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Abstract With the tremendous growth of cloud computing, verifiable computation
has been firstly formalized by Gennaro et al. and then studied widely to provide in-
tegrity guarantees in the outsourced computation. However, existing verifiable com-
putation protocols either work in the secret key setting or in the public key setting,
namely, work either for single client or for all clients, which rules out some practical
applications with access control policies. In this paper, we introduce and formalize
the notion of verifiable computation with access control (AC-VC), in which only the
computationally weak clients with necessary access control permissions can be al-
lowed by a trusted source to apply the outsourced computation of a function to a
server. We present a formal security definition and a proved secure black-box con-
struction for AC-VC. This construction is built based on any verifiable computation
in the secret key model and ciphertext-policy attribute-based encryption (CP-ABE).
The access control policies that our AC-VC can realize depend on that realized in the
based CP-ABE.

Keywords Cloud computing · Verifiable computation · Access control ·
Attribute-based encryption

1 Introduction

The ubiquitous availability of high-capacity networks, low-cost computers, and stor-
age devices as well as utility computing have led to a tremendous growth in cloud
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computing. Cloud computing enables computationally weak clients to outsource ex-
pensive computational tasks to the cloud, where massive computational power can be
easily utilized in a pay-per-use manner. In cloud computing, since the cloud may have
the financial incentive to run an extremely fast but incorrect computation, the clients
cannot trust the cloud. Thus, the fundamental security issue in this setting is how the
clients verify the results computed by the cloud, which makes verifiable computation
(VC) a must for this setting.

In the last few years, a considerable amount of research was devoted to verifiable
computation which considers a scenario where a computationally weak client wishes
to outsource the computation of a function F on an input x to a computationally
strong but untrusted server. Verifiable computation has been extensively studied in
various settings mainly including the secret-key setting and public-key setting. In a
verifiable computation in the secret-key setting (SK-VC) [5, 10, 12, 15], a client who
wishes to outsource computation of a function F is required to first run an expensive
pre-processing phase to generate a secret key SKF and a public key PKF with respect
to F . This large initial cost is then amortized over multiple executions of the protocol
on different inputs xi , and the client needs the secret key SKF in order to initiate each
such execution. Namely, in the online phase, the client must use the secret key SKF

to interact with the server to obtain F(xi) for an input xi . So a secret-key verifiable
computation is for single client. In contrast, in a verifiable computation in the public-
key setting [4, 11, 14, 27, 28], a trusted source runs the expensive pre-processing
phase once to generate a public key PKF related to F , such that any client can use
PKF to outsource computation of F to the cloud and verify the results. That is, a
verifiable computation in the public-key setting is for multiple clients.

While the recent solutions consider and solve the verifiable computation problem
in various settings, there are a number of desirable features that they fail to achieve.
Take outsourced operations on medical records as an example, a hospital stores a
database of medical records on a cloud, and due to the sensitivity of the records,
the hospital requests that only some doctors, who have designated, can outsource the
computation of some statistical function F on some records to the cloud. More gen-
erally, we will consider the following scenario where a trusted source has developed
a cloud application such as the computation of a function F and outsourced it to an
untrusted server. The source defines some access control permissions and wants to
make the application only available to those clients satisfying the access permissions.
In a nutshell, a protocol is required such that:

– Only those clients satisfying the access control permissions can access the appli-
cation, and those clients who does not satisfy the access conditions cannot access
the application even if they collude with each other;

– The untrusted server cannot convince a client, who satisfies the access permissions
that an incorrectly computed output for F is correct;

– The time costs for an honest client during the interaction with the server must be
less than that to compute the function.

To realize a protocol as described above, the traditional server-based access con-
trol methods are no longer applicable since the cloud server is untrusted. Thus, it is
desirable to enforce the access permissions on the cloud application in the hands of
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the source. A simply method is that the source can give each client, who satisfies the
access permissions, a secret key used to access the cloud application for this func-
tion F . However, this method is not efficient enough especially when the number of
clients is large since the source needs to interact with each client satisfying the access
permissions for F . And for a different outsourced function F ′, the source needs to
repeat the similar works. According to this problem, we aim to present a protocol
in which the source can achieve the access control on the cloud applications more
efficiently and securely.

1.1 Our contributions

We present a formal notion of verifiable computation with access control: this is a
protocol among these polynomial-time parties, a source, some clients and a server
as well as an issuer, to collaborate on the access control of outsourced computation
of a function F . Concretely, the source, who is assumed to be a trusted party, can
enforce some access structure ω on the verifiable computation of F by initialization
such that only the clients, who possess the attributes satisfying ω, can outsource the
computation of F on any dynamically-chosen inputs to the server.

The assigning of attributes to clients is done by a separate entity called the issuer,
external to the function F and ω. Specifically, a verifiable computation with access
control is as follows:

– The issuer first generates the system-wide parameters. Then for each client, the
issuer issues a certificate for its attributes.

– Taking the system-wide parameters, a function F and an access structure ω as
inputs, the source computes some public information PKF,ω . This stage can take
time comparable to computing the function from scratch.

– When a client wants the server to compute F(x), it takes its certificate, prepares
some public information σx and private information τx about x. Then the client
sends σx to the server.

– Once the server obtains the public information σx associated with x, it computes
an output σy which encodes the value F(x) by using PKF,ω and returns it to the
client. If and only if the client’s attributes satisfy the access structure ω, it can
recover the value F(x) from σy and verify its correctness.

For the verifiable computation with access control, we also present a formal se-
curity definition. After that, we present a provably secure black-box construction for
AC-VC by combining any secret-key verifiable computation (SK-VC) (formally de-
fined in [12]) and ciphertext-policy attribute-based encryption (CP-ABE) [7, 31]. The
computational assumptions underlying the security of our construction are the secu-
rity of based SK-VC and the full security of CP-ABE.

Theorem 1 (Informal) For a function F and an access control policy ω, assuming
that there exist a secure secret-key verifiable computation for the function F and
a fully secure ciphertext-policy attribute-based encryption with the access control
policy ω, then there is a verifiable computation with access control for F and ω.
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The main idea of our construction is simple. In a secret-key verifiable computation
[12], the client must use the secret key SKF , which is preprocessed to outsource the
computation of F for any input x to the server. Inspired by this point, in our construc-
tion, we let the source first generate (SKF ,PKF ) by performing the preprocessing of
SK-VC, and then encrypt SKF with an access control condition ω by using attribute-
based encryption. Thus, when a client wants to outsource the computation of F(x)

for any input x, it has to first decrypt SKF using its certificate issued by the issuer
for its entitled attributes. Informally, on the one hand, due to the security of based
attribute-based encryption, any client whose entitled attributes do not satisfy the ac-
cess condition ω cannot decrypt SKF , let alone outsource any input to the server.
Moreover, colluding users cannot pool their certificates, meaning that they cannot
collude with each other by using their certificates to access the outsourced compu-
tation if none of them has the entitled attributes satisfying ω. On the other hand, in
terms of the security of the based SK-VC, the server cannot cheat a client, who has
attributes satisfying ω, with incorrect results.

In our construction, for given F and ω, the source needs only to perform an initial-
ization, and afterwards neither interacts with any client nor the server. The runtime
of a client in the scheme are basically equal to that of a client in the based SK-VC
plus an amortized cost of attribute-based encryption over multiple executions of this
client on different inputs. So if the based SK-VC and CP-ABE are both efficient, our
construction is also efficient.

From the construction, we can see that the access control policies that can be
realized in our AC-VC are exactly the same as that realized in the based CP-ABE.

1.2 Related work

The notion of verifiable computation was first formalized by Gennaro et al. [12].
They presented a secret-key verifiable computation scheme for any function by com-
bining Yao’s Garbled Circuit [32, 33] with a fully homomorphic encryption system
[13]. Their definition uses an amortized notion of complexity for the client, that is,
the client can perform some expensive pre-processing in the off-line stage, but it is
required to run very efficiently in the online stage. This scheme also provides in-
put and output privacy. Chung et al. [10] showed how to remove the need for the
public-key (though still making use of FHE) and suggested an interactive approach
to delegate the off-line phase using universal arguments. Goldwasser et al. [15] pre-
sented a verifiable computation scheme by using designated verifier CS proofs. As
for some concrete functions such as high degree polynomial functions, Benabbas et
al. [5] gave a practical verifiable computation scheme. Kamara’s scheme [20] gives
a general-purpose server-aided multiparty protocols that are more efficient (in terms
of computation and communication) for the parties than the alternative of running a
standard multiparty computation.

The above verifiable computation schemes are constructed in the secret-key set-
ting, namely, a preprocessing stage is first performed to generate a pair of keys
(skF ,pkF ) for a function F , and then in the online stage the client uses skF to out-
source the computation of F on any input to the server. Therefore, these constructions
only work for a single client.
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In contrast, verifiable computation scheme in the public-key setting were pre-
sented [4, 11, 14, 27, 28], which work for multiple clients. In some of these schemes, a
trusted source first performs a pre-processing stage to generate some public informa-
tion PKF for a function F such that any client can uses the information to outsource
computation of F on an input to the server. Whereas in the other schemes such as
[3, 15, 19, 25] which are constructed based on Probabilistic Checkable Proofs (PCP)
[2], scheme [1] which converts the secrecy property of multiparty computation pro-
tocols into soundness for a VC scheme via the use of message authentication codes
and scheme [30], which is for some concrete functions, a preprocessing phase is not
required and any client can directly outsource the computation of F to the server.

Besides the outsource of computation in the cloud, data outsourcing has also at-
tracted a lot of attention. To assure the increased privacy of outsoured data, many
data outsourcing systems require flexible access control approaches. In this case, CP-
ABE is regarded as one of the most suitable technologies for data access control,
because it gives the data owner more direct control on access policies. Similarly to
data outsourcing, we will use CP-ABE to realize the access control in verifiable com-
putation. However, we will also present a formal security model for AC-VC which
cannot be directly borrowed from the existing work on data outsourcing, and prove
that our construction for AC-VC is secure under the security model. As to CP-ABE,
Bethencourt et al. [7] proposed the first CP-ABE which supports monotonic access
structures. Lewko et al. in [21] proposed the first fully secure CP-ABE in the standard
model, which supports access policies with linear secret sharing scheme (LSSS) [6].
As to the attribute-based access control in data outsourcing systems, many solutions
have also been presented in [9, 16–18, 23, 26, 34, 35].

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we will present the function-
ality and security definition of AC-VC. The building blocks including SK-VC and
CP-ABE will be introduced in Sect. 3. Subsequently, we will present our construc-
tion for AC-VC based on SK-VC and CP-ABE in Sect. 4. In Sect. 5, the security
analysis of our construction for AC-VC will be given. We give some discussions
about the multiauthority and attribute revocation problem in our AC-VC construction
in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Verifiable computation with access control: definition

Throughout this paper, we use “A |= ω” to denote that “A satisfies ω” where A is
an attribute set and ω is an access structure. If A is a randomized algorithm, then
y ← A(x) denotes the assignment to y of the output of A on input x. Unless noted, all
algorithms are probabilistic polynomial-time (PPT) and we implicitly assume they
take an extra parameter κ in their input, where κ is a security parameter. A function
ν : N → [0,1] is negligible if for all c ∈ N there exists a κc ∈ N such that ν(k) < k−c

for all k > κc .
A verifiable computation with access control (AC-VC) is run among the follow-

ing parties: an issuer providing access certificates for some attributes; a trusted source
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developing a cloud application to compute a function F ; some computationally weak
clients; and a cloud server who provides the computation of F for clients. A veri-
fiable computation with access control consists of six algorithms ISetup, CertIssue,
Initialization, Query, Compute, Verify described as follows.

• ISetup: The issuer runs the randomized ISetup algorithm to generate a public key
pkI and the corresponding secret key skI for the security parameter κ . It publishes
the public key as the system-wide parameter.

(pkI , skI ) ← ISetup(κ)

– CertIssue: A client obtains an access certificate for an attribute set A by engaging
in the protocol with the issuer.

certA ← CertIssue(pkI , skI ,A)

– Initialization: Taking κ , pkI , a function F and an access control structure ω as
inputs, the source generates some public information PKF,ω related to F and ω.

PKF,ω ← Initialization(κ,pkI ,F,ω)

– Query: For an input x, PKF,ω and pkI , the client computes some public informa-
tion σx and private information τx by using a certificate certA corresponding to the
attribute set A, and sends σx to the server.

(σx, τx) ← Query(PKF,ω,pkI , certA,x)

– Compute: The server computes an encoded version σy of the function’s output
y = F(x) and returns σy to the client.

σy ← Compute(PKF,ω, σx)

• Verify: Taking τx and σy as inputs, the client recovers y = F(x).

y∪ ⊥← Verify(τx, σy)

According to the security requirements of an AC-VC scheme, in the following, we
will define Correctness, Verifiability, Access Security, and Efficiency for it based on
the definition in [12].

Definition 1 (Correctness) A verifiable computation with access control is cor-
rect if for any choice of F and access control structure ω, the issuer setup al-
gorithm generates keys (pkI , skI ) ← ISetup(κ), the certificate issue algorithm
generates the certificate certA ← CertIssue(pkI , skI ,A) corresponding to any at-
tribute set A and the source initialization algorithm generates keys PKF,ω ←
Initialization(κ,pkI ,F,ω) such that, ∀x ∈ Domain(F ) and attribute set A, if A |= ω,
σx ← Query(PKF,ω,pkI , certA,x), σy ← Compute(PKF,ω, σx), then y = F(x) ←
Verify(τx, σy).



534 L. Xu, S. Tang

As desired in a verifiable computation with access control, any client who has
the attributes satisfying ω can outsource the computation of F to the server on any
input and verify the correctness of the results. In other words, for a given function F

and access structure ω, after a client, whose attributes satisfy ω, makes query for an
input x to the server, the server cannot return an incorrectly computed results so as
to convince the client to output y in the verification algorithm such that F(x) = y.
We first formally define an experiment as follows where poly() denotes a polynomial
function of its input.

Experiment ExpVerif
A [AC-VC,F,ω]:

(pkI , skI ) ← ISetup(κ)

PKF,ω ← Initialization(κ,pkI ,F,ω)

for i = 1,2, . . . , l = poly(κ)

(Ai, xi) ← A(PKF,ω, x1,A1, σx1 , . . . , xi−1,Ai−1, σi−1)

if Ai |= ω, (σxi
, τi) ← Query(PKF,ω,pkI , certAi

, xi)

else ⊥← Query(PKF,ω,pkI , certAi
, xi)

(i, σ̂y) ← A(PKF,ω, x1,A1, σx1, . . . , xl,Al, σxl
)

ŷ ← Verify(τx, σ̂y)

if Ai |= ω, ŷ 	=⊥ and ŷ 	= F(x), output ‘1’, else ‘0’.

In above experiment, (pkI , skI ) and PKF,ω are generated by running ISetup and
Initialization algorithms respectively, where PKF,ω is related to a function F and an
access structure ω. Then, for i = 1, . . . ,poly(κ), the adversary makes a polynomial
number of oracle queries to the Query algorithm, each time specifying (xi,Ai). If
Ai |= ω, then the adversary is returned σxi

, and else ‘⊥’. Finally the adversary outputs
a tuple (i, σ̂y). The adversary succeeds if it produces an output that convinces the
verification algorithm to accept on the wrong output value for a given input value.

Definition 2 (Verifiability) We say that a verifiable computation with access control
satisfies verifiability for a function F and an access control structure ω, if for any
adversary A running in probabilistic polynomial time, the advantage of A in the
experiment above, which is defined as

AdvVerif
A (AC-VC,F,ω) = Pr

[
ExpVerif

A [AC-VC,F,ω] = 1
]
,

satisfies

AdvVerif
A (AC-VC,F,ω) ≤ negli(κ),

where negli() is a negligible function of its input.

Note that we present the definition of Verifiability for AC-VC based on the defini-
tion of verifiability in [12] without considering the rejection problem, that is, a mali-
cious server that is able to observe the result of the verification procedure (namely, the
accept/reject decision) on polynomially many inputs can eventually break the sound-
ness of the protocol. However, we can obtain a definition of stronger verifiability
based on that in [5], which does not suffer from the rejection problem. In a nutshell,
the stronger verifiability is the same the definition of verifiability above except that
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let the server learn the output of the verification procedure on all inputs. We will not
describe it in detail here.

Moreover, in a AC-VC scheme, it is desired that only the clients, whose attributes
satisfy ω, can outsource the computation of F to the server, and other clients cannot
access the application even if they collude with each other. This security that we call
Access Security is defined formally as follows:

Experiment ExpAccess
A [AC-VC,F,ω]:

(pkI , skI ) ← ISetup(κ)

PKF,ω ← Initialization(κ,pkI ,F,ω)

A1,A2, . . . ,Aq ← A
if Ai |= ω,

⊥← CertIssue(pkI , skI ,Ai)

else certAi
← CertIssue(pkI , skI ,Ai)

σ̂x ← A
σ̂y ← Compute(PKF,ω, σx)

ŷ ← A(σy)

if ŷ = F(x) for some x, output ‘1’, else ‘0’.

Definition 3 (Access security) We say that a verifiable computation with access con-
trol satisfies access security for a function F and an access control structure ω, if for
any adversary A running in probabilistic polynomial time, the advantage of A in the
experiment above, which is defined as

AdvAccess
A (AC-VC,F,ω) = Pr

[
ExpAccess

A [AC-VC,F,ω] = 1
]
,

satisfies

AdvAccess
A (AC-VC,F,ω) ≤ negli(κ),

where negli() is a negligible function of its input.

Definition 4 (Efficiency) A verifiable computation with access control is efficient if
for a public key pkI , PKF,ω related to a function F and ω, a certificate certA for an
attribute set A, any x and σy , (σx, τx) ← Qurey(x,pkI ,PKF,ω, certA) plus the time
required for Verify(τx, σy) is o(T ), where T is the time required to compute F(x).

3 Building blocks

In this section, two building blocks for AC-VC including verifiable computation in
the secret-key setting (SK-VC) and ciphertext-policy attribute-based encryption (CP-
ABE) will be introduced.

3.1 Verifiable computation in the secret-key setting (SK-VC)

A SK-VC scheme consists of four algorithms: VC.KeyGen, VC.ProbGen, VC.Compute
and VC.Verify.
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– (pk, sk) ← VC.KeyGen(κ): Taking a security parameter κ and a function F as
inputs, outputs a pair of keys (pk, sk), publishes pk and keeps sk secret.

– (σx, τx) ← VC.ProbGen(x, sk): For an input x, outputs (σx, τx) by using the se-
cret key sk, publishes σx and keeps τx secret.

– σy ← VC.Compute(pk, σx): Take pk and σx as inputs, outputs a result σy which
is an encoded value of F(x).

– y∪ ⊥← VC.Verify(τx, σy): Outputs y = F(x) or ‘⊥’ with inputs τx and σy .

A SK-VC scheme is secure if it satisfies correctness, verifiability and efficiency,
which were defined formally in [12]. In the remainder of this paper, in order to dis-
tinguish between the definition of verifiability for SK-VC and AC-VC, we denote
vc-verifiability as the verifiability for SK-VC defined in [12].

3.2 Ciphertext-policy attribute-based encryption (CP-ABE)

A CP-ABE scheme [7, 21] consists of four algorithms: ABE.Setup, ABE.KeyGen,
ABE.Encrypt, and ABE.Decrypt.

– (pk, sk) ← ABE.Setup(κ): Takes a security parameter κ , outputs a master pub-
lic/secret key pair (pk, sk).

– dkA ← ABE.KeyGen(sk,A): Takes the master secret key sk and an attribute set
A ⊆ Ω where Ω is the attribute universe, outputs a decryption key dkA.

– c ← ABE.Encrypt(m,ω,pk): Takes the master public key pk, a message m and an
access policy ω, produces a ciphertext c.

– m ← ABE.Decrypt(c,dkω): Takes the master public key pk, a decryption key dkA

and a ciphertext c, outputs a message m if A satisfies ω which is associated with c.

The definition of full security of ciphertext-policy attribute-based encryption
[7, 21] is given as follows.

Definition 5 (Full security of CP-ABE) A CP-ABE is fully secure if for any PPT
adversary A, the advantage of A in the game below is negligible in κ where κ is a
security parameter.

Setup: The challenger runs ABE.Setup(1κ ) and gives pk to A.
Phase 1: A may query for the decryption keys of attribute sets A1, . . . ,Aq1 ⊆ Ω .
Challenge: A submits two equal-length messages M0,M1 ∈ {0,1}∗ and a chal-

lenge access policy ω such that none of the sets A1, . . . ,Aq1 satisfies ω. The chal-
lenger flips a random coin b ∈ {0,1} and encrypts Mb with respect to A. The cipher-
text C∗ is given to A.

Phase 2: Same as Phase 1 with the restriction that none of the additional attribute
sets Aq1+1, . . . ,Aq satisfies A.

Guess: A outputs b′ ∈ {0,1}. The advantage of A is defined as AdvCP-ABE
A =

|Pr[b′ = b] − 1
2 |.

4 Verifiable computation with access control: construction

In a AC-VC, a trusted source develops a cloud application, here the computation of
a function F on any input, and outsources it to a cloud server. It’s required that the
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source can decide which of its clients can use this application. One possible method
may be that the source grants the access control rights to the server and lets the server
perform control. However, the server is untrusted and may collude with some clients
due to some benefits. Another method is that the source can give each client, who
satisfies the access permissions, a secret key used to access the cloud application for
a function F . However, the source needs to interact with each of these clients so that
this method is not efficient enough especially when the number of these clients is
large. So how the source enforce access control on the application efficiently is a key
problem in the construction of AC-VC.

The main idea of our construction is described as follows. The participants in-
clude an issuer who is responsible for the generation of certificates for each client’s
attributes, a trusted source, a server and a client. When the source initializes the ap-
plication, it generates some public information PKF,ω with respect to the function
F and the access control policy ω so that only the clients, whose attributes satisfy
the policy, can use the public information to prepare the inputs for the function F

and verify the corresponding outputs provided by the server. When a client wants to
outsource the computation of F(x), it first uses its certificate, which is issued by the
issuer, to generate some public information σx and private information τx , and sends
σx to the server. Then the server computes an output σy by taking PKF,ω and σx as
inputs. Finally, the client outputs y or ‘⊥’ by using σy , its certificate and τx as well.

Note that in our construction, the source only needs to initialize the application,
and neither interact with the server nor the client afterward.

Based on any SK-VC which consists of (VC.KeyGen, VC.ProbGen, VC.Compute,

VC.Verify) and CP-ABE := (ABE.Setup, ABE.KeyGen, ABE.Encrypt, ABE.Decrypt),
we can construct a verifiable computation with access control as follows. We also il-
lustrate it in Fig. 1.

– (pkI , skI ) ← ISetup(κ): Taking a security parameter κ as input, the issuer runs
ABE.Setup algorithm to generate a pair of keys (pkI , skI ) ← ABE.Setup(κ), pub-
lishes pkI as the system-wide parameter and keeps skI secret.

– certA ← CertIssue(skI ,A): For any attribute set A, the issuer runs ABE.KeyGen
algorithm to generate a decryption key dkA ← ABE.KeyGen(skI ,A). Then let
certA := dkA be a certificate corresponding to A.

– PKF,ω ← Initialization(κ,pkI ,F,ω): By inputting a function F and an attribute
structure ω, the source first generates a pair of keys (pkS, skS) ← VC.KeyGen(κ),
and encrypts the secret key skS by using the access structure ω to generate pkω ←
ABE.Encrypt(skS,ω,pkI ). Thus, only the clients, who have attributes satisfying ω,
can decrypt skS by using their certificates and then outsource any computation to
the server by performing SK-VC afterward. Finally, the source publishes PKF,ω :=
(pkS,pkω).

– (σx, τx) ← Query(certA,PKF,ω, x): Taking PKF,ω and a certificate certA for an
attribute set A as inputs where PKF,ω is parsed as (pkS,pkω), the client first de-
crypts pkω by using its certificate certA to obtain sk∗ ← ABE.Decrypt(certA,pkω).
Then it outsources the computation on input x to the server by running (σx, τx) ←
VC.ProbGen(x, sk∗). Obviously, if A |= ω, then sk∗ = skS . Otherwise, due to the
full security of the based CP-ABE, the clients who do not satisfy the access per-
missions cannot obtain skS even if they collude with each other.
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Fig. 1 The construction for AC-VC based on SK-VC and CP-ABE

– σy ← Compute(PKF,ω, σx): Parse PKF,ω as (pkS,pkω). The server computes an
output σy for the client by running VC.Compute(pkS, σx) and returns σy to the
client.

– y∪ ⊥← Verify(τx, σy): Taking τx and σy as inputs, the client computes an output
‘y’ or ‘⊥’ by running VC.Verify(τx, σy).

Remark 1 The client can decrypt the secret key sk∗ before its first query on an in-
put to the server. Namely, the algorithm ABE.Decrypt is only performed once by the
client. Thus, the Query algorithm above can also be split into two new algorithms,
one can be off-line that the client decrypt the secret key sk∗ from pkω by using its
certificate, and another algorithm is an online query for the client which is the same
as VC.ProbGen(x, sk∗) in SK-VC.

Remark 2 In the scheme, after the client decrypts sk∗, it takes sk∗ and x as inputs,
the server takes pkS as input where PKF,ω = (pkS,pkω), and they interact with each
other exactly in SK-VC.
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Remark 3 From the concrete construction above, we can see that our proposed AC-
VC can realize the access control policies exactly the same as the based CP-ABE.
For example, when instantiated with the CP-ABE scheme by Bethencourt et al. [7]
and Lewko et al. [21], our AC-VC can achieve monotonic access policies and access
policies with linear secret sharing scheme (LSSS) [6], respectively.

5 Security analysis of our construction for AC-VC

In this section, we will analyze the security of our AC-VC construction in detail,
including Correctness, Verifiability, Access Security, and Efficiency.

Correctness When both the client and the server are honest, the output of the
scheme will be y = F(x). Concretely, if a client whose attribute set A sat-
isfies the access structure ω, then it can decrypt skS by performing skS ←
ABE.Decrypt(certA,pkω) in Query. Then, by inputting x, skS and pkS , the client
and the server interact with each other by running Query, Compute, and Verify just as
in SK-VC. So the correctness of this scheme depends on that of the based SK-VC.

In the following, we will prove that our construction for AC-VC satisfies Veri-
fiability and Access Security. Informally, in our construction, only the clients whose
attributes satisfy the access permissions can access the application. Moreover, the un-
trusted server cannot cheat a client, whose attributes satisfy the access permissions,
with incorrect answers.

Theorem 2 If the based SK-VC scheme is vc-verifiable and CP-ABE scheme is fully
secure, then our construction for AC-VC satisfies verifiability.

Proof In the following, we will show that the success probability of any adversary A
to break the verifiability of our construction for AC-VC is negligible in κ assuming
the based SK-VC scheme is vc-verifiable and the based CP-ABE is fully secure.

To complete the proof, we consider two experiments Experiment-0 and Experi-
ment-1.

Experiment-0: the same as the experiment ExpVerif
A [AC-VC,F,ω] defined in

Sect. 2. Clearly,

Pr
[
AdvVerif

A (AC-VC,F,ω)
] = Pr[Experiment-0 = 1]. (1)

Experiment-1: the same as Experiment-0 except that let pkω = EncryptABE(r,ω,

pkI ) where r is a randomly chosen value.
Due to the full security of the based CP-ABE scheme, we can obtain by Lemma 1

below that the experiments Experiment-0 and Experiment-1 are indistinguishable, that
is,

∣∣Pr[Experiment-0 = 1] − Pr[Experiment-1 = 1]∣∣ ≤ negli(κ). (2)

In addition, we can prove in Lemma 2 below that any adversary cannot succeed in
Experiment-1 as we assumed that the based SK-VC is vc-verifiable, that is,

∣∣Pr[Experiment-1 = 1]∣∣ ≤ negli(κ). (3)
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Summing up the differences between the above experiments, we can conclude
by (1), (2) and (3), that for any adversary A, the success probability to break our
construction for AC-VC is negligible in κ ,

∣∣Pr[AdvVerif
A (AC-VC,F,ω)]∣∣

= ∣∣Pr[Experiment-0 = 1]∣∣
≤ ∣

∣Pr[Experiment-0 = 1] − Pr[Experiment-1 = 1]∣∣ + ∣
∣Pr[Experiment-1 = 1]∣∣

≤ negli(κ) �

Lemma 1 |Pr[Experiment-0 = 1] − Pr[Experiment-1 = 1]| ≤ negli(κ) if the based
CP-ABE is fully secure.

Proof If there is an adversary A who can distinguish the two experiments Experi-
ment-0 and Experiment-1, then we can construct an algorithm A′ who can break the
full security of the based CP-ABE scheme.

A′ is given the public parameters pkABE of CP-ABE by a challenger. It is allowed
to make polynomial times of queries for the decryption key generation to the chal-
lenger. Then it runs VC.KeyGen to generate a pair of keys (pk, sk) ← VC.KeyGen(κ),
chooses randomly a value r and sends (sk, r) along with an attribute set ω to the
challenger as its challenge. After the challenger returns a ciphertext C, A′ publishes
(pk,C) as the public parameters PKF,ω for a function F and an attribute set ω,
namely, let PKF,ω := (pk,C).

In the case that C = ABE.Encrypt(sk,ω,pkABE), one can observe that the en-
vironment that A′ created for A is exactly that of Experiment-0. In the case that
C = ABE.Encrypt(r,ω,pkABE), then one can easily learn that this environment is
exactly that of Experiment-1.

Finally if the experiment outputs ‘1’, then A′ outputs ‘0’ meaning that A′ guesses
that C is the ciphertext of sk, and otherwise outputs ‘1’ to guess that C is the cipher-
text of r .

Since we assume that the based CP-ABE is fully secure, namely, AdvCP-ABE
A′ ≤

negli(κ), according to the security definition of full security, we have

∣∣Pr[Experiment-0 = 1] − Pr[Experiment-1 = 1]∣∣
= ∣∣Pr

[
A′ outputs 0

] − Pr
[
A′ outputs 1

]∣∣

= 2 · AdvCP-ABE
A′

≤ negli(κ) �

Lemma 2 |Pr[Experiment-1 = 1]| ≤ negli(κ) if the based SK-VC is vc-verifiable.

Proof If there is an adversary A who can succeed in Experiment-1, then an algorithm
A′ can be constructed to break the vc-verifiability of the based SK-VC.

A′ is given the public parameter pkS for a function F by the challenger of SK-
VC. It obtains the public key pkI for the based CP-ABE from the issuer. Then for a
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function F and an attribute set ω, it chooses a random value r and sends (pkS,pkω) as
the public parameter PKF,ω to A where pkω = ABE.Encrypt(r,ω,pkI ). Later, when
A makes queries to the oracle Query for (Ai, xi), if Ai |= ω, then A′ uses its oracle,
i.e., sends xi to the challenger and obtains σxi

. Then A′ returns σxi
to A as the answer.

Finally, when A makes query for (x,A∗), if A∗ |= ω, A′ sends x to the challenger
as its challenge. After receiving σx from the challenger, A′ sends σx to A. When A
returns σy to A′, A′ sends σy to the challenger. If A succeeds, then y = F(x). Since
the Compute and Verify algorithms are the same as VC.Compute and VC.Verify in
the based SK-VC, respectively, if A can succeed in Experiment-1 with nonnegligible
probability, then A′ can break the vc-verifiability of based SK-VC. That is,

Pr[Experiment-1 = 1] = Pr
[
A′ succeeds

] ≤ negli(κ). �

Theorem 3 If the based SK-VC scheme is vc-verifiable and CP-ABE scheme is fully
secure, then our construction for AC-VC satisfies access security.

Proof In a SK-VC scheme, only the clients with secret key skS generated by the
source can outsource computation of F to the server. In our construction, to outsource
an input, the client has to decrypt skS and then conduct the interaction with the server
just as in SK-VC. We assume that the based SK-VC is secure such that if and only if
a client learns the secret key skS , it can outsource the computation of F for any input
to the server. Thus, in fact the experiment ExpAccess

A [AC-VC,F,ω] is equivalent to

the following experiment Exp′Access
A [AC-VC,F,ω]:

Exp′Access
A [AC-VC,F,ω]:

(pkI , skI ) ← ISetup(κ)

PKF,ω ← Initialization(κ,pkI ,F,ω)

where PKF,ω = (pkS,pkω)

ω1,ω2, . . . ,ωq ←A
if ωi |= ω,

⊥← CertIssue(pkI , skI ,ωi)

else certωi
← CertIssue(pkI , skI ,ωi)

sk ←A
(σx, τx) ← VC.ProbGen(x, sk)
σy ← VC.Compute(σx,PKS)

y ← VC.Verify(τx, σy)

if y = F(x), output ‘1’, else ‘0’.

In the above experiment, if y = F(x), then sk = ABE.Decrypt(pkS, certω) = skS .
Let Exp′Access

A and ExpAccess
A denote the outputs of Exp′Access

A [AC-VC,F,ω] and
ExpAccess

A [AC-VC,F,ω] respectively. Due to the vc-verifiability of the based SK-VC,
we have

Pr
[
Exp′Access

A = 1
] = Pr

[
ExpAccess

A = 1
]
.

Obviously, due to the full security of the based CP-ABE scheme, the success prob-
ability in the experiment Exp′Access

A [AC-VC,F,ω] is negligible in κ . By Lemma 3,
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we have

Pr
[
Exp′Access

A = 1
] ≤ negli(κ). (4)

Therefore, we can conclude that from above

Pr
[
ExpAccess

A = 1
] ≤ negli(κ). �

Lemma 3 Pr[Exp′Access
A = 1] ≤ negli(κ) if the based CP-ABE is fully secure.

Proof The concrete proof is shown as follows. If there is an adversary A who can
win the experiment Exp′Access

A , then we can construct an algorithm B who can break
the full security of CP-ABE.

B is given the public key pkI of CP-ABE. Then B generates PKF,ω and skS by
running Initialization(κ,pkI ) for a function F and an attribute set ω, where PKF,ω =
(pkS,pkω), skS = DecryptABE(pkω, certω), and transfers (pkI ,PKF,ω) to A. When
A makes queries for some attribute Ai where Ai does not satisfy ω, B uses its own
oracle to answer A. B selects a random value t , and sends (t, sks) to the challenger.
After receiving the answer C, B sets C as the answer. Finally, if A’s output is skS ,
then B outputs ‘1’, if A’s output is not equal to sk, then B outputs ‘0’. Therefore,

Pr
[
AdvCP-ABE

B = 1
] ≥ Pr

[
Exp′Access

A = 1
]
. (5)

So if the based CP-ABE is fully secure, namely, Pr[AdvCP-ABE
B = 1] ≤ negli(κ),

then for any adversary A, we have

Pr
[
Exp′Access

A = 1
] ≤ negli(κ). �

Efficiency analysis To be a true verifiable computation with access control, AC-
VC must satisfy the efficiency requirements from Sect. 2; specifically, the runtime
required for Query and Verify must be much less than computing the function F

itself. For any input, since Query simply requires the computations in SK-VC and an
additional ABE.Decrypt, and all of the inputs to ABE.Decrypt are independent of F ,
the runtime of Query is independent of the function. Moreover, the runtime of Verify
is just the same as that of VC.Verify in the based SK-VC, it is independent of F as
well.

More concretely, the runtime of the client, the source and the server in AC-VC are
respectively as follows. Since the algorithm ABE.Decrypt is performed by the client
only once (in its first query to the server) and its cost is amortized over all the inputs
by the client, the total runtime of the client are that of a client in the based SK-VC
plus that required for ABE.Decrypt in an amortized sense. The runtime of the trusted
source is equal to that of a source in the based SK-VC plus the amortized runtime for
the algorithm ABE.Encrypt over all executions of the scheme by all clients. As for the
runtime of the server, it is the same as that of a server in the based SK-VC. In Table 1,
we illustrate the efficiency analysis of our construction for AC-VC.

Next, we will instantiate with a concrete SK-VC scheme for high degree polyno-
mial functions [5] and a concrete CP-ABE scheme [7] under the framework of our
AC-VC to illustrate the efficiency of the AC-VC.
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Table 1 Efficiency of the general AC-VC

Client Source Server

Runtime T SK-VC
client + TDec T SK-VC

source + TEnc T SK-VC
server

Notation for Table 1:

TEnc: runtime for ABE.Encrypt

T SK-VC
source : runtime of a source in SK-VC

T SK-VC
client : runtime of a client in SK-VC

TDec: runtime for ABE.Decrypt

T SK-VC
server : runtime of a server in SK-VC

Table 2 Efficiency of the concrete AC-VC comparing with the based SK-VC

Scheme Runtime of client Runtime of server Runtime of source

SK-VC [5] O(n · logd) O((d + 1)n) O((d + 1)n)

Concrete AC-VC O(n · logd + l) O((d + 1)n) O((d + 1)n + l)

The based SK-VC scheme can realize the outsourced computation of any d-degree
polynomial functions for n variables. In this scheme, the runtime of the client is O(n ·
logd), and the runtime of the server and the source are both asymptotically the same
as evaluating the polynomial F , namely, O((d + 1)n). Obviously, O(n · logd) �
O((d + 1)n). Assume that the access control policy complexity, namely, the number
of attributes included in the access control policy is l. Then the runtime required by
ABE.Encrypt and ABE.Decrypt are both O(l) which are linearly dependent on l in
[7]. Therefore, in the concrete AC-VC, the upper bound of the runtime of a client
(namely, the runtime in the first query for an input) is O(n · logd + l), and in the
later executions of the scheme, the runtime of the client is only O(n · logd). As
for the policy complexity, in practice, large complexity-policies may be rare such
as in the role based policies. So, for high degree polynomial functions, when l <

n · logd or they are comparative, we have O(n · logd+ l) � O((d+1)n). The detailed
efficiency of the concrete AC-VC is shown in Table 2. In addition, we expect further
improvements in the efficiency of new ABE schemes which will benefit the proposed
AC-VC.

6 Discussions

Multi-authority in AC-VC In our construction for AC-VC, we assume that all
clients’ attributes come from the same domain and they are managed by a single
authority (or issuer). However, in some real applications, the clients’ attributes may
be from different domains each of which is managed by a different authority. In or-
der to solve this problem, multiauthority CP-ABE has been studied [8, 9, 22, 24]. By
combining these multiauthority CP-ABE schemes with SK-VC under our framework
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for AC-VC, the source can enforce access policies based on attributes in different
domains. For example, the source can define the access policy as “Corporation A.
Engineer AND University B. Lecturer” where the attribute “Engineer” is issued by
Corporation A and the attribute “Lecturer” is issued by University B.

Attribute revocation in AC-VC. In our construction for AC-VC, when the function
F or the access policy ω changes, naturally, the source needs to re-generate a public
key PKF,ω associated with the new function and access policy.

In our construction, if the attribute set of a client satisfies the access policy ω, then
the client will obtain the secret key skS from PKF,ω to outsource any input x to the
server for F(x). In real applications, the clients’ attributes may change dynamically,
for example, a client may be entitled some new attributes or revoked some attributes.
In the case that a client is entitled some new attributes, the client will obtain new
decryption keys issued by the authorities and, therefore, obtain the secret key skS for
some function F and ω if the client’s attributes satisfy ω. In the case that a client is re-
voked some attributes, this client should not be able to decrypt any new secret key skS

which requires the revoked attributes to decrypt. Concretely, assume that a new skS

is associated with a function F ′ and ω′ where ω′ requires the revoked attributes, then
the client cannot decrypt skS . As for the secret key skS that he has decrypted before
he is revoked, it seems that there is no effective method to prevent him continuing
using it during the later outsourcing any more. In respect to the attribute revocation
problem in CP-ABE, many methods have been presented [16, 18, 29, 35] to solve it.
Since our construction for AC-VC is simply based on CP-ABE and SK-VC, we can
apply these schemes [16, 18, 29, 35] to our AC-VC to solve the attribute revocation
problem.

7 Conclusion

In this paper, we present the verifiable computation with access control. A construc-
tion is given by combining any verifiable computation in the secret-key setting and
ciphertext-policy attribute-based encryption. In this construction, the source only
needs to perform an initialization to enforce the access control permissions on the
cloud application so that only the clients who satisfy the permissions can access the
application. This scheme satisfies the correctness, verifiability, and access security
that we defined. In addition, our scheme is efficient and the time costs of the partici-
pants depend on that required by the based CP-ABE and SK-VC.
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