
Journal of Computer Security 21 (2013) 1–39 1
DOI 10.3233/JCS-2012-0454
IOS Press

Behavior-based access control for distributed healthcare
systems

Mohammad H. Yarmand a, Kamran Sartipi b and Douglas G. Down a,∗
a Department of Computing and Software, McMaster University, Hamilton, ON, Canada
E-mails: {yarmanmh, downd}@mcmaster.ca
b Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa,
ON, Canada
E-mail: kamran.sartipi@uoit.ca

Sensitivity of clinical data and strict rules regarding data sharing have caused privacy and security to be
critical requirements for using patient profiles in distributed healthcare systems. The amalgamation of new
information technology with traditional healthcare workflows for sharing patient profiles has made the
whole system vulnerable to privacy and security breaches. Standardization organizations are developing
specifications to satisfy the required privacy and security requirements. In this paper we present a novel
access control model compliant with healthcare standards based on a framework designed for data and
service interoperability in the healthcare domain. The proposed model for customizable access control
captures the dynamic behavior of the user and determines access rights accordingly.

The model is generic and flexible in the sense that an access control engine dynamically receives se-
curity effective parameters from the subject user, and identifies the privilege level in accessing data using
different specialized components within the engine. Standard data representation formats and ontologies
are used to make the model compatible with different healthcare systems. The access control engine em-
ploys an approach to follow the user’s behavior and navigates among engine components to provide the
user’s privilege to access a resource. A simulation environment is implemented to evaluate and test the
proposed model.

Keywords: Access control, healthcare standards, user behavior, privacy specification, interoperability

1. Introduction

The cost of healthcare in developed countries is rising rapidly due to the popula-
tion’s expectation for a higher quality of health service including: broad accessibility,
customizability, cost efficiency, and most importantly reliability and security. Also,
integrating computer applications within the healthcare domain has caused health
professionals to embrace quickly growing distributed information and communica-
tion technologies. The new proposals for national and international healthcare stan-
dardization meet most of these requirements.

*Corresponding author: Douglas G. Down, Department of Computing and Software, McMaster
University, Hamilton, ON, Canada L8S 4K1. E-mail: downd@mcmaster.ca.

0926-227X/13/$27.50 © 2013 – IOS Press and the authors. All rights reserved

2 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

While solving the problem of interoperability among heterogeneous systems,
these proposals introduce many security and privacy issues, as natural consequences
of providing customizable services. Regarding confidentiality, integrity and avail-
ability requirements of patient data, a major concern is to avoid disclosure of these
data to unqualified users. Access by unauthorized users to patient data may result in
misdiagnosis, delays in treatment, or mistreatment. Other consequences may include
financial problems such as denial of insurance coverage and loss of job opportunities
[36].

Authentication and authorization methods at inter-/intra-organizational levels
should be employed to provide the required security. In this context, several
methods have been proposed namely role-based [20,45,54,63], team-based [21],
attribute-based [16], content-based [22], scenario-based [43,48], situation-aware
[61], context-aware [1,4,33,63], and context sensitive [34] access control methods.
Only a few consider the problem in distributed systems [4,33,45,61]. Moreover, most
access control methods deal only with static systems. However, dynamism and con-
figurability are two requirements of models for distributed systems [33,45,61,62].
There are a small number of approaches that propose models adherent to healthcare
standards [6,35,42].

In very large scale distributed systems, the integrity, flexibility, generality, and ro-
bustness of the model becomes critical. Due to the high complexity of these systems,
any errors in the operation of the access control model can be difficult to detect. In
order to apply a generic model to healthcare systems, the corresponding specific re-
quirements should be considered. They define the architecture, clinical data model,
and transportation protocol for integration.

Given the above issues, the specific problem which is targeted in this paper is:
Propose an access control model for distributed healthcare systems that is inter-
operable with various organizational data formats and security rules, so that the
specific healthcare requirements and standards are satisfied.

A novel access control model is designed which is dynamic, system independent,
and configurable. The model uses interactions and data flows between different types
of system entities (such as users, roles, and resources) to adjust access control de-
cisions. These interactions are recorded and analyzed to extract the behavior of the
entities. Healthcare standards obligations about security, architectural specifications,
data modeling, and system integration are carefully studied to make the access con-
trol model compatible with these standards. Access control decisions are based on
constraints defined for roles, teams, contexts, and delegation rules.

The contributions of this paper are as follows. (1) An access control model is
provided that satisfies a comprehensive set of healthcare requirements and conforms
to the healthcare standards dealing with access control. (2) The model is formally
defined. In particular the concept of user behavior is introduced to configure the
access control model based on user requirements. (3) To enhance interoperability,
a common data model is proposed. (4) Implementation issues are discussed. The
model is tested with simulated data. It should be highlighted that the contributions

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 3

listed here are not unrelated. In particular the user behavior concept is designed in
a way that refines healthcare standards requirements. A preliminary version of this
work can be found in [60].

2. Healthcare standards

The healthcare industry has many organizations developing specifications and
standards to support information exchange and system integration. These specifica-
tions are used to provide interoperability for a wide spectrum of healthcare applica-
tions. Here the security (particularly access control) specifications of these standards
are outlined.

HL7. The Health Level 7 Security Technical Committee (HL7 STC) suggests using
scenario driven access control based on dividing scenarios into work profiles
and tasks. HL7 STC has released a list of healthcare scenarios that encompass
security issues [28], and has introduced a hierarchy of healthcare roles and
their access privileges [30]. These specifications should be used together to
determine the access rights of a role for completing an HL7 scenario [29].

Canada Health Infoway. The Privacy and Security Architecture (PSA) group has
not yet suggested an architecture to serve security requirements but it has
offered two useful documents: EHR Privacy and Security Requirements [9]
which discusses general security requirements in the healthcare domain and
refers to data usage restrictions under privacy rules; and EHRi Privacy and Se-
curity Conceptual Architecture [10] which expresses the specifications of the
communication and common services. PSA suggests the use of role and work
group based and discretionary access control.

HIPAA. The Health Insurance Portability and Accountability Act (HIPAA) [24]
provides a list of security and privacy suggestions and legal requirements. The
access control requirements suggested by HIPAA [25] contain unique user
identification, emergency access procedure, automatic log-off, and encryption
and decryption.

IHE. Integrating the Healthcare Enterprise (IHE) [37] is an initiative designed to
promote standard-based methods of data integration in healthcare. The tech-
nical security specification of IHE [39] includes authorization (role manage-
ment, user/role certificate management, assertion rights, delegation rights, va-
lidity time), node authentication, information access, information integrity
(document update and maintenance policy, document digital signature policy,
folder policy), ethics, audit trail, and risk analysis.

Requirements. We have extracted a number of healthcare specific requirements
from the standardization documents. In the following we list and briefly ex-
plain them.

4 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

• “emergency access”: in emergency or life-threatening conditions, bypass
access must be available so that security restrictions do not prevent offer-
ing essential healthcare services. In an “emergency access” case, the user
requests a permission he does not already have [8,26].

• “consent”: is when the patient delegates part of his authorities or limits ac-
cess. Consent can be implicit (e.g., when a patient visits a physician) or
explicit (e.g., when a patient allows others to make decisions on his behalf)
[9,38].

• “workgroup access”: supports assigning the patient to a care group such as
geographical, organizational, or circle-of-care work groups [9].

• “audit trail/monitoring”: all access requests together with supporting rea-
sons should be logged and the record owner should be notified. Monitoring
should be developed jointly with audit logging [9,12,38].

• “context awareness”: permissions of care givers are altered based on the
context they are working in, represented as context constraints. Contextual
properties include separation of duties, time-dependency, mutual exclusiv-
ity, cardinality, and location [26,31,38].

3. Access control model

In this section we define the basic concepts that are employed in the proposed
model. In Section 3.1 we explain why a new access control approach is required.
In Section 3.2, the user behavior concept, employed to visualize user activities, is
informally defined. Different types of behaviors and their usage in making access
control decisions are described. In Section 3.3, we formally define the basic concepts
of the security domain and also the user behavior. Examples from the healthcare
domain are used to further explain the formal definitions.

3.1. Motivating our approach

As will be discussed in Section 7, several access control models have been pro-
posed for the healthcare domain. However very few of them consider the standards
requirements discussed in Section 2. Therefore we intend to propose an access con-
trol method to target these requirements. More specifically this concept is used to
(i) express access history related constraints (identified as a requirement in [19,23])
(ii) formalize audit trails; (iii) monitor access related activities (continuously logging
system, regularly reviewing logs, reporting every access to a patient record, report-
ing security incidents are part of requirements described in [9,12,38]); (iv) detect
patterns of misuse (stated as requirement 46 in [9]).

Sample rules that can be expressed with the new concept (in Section 3.2) are:

• A user ui in a day, must take roles in the following order: rk, rl, rh.

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 5

• A user ui can not access a resource res1 more than n1 times between times t1
and t2.

• If a user ui is in location loce, he can only join teams tmx and tmy .
• A user ui cannot make access requests from locations loce, locf in less than tm

time units.

Another aspect of an access control model is its administration. To the best of
our knowledge, there has been little effort toward improving access control models
based on dynamic access requirements and characteristics of the target environment.
In order to extract these requirements, it is necessary to visualize the activities of
users of the system. The usage pattern can be analyzed to refine access privileges
and provide suggestions for system configuration (in the form of filtering attributes
domains, explained in Section 4.2.6). For example, by monitoring denied access re-
quests, it might be determined that the governing policy rule should be modified to
allow a particular access.

3.2. Action and behavior

In order to capture the behavior of a user, we need to record a set of run time
contexts, whenever the user interacts with the system. We call each interaction an
action and represent it by a tuple, namely an action tuple. An action is any interaction
which either requests a resource or changes the level of access privilege. The action
tuple is composed of several attributes, as follows:

Action = <User, Role, User Location, Server Location, Time of Day, Team, Dele-
gation, Requested Profile Status, Service Invocation Type, Requested Data Type,
Login/Logout Event, Emergency>

where User is the user identification; Role is the user security role; User Location
is the current location of the user; Server Location is where the requested resource
is located; Team refers to the team to which the user currently belongs; Delegation
explains the access rights given or taken by the delegation rules or consents; Re-
quested Profile Status refers to attributes of the Resource Context class (explained
in Section 4.1), for the requested profile; Requested Data Type refers to the clinical
data type that the user has requested; Service Invocation Type is the type of service
requested; Login/Logout Event records login and logout events; Emergency declares
an emergency situation. The value that each of these attributes takes is called the
attribute value.

A Behavior is defined as a sequence of actions that can be manifested in the fol-
lowing forms: A record of a sequence of actions performed during a specified time
interval, e.g., during the last five hours, a day, a month, etc. Each observation might
include a portion of the attributes of the action tuple. For example, in one day dif-
ferent tasks performed by a person are recorded as action tuples and their collective
effect is considered as behavior.

6 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

Whenever an attribute value of the action tuple of a user changes, a new tuple is
recorded. A new tuple may be recorded even if the user has not requested access to a
resource. For example when a user joins a team, his privileges change and therefore
a new tuple should be recorded even if the user does not request access to a resource.

3.2.1. Behavior based access control
The concept of user behavior can be used in different ways to make access control

decisions. Here we introduce three different approaches.
Single action represents a single action tuple. Given a single action tuple we

choose one of the action attributes as a key attribute and use it to constrain the do-
mains of other attributes. If Role is the key attribute, the domain of other attributes
would be limited based on Role. In order to determine how attribute domains are
filtered according to the Role value, general clinical guidelines or hospital policies
defined for that specific role can be used. If User is the key attribute, the domains of
other attributes would be limited based on that specific user. This makes our model
dynamic and flexible in the sense that attribute domains are loaded for the specific
user. In order to determine how the domains are filtered according to a specific user,
the history of action tuples recorded for that user is analyzed to extract associated
domain values.

Daily behavior consists of a sequence of action tuples recorded in one day for
a given user. Some access control processes require more than a single tuple to be
able to make an access control decision. Examples are: log-in/out pattern; location
proximity of consecutive requests; requested profile category and instance diversity;
access request frequency; sequence of service invocation; policy rules explicitly de-
fined over time such as access restrictions of a user on particular days.

Having defined the user behavior, we define expected behavior as follows: the
behavior that users are expected to follow which are entered as rules by the system
security administrator. The user behavior concept is sufficiently rich to allow the
enforcement of different kinds of rules to express the expected behavior. Some of
the possible rules are:

• Ordering: requiring that values occur in a certain sequence; limiting the number
of values appearing between specific items of a sequence.

• Timing: limiting the occurrence frequency of a certain value; asserting time in-
terval constraints between occurrences of certain values in a sequence; defining
absolute time constraints such as enforcing part of a sequence to occur before a
certain time.

• Association: enforcing that the occurrence of val1 for att1 should result in val2
for att2 (e.g. limiting value scope based on location).

• Combination of the above items: examples are statements such as detecting a
particular order for att1 should result in val2 for att2; occurrence of a particular
order for att1 before a particular time should result in a particular sequence for
att2.

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 7

A third concept, based on user behavior, called common behavior is defined as:
the behavior of a user analyzed and extracted from the user behavior history. The
system is capable of analyzing behavior histories to extract the different behavior
criteria defined in the expected behavior. One of the approaches of this analysis is
extracting the sequence of attribute values that an attribute takes most of the time, in
the action tuples of a user (this approach is specified in Algorithm 2 of Section 4).
Ideally, when users act according to their expected behaviors, the distance between
common and expected behaviors should be minimal. Also common behavior can be
used to adjust expected behavior rules, in cases where the distance is significant. In
order to come up with the expected behaviors the administrator can use organization
specific guidelines, based on the analysis of organization workflows. For example in
the nursing domain, the Canadian Nurses Association (CNA) [13] provides guide-
lines for Canadian nurses. They released a document called Advanced Nursing Prac-
tice – A National Framework [15] which describes competencies and regulations for
nurses.

The last topic we discuss in this subsection is handling access requests in emer-
gency situations. “Emergency access” offers broader privileges to care givers by ex-
tending their existing privileges to access protected health information when timely
access is needed to prevent harm or risk to life. Although no standard procedure ex-
ists on how to handle these requests, suggestions have been made by healthcare stan-
dards initiatives (see for example [8,26]). During these situations, emphasis should
be placed on providing needed information instead of trying to enforce very tight
security constraints.

When an emergency access request is made (assuming the user’s current privilege
does not include the requested permission), the access is granted unless the patient’s
consent directives state otherwise. The user is warned about being closely monitored
and that he is subject to legal penalties in case he is committing an access violation.
At the same time a notification is sent to the security officer to closely monitor the
user’s activities. In this sense emergency access works closely with the audit trail.

3.3. Formal definitions

In this section we first introduce the high level specification of our model using
an algorithm and corresponding primitive types, relations, and examples from the
healthcare domain.

Algorithm 1 accepts an access request as input and employs the relations between
sessions, roles, teams, and delegations together with different constraints on actions
and behaviors to find a matching access control policy to make the access control
decision. The consistency among these relations and constraints is ensured by the
order in which the algorithm treats them. For example if consent directives deny an
access while an emergency situation is reported, consent directives are followed and
the access is denied (see Lines 1–9).

8 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

Algorithm 1. Access Control Mechanism (<ui, pg , b(ui), a> ∈ AR)
1: if (∃ <uj , pg ,ui, t, false> ∈ D. current time � t) then
2: Deny Access
3: goto exit
4: end if
5: if (a.e is true) then
6: Grant Access
7: Notify Security Administrator
8: goto exit
9: end if

10: ses := SessionUser−1(ui)
11: RArray := SessionRole(ses) ∪ SessionTeamRole(ses)
12: for (r ∈ RArray) do
13: PArray := PArray ∪ {p |<p, r>∈ PR}
14: end for
15: if pg ∈ PArray then
16: if ((∃ acp1 = <ui, pf , c, true> ∈ ACP. pg ⊆ pf ∧

c is true by checking AC ∧BC ∧ LC) ∧
(� acp2 = <ui, p

′
f , c′, false> ∈ ACP. pg ⊆ p′f ∧ c′ is true ∧

(acp2, acp1) ∈ PP)) then
17: Grant Access
18: goto exit
19: end if
20: end if
21: if (∃ <uj , pg ,ui, t, true> ∈ D. current time � t

∧ ∃ <uj , pg , c′> ∈ ACP. c′ is true) then
22: Grant Access
23: else
24: Deny Access
25: end if
26: exit: Update b(ui) and Record Access Decision

Table 1

Variables of Algorithm 1

Variables Explanation Variables Explanation

ui,uj User (∈ U) RArray Active (team) roles in session ses

pg , pf , p′g , p′f Requested permission (∈ P) a.e. Emergency situation declaration (∈ E)

b(ui) Behavior of user ui (∈ B) PArray Array of active permissions gained

a Action tuple (∈ A) from applying PR to active roles

ses Session (∈ S) c, c′ Conjunction of constraints

Table 1 defines the variables used in Algorithm 1. Lines 1–4 of the algorithm
state that if pg includes accessing a resource which has been blocked for user ui by
the resource’s owner, the access request is denied. In the healthcare setting, patient
consent directives can be enforced by these lines. Lines 5–9 address an emergency
access. In lines 10–20 first a session ses dedicated to user ui is retrieved and the

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 9

Table 2

List of primitive types and relations

Notation Name Notation Name

A The action tuple relation P The Permission relation

AC Action constraint expression PP Policy priority

ACP Access control policy relation PR Permission-Role assignment

AP The access pattern of a resource R The set of roles

AR Access request relation RC Resource context relation

B A mapping of user-action sequence Res The set of resources

BC Behavior constraint expression RT Role-Team assignment

CntCon Counting constraint S The set of sessions

ComBeh Common behavior of a user SessionRole A mapping of session-roles

Constraint AC ∧ BC ∧ LC SessionTeamRole A mapping of session-team-roles

D The set of delegations SessionUser A mapping of session-user

DaiBeh Daily behavior of a user T Time instances

DT The set of a domain data types Tm The set of teams

L The set of locations U The set of users

LC Logical constraint expression UR User-Role assignment

OrdCon Ordering constraint URT User-Role-Team assignment

active roles are assigned to the RArray variable. Then PermissionRoleAssignment is
applied on RArray to load the active permissions in the PArray variable. Afterwards
if the requested permission pg belongs to PArray, the list of AccessControlPolicies
is browsed to check if an access control policy exists that satisfies the access request
and the action, behavior, and logical constraints. If such an access control policy
is found, access is granted if no higher priority access control policy revokes the
requested privilege. In lines 21–25 we check if permission pg is given to user ui via
a delegation relation. Finally, line 26 updates b(ui) and records the access decision
made.

We now discuss the details of Algorithm 1. A number of primitive types are
introduced to define the collection of sets required to provide a formal definition
of the model. These primitive types are as follows: users U, roles R, resources
Res, sessions S, teams Tm, login/logouts Log, data types DT, emergency situations
E = {true, false}, and purposes of use Pr.

We now use these primitive types to express entities and relations for the proposed
access control model. These relations are finally employed to state an access request,
an access control policy, and the access control method. Table 2 provides a summary
of the notations used.

Session

SessionUser: S �→ U , is a function mapping each session to a single user. The user
is constant for a session lifetime.

10 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

SessionRole: S �→ R, is a function mapping each session to an active role. The set
of active permissions for a session can be inferred by using the composition of the
UR and PR relations.

SessionTeamRole: S �→ RT , is a function mapping each session to an active team-
role pair.

The above relations can be defined in such a way as to allow more than a single role
per session. However this would violate healthcare domain requirements and can also
cause policy conflict [38]. Hierarchal design for roles can be used to overcome this
restriction (of one role per session). Here we assume the user can have a dedicated
role and a role from its participating team.

Assignments

Permission: P ⊆ OP × Res × Pr, where OP defines the operations that can be per-
formed on resources (e.g. {read, append, delete, update}) for the specified purpose.
For example P = {p1, p2} where p1 = 〈update, JaneAccount,AccountUpdate〉,
p2 = 〈update, JaneAccount, NewDietOrder〉.

Adding ‘purpose of use’ to the definition of the Permission relation has a num-
ber of justifications in the healthcare domain [29,32,38]. Permissions are assigned
to certain scenarios that describe use purpose. Further patient consent might spec-
ify different privileges for different access purposes of a given requester. In case of
inter-organization access control, one way to resolve policy conflicts is to map use
purposes among organizations.

UserRoleAssignment: UR ⊆ U × R, defines the roles that a user can have. For
example UR = {〈Jane, user〉, 〈Jane, nurse〉, 〈Nero, patient〉, 〈Nancy, patient〉}.

PermissionRoleAssignment: PR ⊆ P ×R, defines the permissions a role can have.
For example PR = {〈p1, nurse〉, 〈p2, user〉}.

RoleTeamAssignment: RT ⊆ R × Tm, defines the roles that can participate in
a team. For example RT = {rt1} where rt1 = 〈nurse, diabeticNursingTeam〉. The
workgroup requirement stated earlier can be formalized with this relation.

UserRoleTeamAssignment: URT ⊆ U×RT , defines the set of users that participate
in a team and their roles in the team. For example URT = {〈Jane, rt1〉}.

Delegation: D ⊆ U × P × U × T × GR, where GR has a boolean value, defines a
function that a delegator uses to grant/revoke a permission to a delegatee for a spec-
ified time period. For example Jane allows Nero to update Jane’s profile in the next
hour D = {〈Jane, p1, Nero, 2010.12.16-02:51, true〉} given the delegation happens

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 11

at 2010.12.16-01:51. Patient consent directives can be expressed with this relation.
To grant/revoke an access (e.g. to a family member or a physician) the value of GR
is set to true/false. A permanent/temporary delegation sets the value of T to infin-
ity/sometime in the future. A specific application of this relation in the healthcare
domain is when a care giver asks a colleague for a second opinion on a medical case
[63].

Action and behavior

Action: A ⊆ U × R × L × T × Tm × D × RC × Res × OP × DT × Log × E,
is the action tuple defined in Section 3.2. For example a1 = 〈Jane, nurse, l1, t1,
diabeticNursingTeam, nil, rc1, NancyProfile, append, {diabeticInfo}, nil, false〉.

Behavior: B :U �→ 2A, is a function mapping a user to a sequence of actions that
composes the behavior of the given user u. For example B(Jane) = [a1, a2, a3].

DailyBehavior: DaiBeh :U × ATT �→ 2attval , is a function returning the sequence
of attribute values (attval) of the attribute att ∈ ATT in the behavior records
of user u, where ATT is the set of action tuple attributes. This function de-
scribes the daily behavior (see Section 3.2). For example DaiBeh(Jane, role) =
{user, nurse, nurse, researcher}.

CommonBehavior: ComBeh :U × ATT �→ 2attval , is a function returning the se-
quence of attribute values (attval) of the attribute att ∈ ATT by analyzing the behav-
ior records of user u. This function describes the common behavior (see Section 3.2).

Access request and policy

AccessControlPolicy: ACP ⊆ Subject × P × Constraint × GR, where Subject is a
user or a role. ACP is a relation which defines the constraint that should be satisfied
so that a permission is granted/revoked to a subject. For example acp1 = 〈Jane, p1,
constraint1, true〉.

AccessRequest: AR ⊆ U × reqPerm × B(u) × A, where reqPerm is the requested
permission. For example ar1 = 〈Jane, 〈read, NeroProfile〉, B(Jane), a1〉.

PolicyPriority: PP ⊆ ACP × ACP, is a relation defining priority among access
control policies. (acp1, acp2) ∈ PP assuming acp1 · subject = acp2 · subject ∧ acp1 ·
GR 	= acp2 · GR, acp1 · constraint and acp2 · constraint are satisfiable at the same
time, and acp1 · p ∪ acp2 · p 	= ∅, means acp1 has higher priority than acp2.

Constraints

ActionCondition := λ att att′ · att op att′ (λ is lambda notation) where att refers
to the values of an attribute of the action tuple, op is a logical operator in the set

12 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

{>,�,<,�, 	=,=}, and att′ is a value of the same type as att. The Boolean value
resulted from applying operation op to values att and att′ is returned as the output.

ActionConstraint: AC, is a predicate consisting of disjunction and/or conjunction of
ActionCondition expressions. For example ac1 = (team = diabeticNursingTeam) ∧
(data type 	= confidential). Simple context related constraints can be stated here.
BehaviorConstraint: BC, is defined as the result of checking different kinds of ex-
pected behavior (i.e. OrdCon, AssCon, TimCon, ComCon and ConCon described in
the following). If a given DaiBeh satisfies all of the constraints defined by these rules,
BC is true; otherwise BC is false. We formally define OrdCon and CntCon and move
the rest to Appendix A.

OrderConstraint: OrdCon :U × ATT �→ 2attval × Mandatory × MinLength,
is a function returning the sequence of attribute values (attval) (of a mini-
mum length N and mandatory/optional occurrence of attribute values is the
sequence based on Mandatory) of the attribute att ∈ ATT in the behavior
records of user u, where Mandatory = {true, false} and N ∈ N. For example
OrdCon(Jane, requested profile) = [〈JaneAccount, true, 3〉, 〈SaraProfile, true, 3〉,
〈NeroProfile, false, 3〉, 〈NancyProfile, true, 3〉].

CountConstraint: CntCon :U × ATT �→ N × T × T , is a function expressing the
valid number of times n ∈ N that a user u can access att ∈ ATT in the time interval
[t1, t2] where t1, t2 ∈ T . This relation targets counting constraints in the healthcare
domain (see [19,23,57] for examples).

LogicalConstraint: LC is a logical expression that can not be expressed with ei-
ther AC or BC. Constraints that use resource contexts are defined here. For example
lc1 = isMemberOfDiabetesDepartment.

Constraint := LC ∧AC ∧BC. For example constraint1 = lc1 ∧ ac1 ∧ bc1.

Context

Location: L, is a set of locations. For example l1 = diabeticNursingStation.

Time: T , represents time instances in the following format year.month.day-
hour:minute). For example t1 = 2010.12.25-09:05.

AccessPattern: AP ⊆ 2L×T , is a subset of location-time pairs (which is employed
to record the location and time stamp of the users who access a resource). For exam-
ple ap1 = 〈l1, t1〉.

ResourceContext: RC ⊆ Res×AP×2U ×DT , is a collection of attributes and con-
texts recorded for resources. For example rc1 = 〈JaneAccount, ap1, Jane, reminder〉.

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 13

4. Access control model architecture

In this section an architecture is introduced that supports the features of the pro-
posed access control model. A common data model is created to provide interoper-
ability for collecting the information that the architecture requires. The architecture
specifies how to apply the definitions offered in Section 3.

4.1. Security effective parameters

In order to keep the model as general as possible, different security parameters
should be both identified and captured in different environments. They are used as
parameters for the privacy and security rules. These parameters are modeled in a
class diagram shown in Fig. 1.

In order to establish interoperability and reusability, the relations between our
class diagram and standard clinical data are defined. The interoperation between pol-
icy rules of two legacy systems can be facilitated through mapping the elements of
their policy model to the model presented in Fig. 1. Our class diagram is connected
to the HL7 Reference Information Model (RIM), an object model that is a represen-
tation of clinical data. A few classes of HL7 RIM have been used. The service type
class (top right) represents a list of services that a user invokes; this list is mapped
to Infoway storyboards and transactions of standard healthcare scenarios [11]. The
data type class (top right) expresses the type of clinical data and is specified by the
hierarchial object definitions from healthcare standards [32] (currently 100 types).

Fig. 1. Class diagram of the security effective parameters. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/JCS-2012-0454.)

14 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

Moreover, resources are structured according to the HL7 Clinical Document Archi-
tecture (CDA) [27] to increase access granularity (e.g. observations, procedures, di-
agnostic images, financial transactions). The access right type class defines different
operations specified by [32] (currently 26 types).

There are four categories of classes: (i) HL7 classes; (ii) context hierarchy classes;
(iii) core security classes, and (iv) enumeration classes. We extend the policy clas-
sification offered by the Ponder project [17] to represent different policies. The re-
mainder of this section explains the major classes.

The policy class regulates the conditions a user should meet, in order to access
a resource. The policies are divided into four different categories. ‘Authorization’
policies define the actions that different roles are allowed to perform on resources.
‘Delegation’ policies determine temporal states under which users can delegate their
access rights to other users. ‘Refrain’ policies revoke permission even if permission
is given by other policies and are categorized as role refrain and resource refrain
based on the target of their restriction. ‘Obligation’ policies specify the action (such
as administrative actions) that must be performed when certain events occur.

Context Aware Systems (CAS) offer a number of benefits such as authorizing
users based on their context, adjusting security levels automatically, and sharing ser-
vices [3,40,41,49]. Healthcare security standards use contexts to express different
constraints [26,31,38]. Context aware models define logical constraints over context
and restrict the set of possible context configurations. These constraints are placed in
the policy class to maintain model integrity. A major portion of the class diagram has
been allocated to represent security related contexts derived from the context class.
In the formal definitions in Section 3.3, these contexts are represented as action tu-
ple attributes (location and time are conventionally shown as context in the formal
definitions).

The user behavior class uses the context class and audit trails for resources and
users to extract information to model the behavior of a user. The resource context
class considers contexts over resources such as the access pattern made to a resource,
the type of data the resource contains, and users who have previously accessed the
resource.

4.2. Proposed architecture

An architecture is designed to use the concepts introduced so far and deliver the
desired access control functionality. The architecture is shown in Fig. 2. The figure
is divided into different layers that provide a high level categorization of different
blocks (each box is called a block) of the model. The blocks of a layer perform a
common major task.

An administrator configures the system dynamically by entering data through the
input layer. This task tailors the generic model to a specific environment and pro-
vides interoperability and configurability. The model receives an access request and
captures the context of the requesting user, checks for different policy rules, applies

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 15

Fig. 2. The architecture of the proposed access control model. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/JCS-2012-0454.)

the results of behavior based constraints and returns the final access decision. In this
section all blocks of the model are introduced and their responsibilities and specifi-
cations are explained.

4.2.1. Input
The inputs are the same as the security effective parameters explained in Sec-

tion 4.1.

4.2.2. Representation
In order to make the system interoperable and usable in different environments, we

have to map input parameters (from the input layer) to a common standard format.
In this way when a workflow spans multiple organizations with different security
architectures, no change to internal security architectures is required. In the health-
care domain, HL7 RIM provides a hierarchy for clinical and security roles which
we adopt as our standard ontology [29,30]. The Policy Languages box supports a
common policy language (Rei) to facilitate interconnection.

4.2.3. Repository
The repository resides between the input and decision making engine layers as

an interface for the engine. The repository is used to maintain model generality by
making the engine independent of any particular data format. The input data are

16 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

stored in the repository. The dynamic attributes of system entities such as user and
resource contexts are also stored here.

4.2.4. Decision making engine
This layer uses access requests and the data gathered from other layers to make the

access control decision. We now give the detailed specification of the major blocks
of the decision making engine layer.

A policy specification language is chosen that is capable of expressing the desired
policies. Access requests are entered as inputs to this block and a rule based pro-
cess is followed to yield the final access control decision. In Section 6.2 the policy
specification language and its supporting packages are introduced.

Access control manager. This block is responsible for determining the access de-
cision based on the results gained from the other blocks of this layer. It first sends
requests to the action check block and if valid sends them to the core check block to
make decisions. This block would call the behavior check block if behavior related
constraints are defined. If all of the defined constraints are satisfied, access is granted;
otherwise access is denied. This block interacts with the Administration layer for
monitoring and improvement purposes. While the tasks for making an access con-
trol decision are performed online (i.e. per each access request), the administrative
tasks are performed offline and through the user behavior repository.

Action check. The single action part of the behavior based access control (defined
in Sections 3.2 and 3.3) is specified here. This block accepts an action tuple as input
and checks if the attribute values of the action tuple conform to the specified rules.

Core check. This block implements Algorithm 1. All of the policies defined in this
algorithm such as constraining roles, resources, times, delegations, and teams are
enforced in this block.

Behavior check. This block checks behavior related constraints by retrieving the
daily behavior from the behavior manager block and comparing it with the expected
behavior (defined in Section 3.3). An instance of expressing these rules using a pol-
icy specification language is shown in Appendix B.

Audit trail. Many security breaches are the results of individuals with legitimate
access rights who view patient information that they should not be viewing as part
of their duty. A suitable way to detect such breaches is to let the patient review the
audit trails of their chart. The audit trail block establishes a historical record of user
or system actions. Healthcare standards have specified the audit trail from different
aspects [9,12,39]. They have suggested a list of auditable events including: node-
authentication-failure, order-record-event, patient-care-assignment, patient-record-
event, query-information, consent-directive-override, and user-authentication. They
also express the minimum information to be logged including: user ID and role, user
organization, patient ID, performed function, time stamp, supporting reason. This
information can be extracted from the action tuple. In other words, it is possible
to record action tuples as audit logs. This block is also responsible for making the
records available to appropriate personnel.

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 17

4.2.5. Behavior construction
This layer is responsible for constructing basic data for the decision making engine

layer, i.e. the action and behavior concepts. Different blocks are required to capture
and represent these concepts. Action sensor senses any changes in the attributes of
the action tuple. Action extractor composes the action tuple based on the data sensed
by action sensor.

Action authenticator authenticates the context itself. Different methods such as
statistical analysis, distributed reputation, and confidence value, are used for authen-
ticating contexts [59]. Attribute values are checked for completeness and correctness.
Erroneous values for critical attributes (such as user, role, team, requested profile and
requested service) are rejected in order to maintain data consistency.

Behavior manager composes the behavior based on the input action tuple and the
past history of user behavior and updates the user behavior repository. The action
reasoning block uses context inference rules, input through the input layer, to infer
the contexts that cannot be directly sensed. These data are passed to the core check
block to apply relevant rules.

4.2.6. Administration
In order to improve the constraints defined by a security administrator, the system

provides the capability of analyzing access related data to extract common behaviors
of users (representing the current behaviors of users). The administrator can measure
the distance between common and expected behaviors that he has defined. Ideally, if
users tend to respect the access constraints defined for them, the gap between com-
mon and expected behaviors should be small. The administrator can use this distance
as a measure to adjust the expected behavior, if necessary (i.e. adjusting the rules so
that the users experience fewer unintended access denials while they respect their
access constraints). In order to extract a common behavior, the following problem
should be solved: given a list of actions for a user, find the common sequences for
each attribute (if such sequences exist) to construct the user behavior.

Algorithm 2 is one possible solution to the stated problem. Giving the main ideas
required, it can be used as a starting point for further refinement. This algorithm has
two functionalities: finding the common attribute values and determining the order
of a sequence of attribute values. Algorithm 2 can be run for sequences with different
lengths and for different sets of attributes.

Figure 3 shows an example of applying Algorithm 2. Given values for an action
attribute for five days, Algorithm 2 creates lists of activities for each day and calcu-
lates the cumulative list. Then assuming N = 5, the first five values are identified.
Finally, behavior is represented, as a set of combinations of action attributes with
different sizes (length) and occurrence frequencies (occurrenceCount).

A second functionality proposed here (not specified completely) is to configure
the action tuple based on the environment. The user behavior repository is reviewed
to determine if certain attributes of the action tuple are not used. If so, the action
tuple can be condensed. For example in an environment where no security teams

18 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

Algorithm 2. Extract behavior sequence for an attribute value from a set of action
tuples
Input: (i) List of user action records; (ii) threshold
Output: behavior, as a set of combinations of action attributes with different sizes and occurrence fre-
quencies greater than threshold

1: List the values that appear in user action records for a given attribute
2: for each day do
3: Initialize an instance of the list (of step 1) to 0
4: Mark an attribute value as 1 if the user has used it in this day
5: end for
6: CumulativeList := Sum up the list of different days (used in steps 2–5)
7: TopNList := attribute values with the greatest frequency of occurrence
8: for length: N to 2 do
9: for each combination with size length of the first N elements of TopNList do

10: occurrenceCount = number of matches in all days with this combination
11: if occurrenceCount > threshold then
12: behavior := behavior ∪ combination
13: end if
14: end for
15: end for
16: return behavior

Fig. 3. An example illustrating Algorithm 2.

exist, there is no need to keep the team attribute in the tuple. This helps to reduce
unnecessary complexities in the model.

Ideally, system characteristics can be observed to extract a security configura-
tion that better serves security requirements. Some of the system characteristics to
consider are: interactions of instances of different roles, user assignment to differ-
ent roles, type of requested data or service, resource request frequency, delegation
frequency between roles, denied access requests and data flow at inter and intra

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 19

organizational levels. The access control policy can be configured based on these
characteristics to satisfy dynamic user access requirements such as extending user
access rights by adding new permissions, modifying delegation rules between roles,
and increasing resource accessibility.

5. Access control model evaluation

In this section we discuss the complexity of our framework. We also clarify for
what purposes the behavior concept is and is not employed during the access control
decision process.

In the following we examine the complexity of our framework from different per-
spectives, and suggest that the imposed complexity is reasonable.

• Inherent complexities. Our framework provides a number of facilities which
allow security administrators to express different privacy policy rules. However,
the framework does not impose any obligations on the administrators to use
complicated rules, unless such rules are inherent to their system. Therefore the
complexity of the rules depends on the nature of the underlying system.

• Usability complexities. A major factor in usability complexity is related to con-
figuring the generic framework for a specific system. This issue is discussed in
Section 6.2. The administrator should become familiar with the syntaxes chosen
for modeling policies and contexts in the input layer. To address this concern, a
graphical interface is prototyped and explained in Section 6.3.

• Process complexities. We define security rules and provide a corresponding en-
gine to grant or deny access requests. This generic approach is common in the
literature [11, 33, 55, 58, 59]. We further optionally provide a facility for be-
havior analysis.

• Time complexity. Algorithm 1, which covers major functionalities of the frame-
work, has polynomial time complexity proportional to max(number of permis-
sions defined for the given user, number of access control policies(ACP)). The
running time of Algorithm 2 is O(number of days in the user history * N!) where
N is the maximum length of sequence of attributes we are looking for. However
N is fixed and small (typically less than 10 in practice). This makes the running
time complexity polynomial in terms of the number of days.

Here we want to clarify more how we use the behavior concept in making an ac-
cess control decision. In addition we explicitly describe the type of usage that we
avoid. Assume we modify Algorithm 1 such that it automatically uses behavior anal-
ysis results in making the access control decision. Consider an extreme case where
there are no expected behavior constraints (BC is not passed in line 16). In Algo-
rithm 1 replace checking the expected behavior constraint (BC) with the following
predicate: extract the common behavior of user ui and compare it with b(ui), his
daily behavior; if the distance of the two behaviors is more than a certain threshold

20 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

Algorithm 3. Measure the difference between two orders and notify if the distance
is large
Input: (i) a common order and an expected order; (ii) threshold
Output: boolean, as distance measurement result

1: orderViolation = 0
2: for ∀v1, v2 . v1
= v2 ∧ v1, v2 ∈ expected order do
3: if occurrence order of v1 and v2 is different in common order then
4: orderViolation = orderViolation + 1
5: end if
6: end for
7: if orderViolation > threshold then
8: return false
9: else

10: return true
11: end if

(see Algorithm 3 for one possible measurement method), the expression is evaluated
to false (and therefore the access is denied); otherwise it is evaluated to true.

Such an algorithm causes different concerns and questions including:

• how to determine threshold variables (see Algorithm 3) to decide if a given
behavior follows a common behavior or not. Is comparing daily behavior good
enough or should we be considering behavior over a week? How far do we need
to go back in time to create common behavior?

• the common behavior concept reflects the average and usual behavior of the
user. Common behavior is not an exact representation of every instance of a
user behavior. However the access control requires exact verifiable rules rather
than statistical and threshold-based rules. Also it is not possible to control how
restrictive a common behavior constraint can become. Could this impose fur-
ther constraints on top of a user’s workflow and regulation in order to access a
resource?

• how to verify that a common behavior is actually a correct behavior from the
access control point of view. There might be a case that common behavior rep-
resents a user’s habit rather than the user’s compliance to an authorization reg-
ulation. A scenario can be imagined where frequent invalid requests of a user
eventually authorizes an invalid privilege. In such a case denying or granting
access based on habit is not a correct decision.

These concerns could lead into access control vulnerabilities. To avoid these issues
we have done the following. Firstly, we introduce the expected behavior concept.
Dissimilar to common behavior, expected behavior defined by the administrator is
an exact rule, not based on statistical data, and therefore does not suffer from the
above issues. Secondly, we use the analysis results as suggestions and not directly
including them in the decision making process. The analysis results once recognized
and refined by human judgement, become free from the above shortcomings and are
translated to exact rules to be used.

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 21

A large distance between two orders is the sign of either a user making frequent
privilege violations (or a possible attack if no specific pattern can be determined) or
an expected behavior rule that enforces invalid constraints. Therefore the administra-
tor can either upgrade the expected behavior to cover a user’s requirements or warn
the user of frequent access request violations (or investigate the possibility of an at-
tack). Expected behavior adjustment for the case of an orderConstraint is performed
by reordering values that caused violations. Other types of expected behaviors are
measured and adjusted in a similar manner. Algorithm 3 is one simplistic possibility
for comparing ordering constraints among a common and an expected behavior.

In an environment like healthcare with a dedicated and trustful audience (com-
pared to a public environment with potential attackers), it is not normal to find many
access violations. Therefore suggestions are meant to reduce the number of viola-
tions. On the other hand, results can be used to discover new rules that can refine
user access scope in case they are initially defined too broadly. The administrator
can run this algorithm periodically to ensure current permissions fit the need-to-know
principle discussed in the literature.

6. Simulated environment

In this section we provide an implementation for the architecture of our proposed
access control model. This implementation aims to provide a prototype for different
sections of the architecture. The current implementation is not intended to be used in
real projects as it is not a complete instance of the proposed architecture.

The standard three-tier architecture is used for this prototype. It includes the data
access layer which acts as an interface for the database. The business layer contains
the core logic. Finally, the presentation layer offers a user interface. The follow-
ing technologies and tools are used: Java, Eclipse Enterprise Edition, and MySql
database. The database is created with the MySql Database Management System
(DBMS).

6.1. Ontology specification

The Role hierarchy and context classes of the class diagram are represented
by the Web Ontology Language (OWL). OWL is also used to map between spe-
cific system hierarchies and the hierarchy ontology offered by the model. The
owl:equivalent feature is employed to define equivalency between attributes of hier-
archies. Also, contexts and their relations are modeled using the owl:objectProperty
and owl:dataTypeProperty features.

6.2. Policy specification languages

Several policy specification languages can be used. Amongst these, Ponder [51]
and Rei [53] are two languages that support the requirements of our model. Here we

22 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

explain how to use the Rei language to specify policies. Rei is a language based on
OWL that allows policies to be specified as constraints over allowable and obligated
actions on resources in the environment. Regarding the difficulties of using available
tools, we implemented an engine for interpreting and applying the Rei specifications,
explained in Section 6.4.

The policy specification is divided into separate files, each describing a different
portion.

Ontology file
Different entities, contexts, and the general concepts (classes) of Fig. 1 are intro-

duced in an ontology file. As an example, some of the entries of the ontology file
(in the form entity(attribute)) are: Person(name, affiliation, isCareGiver) and Patient
(locatedIn, associatedCareGiver).

Instance file
This file contains class definitions that are subclasses of the classes introduced in

the ontology file and have constraints over entries of the instance file. In the following
example an action called NursDiabAction is shown that represents those actions that
a nurse of the Diabetes Department performs.

<owl:Class rdf:ID="NursDiabAction">
<rdfs:subClassOf rdf:resource="DiabAction"/>
<rdfs:subClassOf rdf:resource="MajorProfChg"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="actor"/>
<owl:allValuesFrom rdf:resource="Nurse"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Other entries of the instance file are direct instances of defined classes. The fol-
lowing example shows how to introduce a patient to the system:

<hosp:Patient rdf:ID="Nero">
<hosp:associatedCareGiver rdf:resource="Jane"/>
<hosp:affiliation rdf:resource="DiabetesDept"/>
<hosp:PatientProfile rdf:resource="NeroEHR"/>
<hosp:locatedIn rdf:resource="room223"/>

</hosp:Patient>

Policy file
Policy files contain constraints, different types of policies and meta policies, and

the collection of active policies. Constraints are logical expressions restricting the at-
tribute values of objects. The following example describes the constraint of someone
being a member of the Diabetes Department.

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 23

<constraint:SimpleConstraint rdf:ID="IsMemberOfDiab">
<constraint:subject rdf:resource="var1"/>
<constraint:predicate rdf:resource="affiliation"/>
<constraint:object rdf:resource="DiabetesDept"/>
<policy:desc>

All members of Diabetes Department
</policy:desc>

</constraint:SimpleConstraint >

Policies are described using permission/prohibition, delegation/revocation, and
obligation tags. Different policies (role, team, and context) are modeled based on
the constraints that must be checked prior to giving permission to a user. Policies can
be specific or generic. The former assigns access rights to individuals while the latter
describes the general conditions under which an access right is granted or denied. An
example of giving specific permission to Jane, a nurse of the Diabetes Department,
to perform an action defined by nurses in the Diabetes Department is:

<deontic:Permission rdf:ID="Perm_Jane">
<deontic:actor rdf:resource="&inst;Jane"/>
<deontic:action rdf:resource= "&inst;ANursDiabAction"/>

</deontic:Permission>

Different expected behaviors can be expressed with Rei in a similar manner. Inter-
ested readers are encouraged to check Appendix B for these specifications.

6.3. Administrator interface

We have developed a prototype for administrators in order to reduce the complex-
ity of employing the model and facilitate the interactions with the model defined in
the Administration layer. This prototype provides a Graphical User Interface (GUI)
as an alternative for the syntactical representation introduced in Section 6.2.

The prototype has a menu for each of the sets, relations, and constraints of the
formalisms defined in Section 3.3. It also provides a monitoring menu, consisting of
retrieving common behavior and viewing audit trails.

Figures 4–6 provide a number of snapshots of the prototype. Figure 4 shows items
of the “primitive” menu for entering primitive data type values. Figure 5 presents the
access control policy creation page. A list of available values for each of the items
of this relation is shown on the right. Once a valid value is entered for all items, the
relation can be created. Figure 6 illustrates the audit trail page for a given user.

Figure 7 shows how to check for an existing or potential associationConstraint
relation by passing a user id, an action attribute value, and a time period as in-
puts. In this example, the filtering attribute is team with value of diabeticDeptNurs-
ingTeam. Figure 8 shows the results of comparing a common and an expected be-
havior. The common behavior is extracted using the user attribute of the relevant
associationOrder. In this example the associationOrder filters user location with di-
abeticNusringStation.

24 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

Fig. 4. Administrator’s user page. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/JCS-2012-0454.)

Fig. 5. Administrator’s access control policy page. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/JCS-2012-0454.)

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 25

Fig. 6. Audit trail page of the administrator interface for a typical user (User Id 17). (Colors are visible in
the online version of the article; http://dx.doi.org/10.3233/JCS-2012-0454.)

Fig. 7. AssociationConstraint extraction page for a typical user (User Id 17). (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/JCS-2012-0454.)

26 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

Fig. 8. AssociationConstraint comparison page. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/JCS-2012-0454.)

6.4. Implementation classes

The classes that are used to implement the simulation environment are shown in
the class diagram of Fig. 9.

The ACmodel class initializes the model by entering the policy rules. Access re-
quests are sent to the model through this class. These requests are objects of the
UserBehavior class which are sent to the ACmanager class. The DBmanager class
resides in the data layer and is the interface between the data layer and other classes.
The FileScannerParser class is responsible for inserting the policy rules from the
Rei policy specification files into appropriate tables of the database. The CoreCheck,
ActionCheck, BehaviorCheck, and ACmanager classes perform the responsibili-
ties of the decision making engine and administration layers. Finally the Adminis-
tratorInterface class represents the administrator interface described in Section 6.3.

6.5. Simulation result

Different ways of modeling and categorizing tasks of care givers exist. These mod-
els have differing degrees of commonality. For example the model in [47] describes
nursing tasks as direct case (physical and psychological), direct cure, and adjunct
activities, while the model in [52] expresses tasks as assessment, nursing diagnosis,
planning, implementation, and evaluation; these models have both overlapping and

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 27

Fig. 9. The class diagram of the implementation classes.

disjoint parts. The rules governing healthcare institutions also vary depending on the
nature of the institutions and the decisions made by local managers of those institu-
tions. After talking to a number of care givers in the McMaster University Medical
Centre (MUMC) and consulting the literature ([44,47,50,52]), we extracted typical
common activities and daily schedules. We focused on ward nurses to develop a case
study covering different rules that require access control.

In this simulation, access requests for a number of care givers in a day are rep-
resented. We have chosen these requests such that different rules and constraints
discussed in the paper are covered. We have avoided considering similar repetitive
requests, as we believe they do not provide additional insight for understanding the
model. In these requests, all personnel are affiliated with the Diabetes Department.
Involved parties are nurses: Jane, Julia, Josh; students: Flora; unlicensed assistive
personnel: Daria; patients: Nero, Nancy, Natalie, Mike, Nash, Sara. Locations are
EMR server, Shared Health Record (SHR), Active Role Server, library computer,
Diabetes Nursing Station (DNS). Table 3 represents the requests in plain English.
Table 4 shows requests expressed by action tuples corresponding to Table 3.

The following rules are assumed (based on our consultation with care givers and
the literature):

1. Care givers can only access patient profiles within their departments.
2. There must be a time interval of at least 5 minutes between access requests

from the Diabetes Department and the library (due to their distance).
3. Nurses are not allowed to delegate certain procedures (such as assessments and

nursing diagnosis) to unlicensed assistive personnel while they are allowed to
delegate some others (such as taking vital signs and intake and output).

28 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

Table 3

Description of a portion of access requests made to the model in one day

Description

1 Jane logs into her account information and registers as the responsible nurse.

2 Jane reviews her account.

3 Jane joins the Diabetes Department team and tries to review Sara’s profile, a patient not assigned to
Jane.

4 Jane updates supply change information of Nancy, a patient assigned to Jane.

5 As a nurse Jane delegates her diagnosis authority to Daria, a nurse in the same team.

6 Jane updates check up information of Nancy, a patient assigned to Jane.

7 Jane reviews Natalia’s profile, a patient assigned to Jane.

8 Jane updates drug information of Natalia, a patient assigned to Jane.

9 As a nurse Jane tries to discharge Nancy, a patient assigned to Jane.

10 As a member of Cardiac Department team Jane tries to update check up information of Nancy,
a patient assigned to Jane.

11 Jane logs out of her account.

12 Jane commits some search request from the library.

13 Julia tries to update exercise information of Nancy, a patient not assigned to Julia. (Assume Julia has
logged in and registered earlier in the day.)

14 Julia tries to update check up information of Nash, a patient assigned to Julia.

15 Julia updates injection information of Nero, a patient assigned to Julia.

16 Julia tries to perform a search from a resource library.

17 As a member of the surgery team Josh reviews Nero’s profile.

18 As a member of the surgery team Josh tries to access a Nancy’s profile in a different operation.

19 As a member of Diabetes Department team, Josh tries to review Mike’s profile, a patient assigned to
Josh.

20 Flora as a student tries to update the diagnosis information of Mikes’s profile in absence of an at-
tending physician.

4. Nurse Julia should visit patients in the following order: Nero-Nash.
5. A care giver must not participate in surgeries which are less than 3 hours apart.
6. The patients assigned to nurse Julia are: Nero and Nash.
7. Care givers should register as responsible for their shift, before they are allowed

to do anything else.
8. There are certain procedures which require confirmation of a care giver with

higher permission levels.
9. Students gain access through a delegation made by their attending physicians.

The accesses which are denied are given in Table 5. For each access the type of
unsatisfied constraint and the rule violated are shown. All other accesses are granted.

Table 6 shows details of the action tuples and the results of each of the constraints
for two of the above access controls. For each request, a portion of the results of the
blocks of the decision making engine layer is shown. We will not represent the action

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 29

Table 4

A portion of access requests made to the model in one day (corresponding to Table 3), represented in the
form of action tuples

Person Role Location Location Time of Team Delegation Requested Requested Emg.
of user of server day profile service

1 Jane User DNS EMR 2010.11.30- null null Jane’s log in F
server 9:00 account

2 Jane User DNS EMR 2010.11.30- null null Jane’s review F
server 9:05 account

3 Jane Nurse DNS SHR 2010.11.30- diabetes null Sara’s review F
10:00 nursing profile

4 Jane Nurse DNS SHR 2010.11.30- diabetes null Nancy’s supply F
11:00 nursing profile change

5 Jane Nurse DNS active 2010.11.30- null delegate active null F
role 11:30 diagnosis roles
server to Daria database

6 Jane Nurse DNS SHR 2010.11.30- diabetes null Nancy’s check up F
12:00 nursing profile

7 Jane Nurse DNS SHR 2010.11.30- diabetes null Natalie’s review F
13:30 nursing profile

8 Jane Nurse DNS SHR 2010.11.30- diabetes null Natalie’s drug X F
15:00 nursing profile delivered

9 Jane Nurse DNS SHR 2010.11.30- diabetes null Natalie’s discharge F
15:00 nursing profile

10 Jane Nurse DNS SHR 2010.11.30- cardiac null Nancy’s check up F
16:00 nursing profile

11 Jane User DNS EMR 2010.11.30- null null Jane’s log out F
server 16:15 account

12 Jane Researcher library library 2010.11.30- null null library search F
computer server 16:30 database

13 Julia Nurse DNS SHR 2010.11.30- diabetes null Nancy’s help F
10:30 nursing profile exercise

14 Julia Nurse DNS SHR 2010.11.30- diabetes null Nash’s check up F
10:45 nursing profile

15 Julia Nurse DNS SHR 2010.11.30- diabetes null Nero’s perform F
10:30 nursing profile injection

16 Julia Researcher library library 2010.11.30- null null library search F
computer server 10:32 database

17 Josh Nurse operating EMR 2010.11.30- operating null Nero’s review F
room server 12:30 team profile

18 Josh Nurse operating EMR 2010.11.30- operating null Nancy’s review F
room server 14:00 team profile

19 Josh Nurse DNS SHR 2010.11.30- diabetes null Mike’s review F
14:30 nursing profile

20 Flora Student DNS SHR 2010.11.30- students null Mike’s update F
15:00 profile diagnosis

30 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

Table 5

Denied access requests supported by corresponding violated constraints and rules

stnd. Acn. Deleg. Order. Assoc. Time Context Logic. Explanation

3 × √ √ √ × √ √ √
Breaking rule 1

5
√ √ × √ √ √ √ √

Breaking rule 3

9 × √ √ √ √ √ √ × Breaking rule 8

10
√ × √ √ √ √ √ √

Invalid team value

13
√ √ √ √ × √ √ √

Breaking rule 6

14
√ √ √ × √ √ √ √

Breaking rule 4

16
√ √ √ √ √ √ × √

Breaking rule 2

18
√ √ √ √ √ × √ √

Breaking rule 5

19
√ √ √ √ √ √ √ × Breaking rule 7

20
√ √ × √ √ √ √ √

Breaking rule 9

Table 6

Sample simulation results for two requests, including action tuples and results of
checking different constraints

Action tuple time:11:00:00.0, user:Jane, role:Nurse, user location:

diabeticNursingStation, server location:sharedHealthRecord, team:

DiabeticDeptNursingTeam, requested profile:NancyEHR, requested service:

DiabReview, requested data:diabetic information, emergency:false

Core: Access granted with generic inferred permission

Action: All arguments are valid!

Behavior: Expected behavior is followed!

Logical: Logical constraints are satisfied!

Delegation: No delegation applies!

FINAL DECISION: Access is GRANTED!

Action tuple time:14:00:00.0, user:Josh, role:Nurse, user location:operatingRoom,

server location:EMRserver, team:OperatingTeam, requested profile:NancyEHR,

requested service:SignIn, requested data:SignIn, emergency:false

Core: Access granted with generic inferred permission

Action: All arguments are valid!

Behavior: A time constraint is violated!

FINAL DECISION: Access is DENIED!

tuples and result details for other requests as they look similar to the Table 6 entries
and are generated using Tables 4 and 5.

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 31

7. Related work

In this section, the literature is reviewed for specific access control models for the
healthcare domain.

According to Ferreira et al. [20], who reviewed 59 articles on access control
in the healthcare domain, 22 out of 40 selected articles used Role Based Access
Control (RBAC). A few of these access control models are described here. Li et
al. [46] extend RBAC for a laboratory information system. They define constraints
on the permission relation. They extract the different roles and their associated job
functions. The access privilege is specified up to accessing particular tables or data
records within tables. Aspect Oriented Programming (AOP)1 is used to implement
this model. This allows a quite easy integration of the access control model into an
existing system without changing the existing code.

Hung [35] provides an extended RBAC model that focuses on privacy. He investi-
gates the privacy requirements identified by HIPAA (see Section 2). He determines
the major privacy concerns as (1) the acquisition, storage, and processing of data, (2)
consent for processing and disclosure of data, (3) the rights of subjects to access and
modify their datasets. Schwartmann [55] proposes an attributable RBAC. The idea
is to attach constraints in the form of attribute-values (e.g. attending physician of a
specified patient) to the permissions.

Jih et al. [42] offer Context Aware Access Control (CAAC) explaining a sam-
ple scenario, with sensing and collecting contexts. The proposed context-aware rule
engine is intended to run on resource-limited mobile devices. Jahnke et al. [41] pro-
vide a context-aware information service for healthcare systems. They introduce an
ontology-based context management system that allows a user to define contexts
employing terms from the medical field. Their context ontology is composed of do-
main independent (e.g. time and location) and domain dependent (following HL7
RIM) parts. Toninelli et al. [56] present a secure collaboration mechanism. They use
CAS and semantic modeling technologies to provide a semantic CAAC framework.
Semantic technologies are used for context/policy specification to allow high-level
description and reasoning.

Hung et al. [36] discuss issues in developing a privacy access control model for
supporting mobile and ad hoc healthcare applications. They develop their model,
considering privacy rules for Protected Health Informatics (i.e. limitation on collec-
tion, disclosure, use, and retention) and mobility. They use a policy specification
language to specify and for further implementation.

Blobel [7] proposes a generic access control model for electronic health record
systems that deals with policy description including policy agreements, authentica-
tion, certification, and directory services. These elements form a privilege manage-
ment infrastructure. A model is proposed for each of the following areas: domain,

1AOP is based on the idea that computer systems are better programmed by separately specifying the
various concerns of a system and some description of their relationships, and then relying on mechanisms
in the underlying AOP environment to weave or compose them together into a coherent program [18].

32 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

policy, role, privilege management, and information distance (between originator,
producer, and administrator of information) [6].

Hafner et al. [23] identify a number of use cases in the healthcare domain such as
dynamic access control, delegation, break glass, 4-eyes-principle, and usage control.
They specialize the SELECT-Framework for model driven security for the health-
care domain based on UCON (a security policy model for usage control). They use
UML and OCL to express constraints and relations. Verhanneman et al. [58] support
usage of fine-grained and dynamic policies in the healthcare domain. They focus on
a reconfigurable implementation and identify a number of shortcomings of current
technologies for aiding their implementation. Chandramouli [14] identifies the emer-
gency access requirement and proposes a logic driven role based dynamic model
supporting context constraints. He introduces a concept called ‘domain’ to group
objects. Anderson [2] proposes a security policy model for the healthcare domain
comparable to other application domains such as banking and the military.

Bhatti et al. [5] have investigated use cases introduced by healthcare standards
to design a context-aware policy specification language called XML-based General-
ized Temporal Role-Based Access Control. They use the HL7 CDA standard as a re-
source hierarchy and ideas from Hippocratic databases to impose restrictions on the
resource side. Their proposed language is expressive enough to capture healthcare
environment requirements. They intend to shift information management from be-
ing organization oriented to patient centric. Among the related work presented here,
this work has more in common with our research purposes. They provide a refine-
ment of possible temporal restrictions which has some overlaps and distinctions with
our timeConstraint relation. Emergency conditions are discussed when a request is
made near an emergency department, but the authors do not consider the case where
an emergency occurs in other locations. Similar to our approach, HL7 CDA is used
as the resource hierarchy. However we employ healthcare standards not only in the
resource hierarchy, but also in role hierarchy and the policy description. Also our
work targets interoperability, visualization and behavior analysis, formal definition,
audit trail, and administrative aspects which are not discussed in their work. Finally
while the focus of their work is introducing a specification language, we intend to
reuse existing specification languages.

Table 7 compares our proposed model with the above models. The numbers in the
second row are the bibliographical citations of the methods which are being com-
pared. In the table, y indicates that the method incorporates the corresponding fea-
ture, n means that the method does not incorporate the feature, and n/a means that the
feature does not apply to the method (when a feature which is specific to the health-
care domain is applied to a generic access control method, this notation is used). We
base our judgment on the explicit claims of authors about covering these require-
ments. We do not however specify to what extent each work serves a requirement.
While in the following we briefly mention how our model satisfies the requirements,
we restrict our comments about other works to the contents of Table 7.

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 33

Table 7

Comparison of different access control methods

Features [2] [5] [4] [6] [7] [23] [33] [42] [45] [55] [56] [58] Our
model

Context- n/a y y n n y y y n n y y y
awareness

Dynamicity n y y n n y y y y y y y y

Delegation y n n n y y n n y y n n y

Standards n y n/a y y n n n n/a n/a n n y
compatibility

Semantic n/a n n/a y y n n n n n/a y n y
interoperability

Emergency y y n/a n n y n n n/a n n/a n y
handling

Audit trail y n n/a y n y n n n n n/a y y

Formal n y y n n n y n y y n n y
definition

Policy flexibility y y y n y y y y y y y y y

Visualization n n y n n n n n y n n n y

Workgroup y n n/a n n n n n n n n n y
access

Implementation n/a y y y n n y y n n n y y

Table 7 ‘features’ include healthcare standard requirements. More specifically,
context-awareness, delegation, emergency handling, audit trail, visualization, seman-
tic interoperability, and workgroup access are described in Section 2 as standard
requirements. We identify other features included in the table as supplementary fea-
tures needed to implement standard features. In our model, the context related items
included in the constraints and architecture provide context-awareness. The dele-
gation relation makes delegation constraints possible. Usage of role, resource, and
service hierarchies; introducing the policy model as an extension to HL7 RIM (in-
cluding context ontology); and the representation layer in our architecture makes
our model semantically interoperable. Emergency handling is discussed in Section 3
and reflected in Algorithm 1. Audit trail is captured by the behavior concept and
the audit trail unit of the architecture. Visualization is captured by the common be-
havior concept and the administration layer of the architecture. The Team attribute
of the action tuple implements the Workgroup access. Finally we note that the term
implementation used in Table 7 does not necessarily include deployment in a real
world project or institution. It rather refers to a prototype used as a proof of concept
that offers a practical approach to implement a proposed model. This is the case for
almost all of the works considered.

Comparing our work with those above, we have based our arguments and design
on healthcare standards. The emergence of different standards and governmental fi-
nancial and strategic supports aimed at providing interoperability among healthcare

34 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

systems illustrates the fact that ad-hoc methods would not be reusable or even ap-
propriate in the future. While many of the related works introduced here consider
healthcare use cases, few of them have checked for compliancy with standards. Also
in order for an access control model to be effective in this domain, it must be capable
of dealing with all identified requirements. However some of these works remain
silent on these requirements. Due to the distributed nature of the healthcare domain,
interoperability and adaptability of the model is an essential feature not discussed in
some of the related works. Finally our work is distinguishable due to the behavior
concept that allows policy rules to describe more complex constraints. The frame-
work facilitates monitoring and therefore adaptability to the deployed environment,
a feature not discussed systematically in the literature.

8. Conclusion

In this paper we presented a detailed framework for provision of security aspects
in distributed healthcare systems. The model is generic in the sense that it has a layer
that allows the user to map environment specific contexts onto a standard internal
set of contexts. Consequently, these contexts are fed into an access control engine
to make an access decision for the corresponding user. The proposed access control
method models the user action as a tuple of major contexts which in turn allows us
to demonstrate different attributes of a user.

The model is designed to be compatible with HL7 RIM. It extends RIM’s class
diagram to incorporate the proposed behavior-based access control. The proposed
model satisfies requirements of the healthcare domain such as patient consent, au-
thorization in emergency situations, auditing of all events and considering care givers
activities.

In terms of future work, there are several important avenues:

• It is desirable to deploy our framework in a realistic environment to further eval-
uate and improve our method. However getting involved and leading projects in
the healthcare domain is not an easy task.

• The analysis and algorithms introduced for the components of the architecture
can be improved to determine more complex behaviors and better use them to
make access control decisions. This might require extending the definition of
user behavior.

• As another application domain, the user behavior concept and its correspond-
ing model can be employed to provide guidelines for care givers based on their
behavior. In this way, a user is able to gain recommendations based on his be-
havior and his colleagues’ behaviors.

Appendix A. Additional constraints

In this appendix the formal definition of some constraints introduced in Section 3.2
are described.

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 35

AssociationConstraint: AssCon :U × (att1)val �→ 2(att2)val , is a function return-
ing the set of all possible attribute values (the exclusive set, meaning that
no other attribute values are allowed) for att2 given that (att1)val is assigned
to att1 for a user u, where att1, att2 ∈ ATT and att1 	= att2. For example
AssCon(Jane, nurse) = {SaraProfile, NeroProfile, NancyProfile}.

TimeConstraint: TimCon :U×(attval)1×(attval)2 �→ T×T , is a function expressing
the valid time interval [t1, t2] (where t1, t2 ∈ T and t1 	= t2) between the
occurrence of two values (attval)1 and (attval)2 for a user u. This function can
also be used to assert the minimum time interval required to record action
tuples from two locations.

CombinationConstraint: ComCon :U × 2(att1)val × Mandatory × MinLength �→
2(att2)val , is a function describing the valid set of attribute values for att2 if a
certain order of attribute values occurs for att1. This constraint is a combina-
tion of order and association constraints.

Appendix B. orderConstraint specification

In this appendix we specify OrderConstraint. One of the possible ways to express
the expected behavior, using Rei syntax is through Rei constraints. As an example
we describe OrderConstraint (defined in Section 3.3) here. The following is added
to the ontology file:

<rdf:Class rdf:label="behaviorConstraint">
<rdf:subClassOf rdf:resource="Constraint"/>

</rdf:Class>

<rdf:Class rdf:label="orderConstraint">
<rdf:subClassOf rdf:resource="behaviorConstraint"/>

</rdf:Class>

<rdf:Property rdf:label="valueSet">
<rdf:domain rdf:resource="&orderConstraint"/>
<rdf:range rdf:resource="&literal"/>

</rdf:Property>

<rdf:Property rdf:label="mandatory">
<rdf:domain rdf:resource="&orderConstraint"/>
<rdf:range rdf:resource="&literal"/>

</rdf:Property>

<rdf:Property rdf:label="minLength">
<rdf:domain rdf:resource="&orderConstraint"/>
<rdf:range rdf:resource="&integer"/>

</rdf:Property>

36 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

<rdf:Property rdf:label="actionAttribute">
<rdf:domain rdf:resource="&orderConstraint"/>
<rdf:range rdf:resource="&literal"/>

</rdf:Property>

<rdf:Class rdf:label="dailyBehavior">
<rdf:subClassOf rdf:resource="Resource"/>

</rdf:Class>

<rdf:Property rdf:label="allValues">
<rdf:domain rdf:resource="&dailyBehavior"/>
<rdf:range rdf:resource="&literal"/>

</rdf:Property>

<rdf:Property rdf:label="user">
<rdf:domain rdf:resource="&dailyBehavior"/>
<rdf:range rdf:resource="&person"/>

</rdf:Property>

<inst:orderConstraint rdf:ID="AnOrderConstraint">

In the above entries, the valueSet property of the orderConstraint class expresses
the valid attribute value order for the attribute specified by the actionAttribute prop-
erty. The mandatory attributes describe the necessity of each of the attribute values
in the valueSet. The allValues property of the dailyBehavior class contains the val-
ues for all of the attributes of an action tuple in the current day (this should be built
online). The following should be added to the policy file:

<policy:Granting >
<policy:to rdf:resource="var1"/>
<policy:deontic rdf:resource="Perm_X"/>
<policy:requirement rdf:resource="followsOrder"/>

</policy:Granting>

<constraint:SimpleConstraint rdf:ID="followsOrder">
<constraint:subject rdf:resource="var1"/>
<constraint:predicate rdf:resource="matches"/>
<constraint:object rdf:resource="AnOrderConstraint"/>

</constraint:SimpleConstraint>

Since we are developing the Rei engine ourselves, we will properly handle the
match property on an orderConstraint class to perform the desired procedure (which
is evaluating a daily behavior based on an OrderConstraint). The predicate matches
on an orderConstraint requires that the allValues property of the dailyBehavior class
for user follows the order specified by the valueSet and mandatory properties of the
orderConstraint for the actionAttribute attribute.

An instance of this constraint can be defined in the instance file, as follows:

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 37

<hosp:orderConstraint rdf:ID="JaneOrderConstraint">
<hosp:actionAttribute rdf:resource="requested profile">
<hosp:valueSet rdf:resource="Jane-Sara-Neo-Nancy">
<hosp:mandatory rdf:resource="TTFT">
<hosp:minLength rdf:resource=3>

</hosp:orderConstraint>

As another example the AssociationConstraint (defined in Appendix A) can be
described in a similar manner. The properties required to be defined for the associa-
tionConstraint class are: sourceAttribute, sourceAttributeValue, targetAttribute, and
targetAttributeValueSet.

References

[1] J. Al-Muhtadi et al., Cerberus: A context-aware security scheme for smart spaces, in: PERCOM’03:
Proceedings of the First IEEE International Conference on Pervasive Computing and Communica-
tions, 2003, p. 489.

[2] R.J. Anderson, A security policy model for clinical information systems, in Proceedings of the 1996
IEEE Symposium on Security and Privacy, 1996, pp. 30–42.

[3] J.E. Bardram, Applications of context-aware computing in hospital work: Examples and design
principles, in: SAC’04: Proceedings of the 2004 ACM Symposium on Applied Computing, 2004,
pp. 1574–1579.

[4] R. Bhatti et al., A trust-based context-aware access control model for web-services, in: ICWS’04:
Proceedings of the IEEE International Conference on Web Services, 2004, p. 184.

[5] R. Bhatti et al., Engineering a policy-based system for federated healthcare databases, IEEE Trans.
Knowl. Data Eng. 19 (2007), 1288–1304.

[6] B. Blobel, Trustworthiness in distributed Electronic Healthcare Records – basis of shared care, in:
Computer Security Applications Conference, Vol. 17, 2001, pp. 433–441.

[7] B. Blobel, Authorization and access control for electronic health record systems, International Jour-
nal of Medical Informatics 73 (2004), 251–257.

[8] Canada Health Infoway, EHRi Privacy and Security Use Cases, November 2004.
[9] Canada Health Infoway, EHR Privacy and Security Requirements, v1.1, February 2005.

[10] Canada Health Infoway, EHRi Privacy and Security Conceptual Architecture, v2, June 2005.
[11] Canada Health Infoway, iEHR Scope and Package Tracking Framework, IE50102-PM99, April

2007.
[12] Canada Health Infoway, Example Privacy & Security Audit Logging Requirements, v0.2, February

2008.
[13] Canadian Nurses Association (CNA) website, www.cna-aiic.ca.
[14] R. Chandramouli, A framework for multiple authorization types in a healthcare application system,

in: Proceedings of the 17th Annual Computer Security Applications Conference, 2001, pp. 137–148.
[15] CNA, Advances nursing practice – A national framework, April 2002.
[16] E. Damiani et al., New paradigms for access control in open environments, in: Proceedings of

the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005,
pp. 540–545.

[17] N. Damianou et al., The ponder Policy specification language, in: POLICY’01: Proceedings of the
International Workshop on Policies for Distributed Systems and Networks, 2001, pp. 18–38.

[18] T. Elrad et al., Aspect-oriented programming: Introduction, Communications of the ACM 44(10)
(2001), 29–32.

38 M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems

[19] M. Evered and S. Bögeholz, A case study in access control requirements for a health information
system, in: Proceedings of the Second Workshop on Australasian Information Security, Data Mining
and Web Intelligence, and Software Internationalisation, Vol. 32, 2004, pp. 53–61.

[20] A. Ferreira et al., Access control: How can it improve patients’ healthcare?, Study in Health Tech-
nology and Informatics 127 (2007), 65–76.

[21] C.K. Georgiadis et al., Flexible team-based access control using contexts, in: SACMAT’01: Proceed-
ings of the Sixth ACM Symposium on Access Control models and Technologies, 2001, pp. 21–27.

[22] L. Giuri and P. Iglio, Role templates for content-based access control, in: RBAC’97: Proceedings of
the Second ACM Workshop on Role-Based Access Control, 1997, pp. 153–159.

[23] M. Hafner et al., Modeling and enforcing advanced access control policies in healthcare systems
with Sectet, in: Models in Software Engineering, LNCS, Vol. 5002, Springer, 2008, pp. 132–144.

[24] Health Insurance Portability and Accountability Act (HIPAA), available at: www.hipaa.org.
[25] HIPAA, Security standards: Technical safeguards, version 2, March 2007.
[26] HL7, Healthcare requirements for emergency access, January 2009.
[27] HL7, HL7 Clinical Document Architecture, Release 2.0, August 2004.
[28] HL7, RBAC healthcare scenarios, v2, November 2005.
[29] HL7, RBAC role engineering process, v1.1, November 2005.
[30] HL7, HL7 healthcare scenario roadmap, v2.2, September 2006.
[31] HL7, HL7 RBAC constraint catalog, v1.1, May 2008.
[32] HL7, RBAC healthcare permission catalog, v4.1, January 2010.
[33] J. Hu and A.C. Weaver, Dynamic, context-aware security infrastructure for distributed healthcare

applications, in: Proceedings of the First Workshop on Pervasive Privacy Security, Privacy, and
Trust, 2004.

[34] R.J. Hulsebosch et al., Context sensitive access control, in: SACMAT’05: Proceedings of the Tenth
ACM Symposium on Access Control Models and Technologies, 2005, pp. 111–119.

[35] P. Hung, Towards a privacy access control model for e-healthcare services, in: PST’05: Third Annual
Conference on Privacy, Security and Trust, 2005.

[36] P.C.K. Hung et al., Research issues of privacy access control model for mobile ad hoc healthcare
applications with xacml, in: AINA’07: Advanced Information Networking and Applications Work-
shops, 2007, pp. 582–587.

[37] Integrating the Healthcare Enterprise (IHE) official website, www.ihe.net.
[38] Integrating the Healthcare Enterprise, IHE IT infrastructure technical framework white paper – Ac-

cess control, Revision 1.3, September 2009.
[39] Integrating the Healthcare Enterprise, Integration profile, Revision 7, in: IHE IT Infrastructure Tech-

nical Framework, Vol. 1, August 2010.
[40] J.H. Jahnke, Toward context-aware computing in clinical care, in: OOPSLA Workshop on Building

Software for Pervasive Computing, 2005.
[41] J.H. Jahnke et al., Context-aware information services for health care, Revue d’Intelligence Artifi-

cielle 19 (2005), pp. 459–478.
[42] W. Jih et al., Context-aware access control on pervasive healthcare, in: MAM’05: Mobility, Agents,

and Mobile Services, 2005, pp. 21–28.
[43] M.H. Kang et al., Access control mechanisms for inter-organizational workflow, in: SACMAT’01:

Proceedings of the Sixth ACM Symposium on Access Control Models and Technologies, 2001, pp.
66–74.

[44] B.J. Kozier and G. Erb, Techniques in Clinical Nursing, 5th edn, Prentice Hall, Upper Saddle River,
NJ, 2004, pp. 887–889.

[45] C.J. Kuo and P. Humenn, Dynamically authorized role-based access control for secure distributed
computation, in: XMLSEC’02: Proceedings of ACM Workshop on XML Security, 2002, pp. 97–103.

[46] X. Li et al., Fine-granularity access control in 3-tier laboratory information systems, in: IDEAS’05:
Proceedings of the 9th International Database Engineering & Application Symposium, 2005,
pp. 391–397.

M.H. Yarmand et al. / Behavior-based access control for distributed healthcare systems 39

[47] V. Murray, Nursing in Ontario, Queen’s Printer, 1970, pp. 9–16.
[48] G. Neumann and M. Strembeck, A scenario-driven role engineering process for functional RBAC

roles, in: SACMAT’02: Proceedings of the Seventh ACM Symposium on Access Control Models and
Technologies, 2002, pp. 33–42.

[49] U. Nitsche et al., Realization of a context-dependent access control mechanism on a commercial
platform, in: IFIP/Sec’98: Proceedings of the Fourteenth International Information Security Con-
ference, 1998, pp. 160–170.

[50] Nurse Practitioner’s Association of Ontario (NPAO) website, www.npao.org.
[51] Ponder toolkit website, http://ponder2.net/.
[52] P.A. Potter and A.G. Perry, Basic Nursing: Theory And Practice, 3rd edn, Mobsy – Year Book,

1994, pp. 5–8, 97–109.
[53] Rei website, http://rei.umbc.edu/.
[54] A. Samuel, Context-aware access control policy engineering for electronic health records, in: Re-

search Seminar at CIMIC, 2007.
[55] D. Schwartmann, An attributable role-based access control for healthcare, in: ICCS’04: Interna-

tional Conference on Computational Science, 2004, pp. 1148–1155.
[56] A. Toninelli et al., A semantic context-aware access control framework for secure collaborations

in pervasive computing environments, in: ISWC’06: Fifth International Semantic Web Conference,
2006, pp. 473–486.

[57] F.K. Ueckert and H.U. Prokosch, Implementing security and access control mechanisms for an elec-
tronic healthcare record, in: AMIA Annual Symposium Proceeding Archive, 2002, pp. 825–829.

[58] T. Verhanneman et al., Adaptable access control policies for medical information systems, in: Dis-
tributed Applications and Interoperable Systems, LNCS, Vol. 2893, Springer, Berlin/Heidelberg,
2003, pp. 133–140.

[59] K. Wrona and L. Gomez, Context-aware security and secure context-awareness in ubiquitous com-
puting environments, in: Autumn Meeting of Polish Information Processing Society Conference Pro-
ceedings, 2005, pp. 255–265.

[60] M.H. Yarmand et al., Behavior-based access control for distributed healthcare environment, in: IEEE
Symposium on Computer-Based Medical Systems, 2008, pp. 126–131.

[61] S.S. Yau et al., Situation-aware access control for service-oriented autonomous decentralized sys-
tems, in: ISADS’05: Proceedings of Autonomous Decentralized Systems, 2005, pp. 17–24.

[62] G. Zhang and M. Parashar, Dynamic context-aware access control for grid applications, in:
GRID’03: Proceedings of the Fourth International Workshop on Grid Computing, 2003, p. 101.

[63] L. Zhang et al., A role-based delegation framework for healthcare information systems, in: SAC-
MAT’02: Proceedings of the Seventh ACM Symposium on Access Control Models and Technologies,
2002, pp. 125–134.

Copyright of Journal of Computer Security is the property of IOS Press and its content may not be copied or

emailed to multiple sites or posted to a listserv without the copyright holder's express written permission.

However, users may print, download, or email articles for individual use.

