

( )H = IMb,n
. According to (6), we can obtain

En =A IMb,n
− HnUn

( )H
HnUn HnUn

( )H + r
[ ]−1

HnUn

( )
=B IMb,n

− QH
n LXn

( )1/2
VH

Xn
VXn

LXn
VH

Xn
+ r

( )−1

×VXn
LXn

( )1/2
Qn

=C IMb,n
− QH

nLXn
LXn

+ rIMb,n

( )−1
Qn

=D IMb,n
−MEn

,

(49)

where MEn
= QH

nLXn
LXn

+ rIMb,n

( )−1
Qn. Derivation A uses the

lemma of matrix inversion: (AAH + C)−1A =C−1A(AHC−1A + I)−1.
By substituting (48) into the equation, expression B can be
derived. Besides, derivation C exploits the lemma of matrix
inversion: (AB)−1 = B−1A−1, and VXn

( )−1
= VH

Xn
.

Based on Lemma 1, we can have

d MEn

[ ]
≺ l MEn

[ ]
= d LXn

LXn
+ rIMb,n

( )−1
[ ]

, (50)

where d MEn

[ ]
is majorised if Qn is a diagonal matrix whose

diagonal elements are unit norm. Then Qn can be expressed as

Qn

[ ]
i,i

∣∣∣ ∣∣∣ = 1, Qn

[ ]
i,j

∣∣∣ ∣∣∣ = 0, i, j = 1, 2, . . . , Mb,n,

i = j.
(51)

For the convenience, we set Qn = IMb,n
.

As mentioned above, g(d(En)) is Schur-concave and increasing

with respect to d(En), then g d IMb,n
−MEn

( )( )
is Schur-concave

and decreasing with respect to d MEn

( )
. It is easy to see –

g d IMb,n
−MEn

( )( )
is Schur-convex and increasing with respect

to d MEn

( )
. Applying Lemma 2 to (50), we obtain

−g d IMb,n
−MEn

( )( )
≤ −g d IMb,n

−LXn
LXn

+ rIMb,n

( )−1
( )( )

,

which can be equivalently expressed as

g d IMb,n
−LXn

LXn
+ rIMb,n

( )−1
( )( )

≤ g d IMb,n
−MEn

( )( )
.
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Substituting (17) into (48), we have

0 Mr,s−Mb,n( )× Mt,s−Mb,n( ) 0 Mr,s−Mb,n( )×Mb,n

0Mb,n× Mt,s−Mb,n( ) L
Mb,n×Mb,n
Hn ,1

( )1/2
⎡
⎣

⎤
⎦VH

Hn
Un

= VH
Hn
VXn

LXn

( )1/2
, (52)

where L
Mb,n×Mb,n
Hn ,1

is a Mb,n ×Mb,n diagonal matrix containing all
non-zero singular values of Hn.

Referring to [24], (52) can be finally derived as

VH
Hn ,1

Un = LHn ,1

( )−1/2
VH

Hn ,1
VXn

LXn

( )1/2
, (53)

where the matrix VHn
,1 and VHn ,1

contain the rightmost columns
corresponding to non-zero singular values from VHn

and VHn
,

respectively. Then the transmit power at the nth channel is given by

tr UnU
H
n

( ) = tr VH
Hn ,1

Un VH
Hn ,1

Un

( )H( )

= tr LHn ,1

( )−1/2
VH

Hn ,1
VXn

LXn

(

×VH
Xn
VHn ,1

LHn ,1

( )−1/2
)
.

(54)

At last, (54) is minimised in order to optimise the power
resource. From Lemma 3, it can be found that (54) is minimised
if VXn

= VHn ,1
. Substituting the result into (53), we can obtain

Un = VHn ,1
LHn ,1

( )−1/2
LXn

( )1/2
= VHn ,1

L1/2
Un

, where LUn
=

LHn ,1

( )−1
LXn

. The proof of Theorem 1 is completely finished.

9.2 Appendix 2: Proof of Theorem 2

Note that

H⊥,nG
H
n = 0. (55)

Substituting (21) into (55), we can derive

VH⊥,n ,1

( )H
GH

n = 0. (56)

Then, the interferences introduced to primary receivers can be
obtained as

tr GnUnU
H
nG

H
n

( ) = tr GnVH⊥,n ,1
LUn

VH
H⊥,n ,1

GH
n

( )
= 0. (57)

Theorem 2 is completely proved.

9.3 Appendix 3: Proof of Remark 1

Here, we define S* as the total number of subspaces that are occupied
for the secondary transmission, namely the power allocated in the
l̃m, m ≤ S∗
{ }

is non-zero while that in the l̃m, m . S∗
{ }

becomes
zero. Then, based on (37) and (39), the Lagrange multiplier n can
be solved as

n = r2(f/BS
∗)

∏S∗
j=1 l̃j

( )1/S∗ , (58)

where n satisfies

n− 1

l̃S∗/r
≥ 0, and n− 1

l̃S∗+1/r
≤ 0. (59)

Note that S* can be iteratively obtained by the bisection method.
Then, Pn, the power allocated on the nth channel, can be derived as

Pn =
∑Mb,n

j=1

r2(f/BS
∗)

∏S∗
j=1 l̃j

( )1/S∗ − 1
�l j,n/r

⎡
⎢⎣

⎤
⎥⎦

+

=A rMb,n2
(f/BS∗)

∏
l̃j[�Cn

l̃j

( )1/S∗ × 1∏
l̃j[Cn

l̃j

( )1/S∗ −∑
Mb,n

j=1

r
�l j,n

≤ rMb,n2
(f/BS∗)

∏
l̃j[�Cn

l̃j

( ) ∏
l̃j[Cn

l̃j

( )[ ]1/S∗ − rMb,n∏
l̃j[Cn

l̃j

( )1/Mb,n

= rMb,n Qn

( )1/S∗ 2

f

BS∗∏
l̃j[�Cn

l̃j

( )1/S∗ − Qn
1/Mb,n−1/S∗( )

⎡
⎢⎢⎣

⎤
⎥⎥⎦,

(60)

where �Cn = �l j,k , j = 1, . . . , Mb,n, k [ C && k = n
{ }

. For the
derivation A, we assume that the power allocated over all the
subspaces on the n channel (n [ C) is non-negative, namely

n− 1/ �l j,n/r
[ ]( )

≥ 0, j = 1, . . . , Mb,n. Note that designing the

optimal quality criterion becomes impossible due to the difficulty
of deriving the close-form of S*. However, according to (60), Pn

is greatly dominated by (Qn)
1/S*, and is increasing with Qn. Then,

we infer that Qn is an outstanding and simple evaluation criterion
and the smaller Qn is, the better quality of the channel is. The
proof is completed.
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