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Abstract: This study presents a solution to the interference management scheme and resource allocation strategy for the two-tier
femtocell networks, where the femtocell users (FUEs) share the same frequency band with the existing macrocell users. It is
assumed that the FUEs compete for the available spectrum to fulfil their own communication. And the macrocell base station
protects itself by pricing the interference from the FUEs, which formulates the Stackelberg game. In this study, two effective
pricing schemes, uniform pricing scheme and non-uniform pricing scheme, combining with admission control are proposed to
maximise the revenues and protect the quality of service requirements. The Stackelberg equilibriums for the proposed games
are investigated. Besides, a novel distributed interference pricing algorithm is provided for the uniform pricing case.
Numerical results show that, in two-tier femtocell networks with shared spectrum, the proposed pricing schemes are effective
in resource allocation and performance protection.

1 Introduction

Femtocells have recently emerged as a promising technology
to increase wireless network capacity, extend cellular
coverage and introduce new services [1]. Femtocell is a
small cellular base station (BS), typically designed for use
in home or small business. It is connected through
broadband IP, such as digital subscriber lines or cable
modems, to the service provider’s network. Femtocells
consist of miniature personal BSs and stationary or
low-mobility end users employed in indoor environment
and are located within an existing cellular network [2].
However, end users’ installation and unplanned deployment
of femtocells in an existing macrocell network may cause
severe interference between macrocells and femtocells,
which is known as the cross-tier interference [3].
In recent years, schemes for interference coordination and

mitigation in femtocell-deployed networks have been
widely investigated. To cope with cross-tier interference,
efficient allocation of the frequency, power and other
resources in the system can be exploited [4]. Power control
as a key technique for interference management which
cannot be ignored in wireless resource management [5]. A
great deal of scholarly work has recently appeared in the
literature on the design of power control and interference
mitigation strategies for spectrum sharing a two-tier
femtocell networks. In [6], a power allocation strategy
based on the received signal power level from the macrocell
BS (MBS) is developed. The authors proposed the
distributed power control algorithm to alleviate the

cross-tier interference in [7, 8]. Interference mitigation
strategy is studied in [9] by adjusting the femtocell users’
maximum transmission powers.
Efficient pricing techniques not only increase the

performance, but also improve network utilisation in light
of the rapid growth and variety of network requirements.
Different objectives for pricing communication networks
have been investigated in the literature, such as social
welfare maximisation and fairness guarantees and/or
revenue maximisation. Under the cognitive radio scenario,
the pricing scheme based on Stackelberg game is proposed
in [10]. However, the interference threshold is not
considered. To maximise the utility revenue of the primary,
the dynamic adjustment of the interference threshold and
the secondary users’ transmission powers have been
involved with pricing mechanism, such as in [11–13]. In
two-tier femtocell networks, a dynamic optimised pricing
scheme is proposed in [14], according to the
signal-to-interference-plus-noise ratio (SINR) which
alleviates the cross-tier interference and guarantees the
fairness in the competition. However, assumptions that the
femtocell has complete information about the network and
that each FUE in the competition does not consider the
corresponding interference to other co-channel FUEs lead to
an unrealistic scenario. And, its’ ability of directly control
the cross-tier interference is poor. In [15], a price-based
interference control scheme is proposed in two-tier
femtocell networks. However, the inter-cell interference
between the FUEs is ignored, and the FUEs’ minimum
performance requirements are not considered. Price-based
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resource allocation strategies are investigated in [16] based on
the Stackelberg game for two-tier femtocell networks, but the
interference price is adjusted by the experience which lacks
dynamic adaptability. In [17], an effective distributed
interference pricing scheme is proposed based on the
Stackelberg game. The existence and uniqueness of the
Stackelberg equilibrium (SE) point are established. In [18],
the convergence and uniqueness of the hierarchical game
with channel uncertainly is investigated. In [19], the
spectrum leasing problem is studied for femtocells with
hybrid access, and the decision-making process is modelled
as a three-stage Stackelberg game. Achieving efficient Nash
equilibrium (NE) point are studied using pricing schemes,
such as [20–22]. The static pricing model and dynamic
pricing model are investigated in [23] to analyse the NE
price of macrocell and femtocell operators. In [24], the
unique NE of the corresponding water-filling game is
studied in the multiple-access channel capacity region. It is
worth emphasising that the problem of the NE point for the
non-uniform pricing scheme is less rigorously discussed in
the above mentioned papers.
In our paper, both the inter-tier and cross-tier interference

constraints are considered. Besides, an adaptive interference
pricing scheme is proposed by considering the price
constraint. All these conditions lead to a more realistic
network scenario. In such a network scenario, we propose
the price-based interference management schemes. They
integrate the utility optimisation and restrict the cross-tier
interference at the MBS below a given threshold which are
quite different from the pricing schemes proposed in [10,
16]. Specially, a new method is proposed to obtain the
uniform interference pricing scheme which is also different
from the work [16, 19]. Then, distributed power allocation
schemes are developed based on Stackelberg game, where
the MBS acts as the leader and FUEs act as the followers.
In contrast to [15], our work requires only a small amount
of information and shows good control ability to the
cross-tier interference. At last, admission control algorithm
is adopted to robustly protect the performances of all active
FUEs.
The rest of the paper is organised as follows. Section 2

introduces the system model. Section 3 describes the
problem formulation. Two different pricing schemes of the
MBS are given in Section 4, which follows the admission
control algorithm in Section 5. Section 6 provides
numerical simulations to validate the proposed studies.
Finally, Section 7 concludes the paper.

2 System model

In this paper, we present a systemmodel in a two-tier frequency
division multiple access (FDMA) based femtocell network.
The network consists of one central macrocell and N
randomly distributed femtocells. Fig. 1 gives the description
of the uplink transmission in two-tier femtocell networks.
For simplicity, the macrocell user (MUE) is omitted. The
solid and dashed lines represent the uplink signals and
interference, respectively. We assume that in each femtocell
there is one corresponding femtocell BS (FBS) providing the
service. Besides, orthogonal uplink signalling is assumed in
each slot (one scheduled active user per cell during each
signalling slot), where a slot refers to a time resource.
Under the above described framework, all the terminals

involved are assumed to be equipped with one signal
antenna and all the channels involved are assumed to be

block-fading. That is, the channels may change from one
block to another but remain constant during each
transmission block. Besides, the channel gains gi,j as in the
IMT-2000 specification [25] are presented using simplified
path loss model

gi,j =

Kc min(D−ac
0,0 , 1), i = j = 0

KfiR
−ab
f , i = j = 0

KfoW min(D−afo
0,j , 1), i = 0, j . 0

Kc min(D−ac
i,j , 1), i . 0, j = 0

KfoW
2 min(D−afo

i,j , 1), i = j = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(1)

In (1), αc, αβ and αfo denote the macrocell, indoor and
indoor-to-outdoor femtocell-path loss exponents,
respectively. Di, j is the distance between user j and BS i. Rf

denotes the coverage radius of the FBS. Noting that i = 0
and j = 0, respectively, denote the MBS and the MUE.
Defining fc as the carrier frequency in MHZ, the term Kc =
30 log10 fc− 71 (dB) equals the fixed decibel propagation
loss during the transmission from the MUE to the MBS. Kfi

denotes the fixed loss between FUE i to its corresponding
FBS. Kfo is defined as the fixed loss between FUE i to a
different FBS and the assumption Kfo = Kc is given. The
term W explicitly models partition loss during indoor–
outdoor transmission to the MBS.

Assumption 1: The outdoor path loss exponents from a MUE
and a FUE to the MBS are equal. That is, αc = αfo = α.

All the channel gains are assumed to be completely
independent distributed random variables. Assume δ2 is the
Gaussian white noise and δi = δ2/gi,i is the normalised noise.
During a given time slot, let i∈ {1, 2, …, N} denotes the
scheduled user connected to its BS. The SINR of FUE i is
expressed as

gi =
pi∑N

j=1,j=i ai,jpj + di
(2)

where pi and pj are, respectively, denote the transmission

Fig. 1 System model
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powers of the FUE i and the FUE j. And

ai,j =
gi,j
gi,i

, i = j

1, i = j

⎧⎨⎩ (3)

denotes the normalised channel gain or coefficient between
the user and the corresponding BS.

3 Problem formulation

In this section, the Stackelberg game formulation for the
price-based power allocation scheme is first presented.
Then, we investigate the existence of the SE for the
proposed schemes.

3.1 Stackelberg game formulation

In the Stackelberg game, the MBS as the leader wants to
protect itself by pricing the interference introduced from
FUEs’ transmission powers. Thus we design a strategy to
achieve revenue by selling the interference quota to FUEs.
The revenue of the MBS is written as

UMBS(c,p) =
∑N
i=1

cipig0,i (4)

where ci denotes the interference price of FUE i. It is worth
emphasising that there exists some relationships between pi
and ci, which presents the willing ness of FUE i to buy the
interference quota in price set by the MBS. Taking the
interference threshold Q into consideration, the optimisation
problem at the MBS’s side can be formulated as

Problem 3.1: max
ci.0

UMBS(c,p) =
∑N
i=1

cipig0,is.t.

∑N
i=1

pig0,i ≤ Q

(5)

In this paper, we employ a profit function and a cost function
to, respectively, represent the satisfaction degree of the FUE
to the service quality and the cost incurred. Then we give
the revenue of FUE i

Ui(pi, p−i) = li log(1+ gi)− cipig0,i (6)

where li is the utility gain per unit transmission rate of FUE i,
p−i is the vector of power allocation for all FUEs except FUE
i, that is, p−i = [p1, …, pi−1, pi + 1, …, pN]

T. It is observed
from (6) that if FUE i increases its transmission power, the
transmission rate increases and so does the profit. However,
with the increase of the transmission power, the FUE will
definitely cause more interference to the MBS. As a result,
it has to buy more interference quota from the MBS, which
increases the cost. Therefore the FUEs need to select the
optimal power allocation strategies to maximise their own
utilities. Mathematically, the optimisation problem
combining with the interference constraint can be

formulated as

Problem 3.2: max
pi.0

Ui(pi, p−i) = li log(1+ gi)− cipig0,i

s.t.
∑N
i=1

pig0,i ≤ Q

pi ≥ 0, ∀i [ {1, 2, . . . , N}

(7)

Stackelberg game is a strategic game that consists a leader and
several followers competing on certain resources. The leader
moves first, then the followers adjust their corresponding
actions. In this paper, the MBS prices the interference from
the FUEs to achieve the maximum revenue. Then FUEs
adjust their own transmission powers to maximise their
individual utilities based on interference prices. Problem 3.1
and Problem 3.2 form the upper subgame and lower
subgame, respectively. The two problems together
formulate a Stackelberg game. Our target is to find the SE
point, that is, the MBS and all FUEs have no motivations to
deviate it.
The NE of the lower subgame can be obtained by

optimising Problem 3.2. Resulting in the Karush–Kuhn–
Tucker (KKT) conditions

pi ⊥ − li

di +
∑N

j=1 aijpj
+ cig0,i

( )
s.t. pi ≥ 0

− li

di +
∑N

j=1 aijpj
+ cig0,i ≥ 0

(8)

where the notation a⊥ b represents the complementarity
condition of a and b, namely, ab = 0. Noting that ci > 0 and
δi > 0, we can multiply formula (8) by a non-negative scalar

di +
∑N

j=1 aijpj
cig0,i

Then, we have

pi ⊥ − yi
ci
+ di +

∑N
j=1

aijpj

( )
, ∀i [ {1, 2, . . . , N} (9)

where υi = li/g0,i. Considering the constraints mentioned in
the above description, formula (9) is further equivalent to

pi =
yi
ci
− di −

∑N
j=i,j=1

aijpj

[ ]+
, ∀i [ {1, 2, . . . , N}

(10)

where [pi]
+ = max{pi, 0}.

3.2 Stackelberg equilibrium

Let c* be a solution for Problem 3.1 and p* be a solution for
Problem 3.2 of FUE i. A strategy (c*, p*) is called a SE
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strategy, if for any (c, p), the MBS achieves

UMBS(c
∗, p∗) ≥ UMBS(c, p) (11)

Moreover, the FUE i achieves

Ui(p
∗
i , p

∗
−i) ≥ Ui(pi, p−i), ∀i (12)

Generally, the SE for the Stackelberg game could be obtained
by finding its subgame NE. In the game, FUEs compete in a
strict non-cooperative game. NE is defined as the point that no
player can unilaterally increase his own utility when any other
players do not change their strategies, it is because that the
adjustment of the strategy will sacrifice the corresponding
FUE’s utility. Therefore every rational FUE has no
willingness to change the strategy individually in the NE
point. In this paper, to obtain the optimal solutions, we
have to obtain the best responses of both sides. An
approach is provided to obtain the SE: for any given c, we
first solve Problem 3.2 for optimal transmission powers.
Then, the optimal prices can be obtained by solving
Problem 3.1.

3.3 Existence of SE

To ensure the existence of NE point, it is needed to select an
appropriate utility function. Therefore, we give the following
theorem.

Theorem 1: A NE exists in the lower subgame G = {S,{Pi}
Ui}}.

Proof:

(1) Since the convex set is a single point or a continuous line
in the one-dimensional (1D) space. The strategy {pi} is a
compact subset. Obviously, {pi} is a convex set.
(2) Quasi-concave function definition: function f (x) is defined
on a subset of the Rn, if and only if the function f (x) satisfies
the following property, f (x) is quasi-concave

f (lx1 + (1− l)x2) ≥ min f (x1, f (x2))
( )

, l [ [0, 1]

The derivation of Ui(pi, p−i) is given as

∂Ui

∂pi
= li

1+ gi(pi, p−i)
· gi(pi, p−i)

pi
− cig0,i

where Ii( p−i) =
∑

j=i pjai,j + di, i, j∈ S. It is assumed that
li≠ 0, the second derivative is given as

∂2Ui

∂p2i
= − li

(Ii(p−i)+ pi)
2 , 0

Obviously, revenue function is quasi-concave. It is well
known that if the above conditions are satisfied, the NE
exists in the lower subgame [10]. Therefore the existence of
the SE is also proved. □

4 Pricing mechanism of the MBS

In this section, two pricing schemes: uniform pricing scheme
and non-uniform pricing scheme are proposed in the
formulated Stackelberg game. For the uniform pricing
scheme, a novel distributed interference price algorithm is
proposed to manage the cross-tier interference at the MBS
below a given threshold. For the non-uniform pricing
scheme, the existence of SE point is investigated by
considering the interference constraint. And, Lagrangian
dual optimisation method is adopted to get the optimal
solution.

4.1 Uniform pricing

Taking the transmission power and the interference threshold
constraints into consideration, a more comprehensive
description of Problem 3.1 can be formulated as

Problem 4.1: max
ci.0

UMBS(c,p) =
∑N
i=1

cipig0,i

s.t. pi =
yi
ci
− di −

∑N
j=i,j=1

aijpj

[ ]+
, ∀i [ S

∑N
i=1

pig0,i ≤ Q

(13)

To simplify the problem, we can rewrite Problem 4.1 as

Problem 4.2: min
ci.0

UMBS(c,p) =
∑N
i=1

cig0,i di +
∑N

j=i,j=1

aijpj

[ ]

s.t.
yi
ci
− di −

∑N
j=i,j=1

aijpj

[ ]
g0,i ≤ Q, ∀i[ I

(14)

where I is defined as the set of the active users for the given
interference prices. It is easy to observe that Problem 4.2 is a
convex optimisation problem. Thus, the iterative strategy of
FUE i can be achieved based on (10)

p(t+1)
i = yi

c(t−1)
i

− di −
∑N

j=i,j=1

aijp
(t−1)
j

[ ]+
, pmax

i

{ }
∀i[ S

(15)

where pmax
i is the maximum transmission power of FUE i. For

the uniform pricing scheme, the MBS sets a unified
interference price for all FUEs, that is, ci = c, ∀i∈ S. The
SE and interference price bargaining scheme will be
investigated in the following discussion.

Definition 1: Let us defineM(·): X→ X is a mapping and x*∈
X expresses the fixed point. M presents pseudo contractive
mapping on the norm |·|, if the following condition holds

‖M (x)− x∗‖ ≤ q ‖ x− x∗ ‖ , ∀x [ X (16)

Theorem 2: The uniform pricing scheme we proposed has a
unique SE point.
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Proof: Let us define Δpi(t) = pi(t)− pi*, where pi(t) denotes
the transmission power of FUE i in the step t in the power
iteration. And the l∞-norm of vector Δp over the player set
S is denoted by ‖Δp‖S, that is, ‖Δp‖S =maxi∈S|Δpi| which
expresses the maximum deviation for all FUEs in a certain
step of the iteration. Then we have

|Dpi(t + 1)| =
∑N

j=i,j=1

aijp
∗
j −

∑N
j=i,j=1

aijpj

∣∣∣∣∣
∣∣∣∣∣

=
∑N

j=i,j=1

aijDpj(t)

∣∣∣∣∣
∣∣∣∣∣

≤ max|Dp(t)|
∑N

j=i,j=1

aij

,‖Dp‖S (17)

Considering the direct channel gains dominate the
cross-channel gains, αij typically takes small values in
two-tier femtocell systems. And if the network is not very
congested, we usually have the inequality

∑N
j=i,j=1 aij , 1

[15]. Combining with Definition 1, we can verify the
convergence by Δp(t + 1) =M (p(t)) which satisfies the
above inequality. □

Remark 1: Note that the proposed power control strategy with
the maximum power constraint still converges to a unique NE
point. It is suggested that A(pi) = pmax

i is a standard
interference function with pmax

i ≥ 0, if it meets positivity,
monotonicity and scalability. In the following, a brief proof
is given.

Let A(pi) = pmax
i . (i) Positivity: since pmax

i . 0, then A(pi)
> 0, (ii) monotonicity: when p′i > pi, we have
A(p′i) = pmax

i = A(pi) and (iii) scalability: ∀θ > 1,
uA(pi) = upmax

i = uA(upi) . A(upi).
Next, a lemma is given to convert some problems into

minimum value maximisation problems and finally obtain
the optimal solution. Based on it, the equivalent form of
Problem 4.1 will be proposed.

Lemma 1 [26, Razaviyayn]: Let f (x) and g(x) be strictly
increasing function and decreasing function of the variable
x, respectively. If x* is the maximiser of the point-wise
minimum function of f (x) and g(x), that is

x∗ = Arg max
x

min f (x), g(x)
{ }

we have f (x*)≥ g(x*).

Let us define U = min{U1, U2}, where

U1 = cQ (18)

U2 = c
∑N
i=1

pig0,i (19)

U2 can be rewritten as

U2 = cGTp = GTH−1[B− cD] (20)

where

p =

p1
p2

..

.

pN

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦, G =

g0,1
g0,2

..

.

g0,N

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦, B =

y1
y2

..

.

yN

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦

D =

d1
d2

..

.

dN

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦, H =

a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N

..

. ..
. . .

. ..
.

aN ,1 aN ,2 · · · aN ,N

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦

In order to transform Problem 4.1 into a minimum value
maximisation problem, the monotonicity of U2 should be
first investigated. Therefore we will give the analysis of the
monotonicity of g(c) in the following discussion.
To show the monotonicity of U2, we only need to prove

GTH−1D≥ 0. Besides, we have

GTH−1D = eT H̃
−1

D̃ (21)

where D̃ = Diag(G)D . 0. Therefore the problem can be
simplified as

eT H̃
−1 ≥ 0 (22)

We define

e =

1

1

..

.

1

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦, I =

1 0 · · · 0

0 1 · · · 0

..

. ..
. . .

. ..
.

0 0 · · · 1

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦

F =

0
g0,2a1,2

g0,1
· · · g0,Na1,N

g0,1
g0,1a2,1

g0,2
0 · · · g0,Na2,N

g0,2

..

. ..
. . .

. ..
.

g0,1a1,N

g0,N

g0,2a2,N

g0,N
· · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

H̃ = Diag(G)−1HDiag(G)

With above notations, we have

eT H̃
−1 = eT[Diag(G)−1HDiag(G)]−1

= eT(I + F)−1

= eT(I − F)(I − F2)−1

= eT(I − F)
∑1
j=0

F2j

( )
(23)

Let ρ(X), which presents the maximum modulus eigenvalue
of X, denotes the spectral radius of matrix X. In the above
formulation, based on H̃ = I + F and the interference
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condition
∑N

j=i,j=1 aij , 1, we have spectral radius ρ(F) < 1.

Therefore, I− F > 0. Obviously,
∑1

j=0 F
2j . 0. Furthermore,

it can be seen that U2 is a linear function when the active
FUEs’ set I is fixed. And, the slope of U2 may change with
the vary of set I. We can get a conclusion that U2 is a
piecewise non-increasing function of c.
Based on the above analysis, Problem 4.1 with the unified

price setting can be rewritten as

Problem 4.3: max
(c,p)

min cQ, c
∑N
i=1

pig0,i

{ }

s.t. pi =
yi
c
− di −

∑N
j=i,j=1

aijpj

[ ]+
, ∀i [ S

(24)

For the uniform pricing scheme, we have

pi =
yi
c
− di −

∑N
j=i,j=1

aijpj, if c ,
yi

di +
∑N

j=i,j=1 aijpj
0, otherwise

⎧⎪⎨⎪⎩
(25)

In Fig. 2, we define cmax = max∀i∈S(υi/σi). And thick dotted
line describes Problem 4.3. It can be seen from the figure,
the maximum revenue is obtained at the point U1 =U2. With

c∗ = Argmax
c

min cQ, c
∑N
i=1

pig0,i

{ }
(26)

holds, an analytical method is offered to get the optimal
solution of Problem 4.3. For U1 <U2, the preset price c
should be increased by c + Δc. And the preset price is
decreased by c − Δc, if U1 >U2, until ∣U1−U2∣ ≤ ɛ (where
ɛ is a positive constant that controls the accuracy of the
algorithm). Based on the above analysis, a distributed
interference price bargaining algorithm will be proposed.

Algorithm 1: Interference price bargaining algorithm based
on price adaptation

1. Set the indicator j = 1, and the deviation allowable value
ɛ = 1.
2. The MBS initialises the interference price c =max∀i∈S(υi/
2δi) for each FUE and broadcasts it to all FUEs.
3. The MBS measures g0,i and each FBS i measures gi, j,
∀(i, j)∈ S meanwhile broadcasts them to FUE i through the
backhaul links.
4. while j = 1, do
5. Compute pi.
6. Calculate U1 and U2.
7. Compare U1 with U2. If U1 <U2− ɛ, the MBS increases
the interference price by c = c + Δc.
8. else if U1 >U2− ɛ, the MBS decreases the interference
price by c = c− Δc.
9. end if.
10. After the adjustment of the interference price with step 7
or step 8, the MBS broadcasts the new interference price to all
FUEs through the backhaul links.
11. Step 5 to step 10 are repeated until ∣U1−U2∣ ≤ ɛ, then
j = 0.
12. end while.

The optimal solution of this problem is given by the
following proposition.

Proposition 1: We rewrite the best response

p∗i =
yi
ci
− di −

∑N
j=i,j=1

aijp
∗
j (27)

by the matrix form

p∗ = H−1A−H−1D (28)

where

p∗ =

p∗1
p∗2
..
.

pN∗

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦, A =

y1
c1
y2
c2

..

.

yN
cN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is assumed that the normalised channel gain matrix H is an
invertible matrix, the NE for the non-cooperative power
selection game p* can be derived as

p∗ = H−1B

c
−H−1D (29)

Besides, based on the conclusion that the optimal price is
obtained at the point U1 =U2, we have

c∗ = GTH−1B

Q+ GH−1D
(30)

Proof: The proof can be found in Appendix 1. □Fig. 2 Monotonicity of two revenues
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4.2 Non-uniform pricing

As the general case of the uniform pricing scheme, we first
investigate the SE point of the Stackelberg game.

Proposition 2: The optimal interference prices of Problem 4.2
can be expressed as

c∗i =
Nyig0,i

Q+∑N
i=1 di +

∑N
j=i,j=1

aijp
∗
j

( )
g0,i

, i [ S (31)

when the system is designed to admit all N FUEs
simultaneously, the interference threshold constraint should
satisfy

Q .

∑N
i=1 g0,i

�������������������������
yi(di +

∑N
j=i,j=1 aijp

∗
j )

√
mini

����������������
yi

di+
∑N

j=i,j=1
aijp

∗
j

√
−
∑N
i=1

di +
∑N

j=i,j=1

aijp
∗
j

( )
g0,i (32)

Proof: The proof can be found in Appendix 2. □

Theorem 3: There exists a unique NE point in the lower
subgame defined by Problem 3.2.

Proof: If the interference threshold is fixed and the worst case
of the interference is considered, that is

G H−1A−H−1D
( ) = Q (33)

we can obtain a fixed set of optimal interference prices ci*,
i∈ S. Next, the detailed proof will be given. Similar to the
proof of Theorem 2, we have (see (34))

Remark 2: Similar to Remark 1, we can obtain that the
proposed power control strategy still converges to a unique
NE point, if the maximum power constraint is considered.

Therefore there is a unique NE point in the lower subgame.
Obviously, the SE point is unique.
To guarantee the fairness of the FUEs’ competition and

eventually achieve the revenue maximisation, the reasonable
pricing scheme should be given. Therefore, as the part of
the pricing scheme, the boundary constraints of the
interference prices are also necessary to be investigated.

Proposition 3: The following constraints should be held for
the proposed pricing schemes∑N

i=1 yig0,i

Q+∑N
i=1 di +

∑N
j=i,j=1 aijpj

( )
g0,i

≤ ci ≤
yi

di +
∑N

j=i,j=1 aijpj
(35)

Proof: The proof can be found in Appendix 3. □

In this subsection, the reasonable constraints are discussed
to obtain the optimal solution of Problem 4.2. In Proposition
2, the constraint of the interference threshold is investigated as
a prerequisite condition for getting the optimal solution.
Then, the pricing constraints are proposed in Proposition 3
to achieve the positive FUEs’ transmission powers and
protect the MBS’s SINR performance. Obviously,
Propositions 2 and 3 together form the solvable conditions
of Problem 4.2. Next, an algorithm to remove the
unreasonable pricing FUEs will be discussed in detail.
In the algorithm

fK =
∑K

i=1

�����������������������������
yi di +

∑N
j=i,j=1 aijpj

( )
g0,i

√
Q+∑K

i=1 di +
∑N

j=i,j=1 aijpj

( )
g0,i

6K =
∑N

i=1 yig0,i
Q+∑N

i=1 (di +
∑N

j=i,j=1 aijpj)g0,i

and

ci =
���������������������

yi

di +
∑N

j=i,j=1 aijpj

√
, i [ S

are defined, where K is the number of the active FUEs. By
comparison of the fK and ci, the overpriced FUEs can be
removed from the Stackelberg game. Besides, to ensure the
SINR requirement of the MBS, the restriction of the lower
bound interference price is also considered. The details of
the algorithm are given as follows.

Algorithm 2: Removal based on the FUEs’ unreasonable
interference prices

1. Set K =N.
2. The MBS measures g0,i and the FBSs measure gi, j, ∀(i,
j)∈ S meanwhile broadcast them to FUE i through the
backhaul links.

|Dpi(t + 1)| = ni
ci
− ni

c∗i
+

∑N
j=i,j=1

aijp
∗
j −

∑N
j=i,j=1

aijpj

∣∣∣∣∣
∣∣∣∣∣

≤ ni
ci
− ni

c∗i

∣∣∣∣ ∣∣∣∣+ ∑N
j=i,j=1

aijp
∗
j −

∑N
j=i,j=1

aijpj

∣∣∣∣∣
∣∣∣∣∣

≤
∑N

j=i,j=1

aijp
∗
j −

∑N
j=i,j=1

aijpj

∣∣∣∣∣
∣∣∣∣∣+ ∑N

j=i,j=1

aijp
∗
j −

∑N
j=i,j=1

aijpj

∣∣∣∣∣
∣∣∣∣∣

, ‖Dp‖S (34)
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3. Compute δi and ci.
4. Sort the K FUEs according to ci.
5. Calculate fK and ςK.
6. Compare fK with ci. If fK > ci, remove the overpriced
FUE i from the Stackelberg game, set K =K− 1 and go to
step 5.
7. end.
8. Calculate fKci.
9. Compare fKci with ci. If fKci < ςK, remove the
underpriced FUE i from the Stackelberg game, set K =K−
1 and go to step 5.
10 end.
11. The interference prices with fK are given as follows

ci = fKci, if i ≤ K
1, otherwise

{

12. Set N =K.

Now we discuss several practical issues regarding the
implementation of the algorithm. It is assumed that∑N

j=i,j=1 aijpj in the algorithm is a constant obtained in the
previous iteration. Therefore, only a limited amount of
information need to be exchanged among the FUEs and
BSs (either the MBS or FBSs). In step 5 of the algorithm,
we calculate fK and compare it with the ci to guarantee the
upper bound of the price constraint, that is, fK < ci must be
satisfied to ensure the corresponding pi > 0. Moreover, in
step 9, the lower bound based on Proposition 2 is also
considered to ensure the MBS’s SINR requirement.
Obviously, all the unreasonable pricing FUEs have already
been removed before the execution of step 11.
The pricing mechanisms of the MBS under the uniform

pricing scheme and the non-uniform pricing scheme are
presented in this section. For the uniform pricing scheme,
Fig. 2 presents the view of getting the optimal price in the
monotone case of U2. Based on the analysis, a distributed
interference price bargaining algorithm is proposed. For the
non-uniform pricing scheme, the interference constraint is
considered to ensure the uniqueness of the SE point. The
removals of unreasonable pricing FUEs are also involved.

5 Admission control method for the
proposed pricing schemes

In the above section, the pricing problem is mainly
considered. However, the SINR requirements should also be
satisfied to ensure the connection between FUEs and the
corresponding FBSs. Thus

gi ≥ Gmin, ∀i [ S (36)

is required, where Γmin is the minimum SINR required for an
FUE to communicate with the FBS. If FUEs SINR is below
this threshold, it would simply not access the network.
Under the uniform pricing scheme, general form of the
admission control algorithm is considered. Therefore we
have dedicated to study the admission control algorithm
under the non-uniform pricing scheme which can simplify
the process of the removal.

Assumption 2: In this paper, to facilitate the presentation and
analysis, we assume that the aggregate interference at FBS i
because of all other FUEs is bounded, i.e.,

∑N
j=i,j=1

aijpj ≤ 1, where ε denotes the upper bound. If the worst
case is considered, that is,

∑N
j=i,j=1 aijpj = 1, we propose

an admission control algorithm based on the following
proposition to reduce the computation of information.

Proposition 4: The SINR requirements of all FUEs γi≥ Γmin,
∀i∈ S can be guaranteed, only when the following condition
is satisfied

1��������
d+i + 1

√ ∑N
i=1

��������������
yi(di + 1)g0,i

√
/Q+∑N

i=1 (di + 1)g0,i
( )

− 1 ≥ Gmin

where d+i = argmaxi[S di.

Proof: The proof can be found in Appendix 4. □

Based on Assumption 2 and Proposition 4, the admission
control algorithm under the non-uniform pricing is proposed.

Fig. 3 Convergence performance under the uniform pricing scheme (n = 10)

a Power convergence of the uniform pricing scheme
b Distributed interference price algorithm under the uniform pricing scheme
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Algorithm 3: Admission control algorithm under the
non-uniform pricing

1. Set K =N, and the upper bound aggregate interference
ε = 0.1.

2. The FUEs set the minimal performance requirement Γmin.
3. The MBS measures g0,i and each FBS measure gi,j, ∀(i,
j)∈ S meanwhile broadcast them to FUE i and the MBS
through the backhaul links.
4. Compute δi.

Fig. 4 Convergence performance under the non-uniform pricing scheme (n = 10)

a Power convergence of the non-uniform pricing scheme
b Price convergence of the non-uniform pricing scheme

Fig. 5 Performance comparison of FUEs and the MBS under two pricing schemes against Q

a Average powers under two pricing schemes (n = 20)
b Sum-rate values of FUEs under two pricing schemes against Q (n = 20)
c Revenues of the MBS under two pricing schemes (n = 20)
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5. Sort the K FUEs according to δi = δ2/gi,i, that is,
d2

g1,1
, d2

g2,2
, · · · , d2

gN ,N

( )
.

6. Calculate hk =
(∑K

i=1

��������������
yi(di + 1)g0,i

√
/Q+∑K

i=1(di + 1)
g0,i

)
and jK = [1/ηk(Γmin + 1)]2− ε.

7. Compare δN with jK. If δN > jK, FUE K removes itself
from the Stackelberg game, set K = K− 1 and go to step 5.
8. else if δN < jK

9. end.
10. Set N =K.

It can be seen in step 7 that the comparison result of the
factor δN and jK is provided. It shows that the minimum
SINR requirement can be satisfied for each FUE, if δN < jK,
which can reduce the computation of the information.
Besides, in any other case, it is also not needed to compare
each δi with jK except that all FUEs cannot satisfy the
minimum SINR requirement simultaneously. Noting that if
the worst case is not suitable for the system, we consider
the general form of the admission control, that is, remove
the FUEs which cannot satisfy γi≥ Γmin, i∈ S.

In this section, admission control algorithm is presented to
improve the requirement of the active FUEs. Then it follows
with numerical simulation results and analysis.

6 Simulations results and analysis

In this section, numerical results are provided to evaluate the
performance of the proposed resource allocation schemes
based on the approach of interference pricing mechanism. In
the two-tier femtocell network, the MBS is located at the
centre and the FBSs are randomly distributed within the
circle with radius Rc = 200 m from the centre of the MBS.
Then, the FUEs are randomly distributed in the centre of the
corresponding FBSs with radius Rf = 10 m. Other specific
parameter settings are presented as follows. The rate
parameters li = 1, ∀i∈ S, carrier frequency fc = 2000 MHz,
Kfi = 37 dB. Besides, outdoor loss can be expressed as Kfo =
30 log10fc− 71(dB). The term pmax

i = 0.5 W, ∀i [ S.
The convergence performance of the transmission powers

and interference prices under the uniform pricing scheme
will be given in Fig. 3.
In Figs. 3 and 4, we set a scenario beginning with ten FUEs

in the two-tier femtocell network, all the initial powers are set
to be 0 W. The maximum tolerable interference is chosen as
Q = 10−6. In Figs. 3 and 4, the powers and prices converge
rapidly after a few iterations which prove the convergence
and efficiency of our algorithms. Besides, it is observed from
Fig. 3b that the proposed algorithm converges for all values
of Q which also shows the reasonability of the algorithm.
Fig. 5 shows the different aspects performance of FUEs

and the MBS against the interference threshold under two
pricing schemes. The sum-rate of FUEs are defined as∑N

i=1 li log(1+ gi), i∈ S. It can be seen from Figs. 5a and
b that the average power and sum-rate value under the
uniform pricing scheme are higher than that under the
non-uniform pricing scheme. From Fig. 5b, we can see that
the value of sum-rate under the uniform pricing scheme
varies from 17.1% higher to 12.0% higher when Q changes
from −75 to −45 dB. And the difference converges to a
constant when Q is sufficiently large. Obviously, the
uniform pricing scheme has an advantage in achieving
larger sum-rate value and more satisfaction for FUEs. It is

Fig. 6 Sum interference to the MBS

Fig. 7 Average SINR comparison of active FUEs without and with admission control under the uniform pricing scheme and the non-uniform
pricing scheme against Q (n = 20)

a Uniform pricing scheme
b Non-uniform pricing scheme
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observed from Fig. 5c that the revenue of the MBS under the
non-uniform pricing scheme is higher than that under
the uniform pricing scheme. This can be explained that the
dynamic interference prices can adjust the power allocation
timely to earn more MBSs revenue while the interference
threshold is fixed. We can get conclusion that the
non-uniform pricing scheme is superior to the uniform
pricing scheme in protecting the performance of the MBS.
Therefore, the uniform pricing scheme and the non-uniform
pricing scheme, respectively, have their own superiorities in
different aspects of the network performance. The
description of the sum interference to the MBS is
investigated in Fig. 6.
The example of Fig. 6 shows the sum interference to the

MBS under the proposed schemes and the existing schemes
in [15]. It is observed that the sum interference values to the
MBS under the proposed pricing schemes are lower than that
under the corresponding schemes in [15], respectively. This
is because that the schemes in [15] does not fully consider
the interference between the FUEs. It is not conducive to
protect the quality of service (QoS) of the MBS. In addition,
we can see that the sum interference values to the MBS
under non-uniform pricing schemes are lower than that under
uniform pricing schemes. And, the sum interference values
increase very rapidly from Q =−40 dB under the uniform
pricing scheme and Q =−25 dB under the non-uniform
pricing scheme, respectively. Obviously, the results also
show that the non-uniform pricing scheme has advantages in
protecting the performance of the MBS. To illustrate the
effectiveness of the admission control, the SINR
performance comparison is shown in Fig. 7.
We set a scenario with 20 FUEs in Figs. 7 and 8. And the

minimal SINR requirement is chosen as Γmin = 15. It can be
observed that the average SINRs with the admission
control, respectively, have 15.84 and 27.23% improvement
under uniform pricing and non-uniform pricing. Besides,
under the uniform scenario, the SINR values for FUEs have
the improvement in various degrees with the removal of
FUE6, FUE13 and FUE19. The explanation can be offered
by the equation gi = pi/

∑N
j=1,j=i ai,jpj + di. Obviously,

the total interference reduces with the removal of the FUEs
which cannot satisfy the SINR requirements. In summary,
the results shown by Figs. 7 and 8 verify the effectiveness
of the admission control algorithm.

7 Conclusion

In this paper, two price-based interference management
schemes are proposed in two-tier femtocell networks. With
utility optimisation integrated, the schemes not only restrict
the cross-tier interference at the MBS below a given
threshold but also ensure the optimisation of FUEs’ power
allocation. To obtain a more realistic network scenario, the
boundary constraints of interference prices are also
discussed. The Stackelberg game model is adopted to
jointly study the utility maximisation of the MBS and
FUEs. In the game, the problems of the SE are investigated.
At last, the admission control algorithm is adopted, which
is capable of robustly protecting the performances of all the
active FUEs. It can be observed by the simulation results
that the QoS requirements of all active FUEs have been
greatly improved. The results of this paper are useful to
practically obtain the proper pricing schemes for the
different performance requirements in the realistic femtocell
networks.
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10 Appendices

10.1 Appendix 1: Proof of Proposition 1

From (29), we can obtain its equivalent form

p∗i + SN
j=i,j=1aijp

∗
j =

yi
c
− d, ∀i [ S (37)

Equation (37) can be changed into the matrix form

Hp∗ = B

c
− D

Thus, the equality

p∗ = H−1B

c
−H−1D

holds. If the condition

Q = GH−1B

c
− GH−1D

is satisfied, the optimal price can be obtained, that is,

c∗ = GTH−1B

Q+ GH−1D

10.2 Appendix 2: Proof of Proposition 2

Problem 4.1 is a convex optimisation problem, the duality gap
does not exist between it and its dual optimisation problem.
Therefore the best solution of Problem 4.1 can be obtained
by solving Problem 4.2. The Lagrangian function can be
written as

L(c, a, b) =
∑N
i=1

cig0,i di +
∑N

j=i,j=1

aijpj

( )

+ a
∑N
i=1

yi
ci
− di −

∑N
j=i,j=1

aijpj

( )
g0,i − Q

[ ]
−
∑N
i=1

bici

(38)

Then, the KKT conditions can be expressed as follows

∂L(c, a, b)
∂ci

= g0,i di +
∑N

j=i,j=1

aijpj

( )
− a

yi
c2i

− bi

= 0 (39)

a
∑N
i=1

yi
ci
− di −

∑N
j=i,j=1

aijpj

( )
g0,i − Q

[ ]
= 0 (40)

bici = 0 (41)

a ≥ 0 (42)

bi ≥ 0 (43)

ci . 0 (44)

With (39), we can obtain

c2i = a
yi

g0,i di +
∑N

j=i,j=1 aijpj

( )
− bi

(45)

Lemma 2: βi = 0 and
∑N

i=1
yi
ci
− di −

∑N
j=i,j=1 aijpj

( )
g0,i−

Q = 0.
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Proof: If βi≠ 0, we can obtain ci = 0 which contradicts the
assumption that ci > 0. Besides, assuming that

∑N
i=1

yi
ci
− di −

∑N
j=i,j=1

aijpj

( )
g0,i − Q = 0

from (40), we can obtain α = 0. Substituting it into (45), the
result ci = 0 can be obtained which is opposite to the
aforementioned assumption ci≠ 0. Therefore

∑N
i=1

yi
ci
− di −

∑N
j=i,j=1

aijpj

( )
g0,i − Q = 0

□

Besides, according to (45), we can obtain

ci =
�����������������������������
a

yi

g0,i di +
∑N

j=i,j=1 aijpj

( )√
(46)

Substituting (46) into

∑N
i=1

yi
ci
− di −

∑N
j=i,j=1

aijpj

( )
g0,i − Q = 0

we have

��
a

√ =
∑N

i=1

�����������������������������
yi di +

∑N
j=i,j=1 aijpj

( )
g0,i

√
Q+∑N

i=1 di +
∑N

j=i,j=1 aijpj

( )
g0,i

(47)

Then, it follows

c∗i =
Nyig0,i

Q+∑N
i=1 di +

∑N
j=i,j=1

aijp
∗
j

( )
g0,i

(48)

Besides, in order to guarantee that the transmission powers of
FUEs are positive, the condition

ci ≤
yi

di +
∑N

j=i,j=1 aijpj
= yi

di +
∑N

j=i,j=1 aijpj
, ∀i [ S

should be held. Substituting ci* into above inequality (see
equation at the bottom of the page)

we have

Q .

∑N
i=1 g0,i

������������������������
yi(di +

∑N
j=i,j=1 aijpj)

√
mini

���������������
yi

di+
∑N

j=i,j=1
aijpj

√

−
∑N
i=1

di +
∑N

j=i,j=1

aijpj

( )
g0,i

Proposition 2 is proved.

10.3 Appendix 3: Proof of Proposition 3

To obtain non-negative transmission powers, we have

ci ≤
yi

di +
∑N

j=i,j=1 aijpj
, i [ S (49)

Besides, to meet the QoS requirement of the MBS, the total
interference introduced by the FUEs’ transmission powers
must be restricted within the fixed interference threshold,
that is

∑N
i=1

yi
ci
− di −

∑N

j=i,j=1
aijpj

( )
g0,i ≤ Q

We consider the worst case to meet the requirement of the
interference threshold

∑N
i=1

yi
ci
− di −

∑N

j=i,j=1
aijpj

( )
g0,i

≤
∑N
i=1

yi
cmin

− di −
∑N

j=i,j=1
aijpj

( )
g0,i ≤ Q

Therefore

ci ≥
∑N

i=1 yig0,i
Q+∑N

i=1 (di +
∑N

j=i,j=1 aijpj)g0,i
(50)

Here, the proof is completed.

10.4 Appendix 4: Proof of Proposition 4

It can be seen from the following derivation that γi is a
monotone decreasing function of δi, ∀i∈ S.

gi =
(yi/ci)− di − 1

di + 1
= yi

ci(di + 1)
− 1

= 1

u
�������
di + 1

√ − 1 ≥ Gmin

(51)

where u = ∑N
i=1

��������������
yi(di + 1)g0,i

√
/Q+∑N

i=1 (di + 1)g0,i
( )

.
Thus, the proposition naturally follows.

���������������������
yi

di +
∑N

j=i,j=1 aijpj

√ ∑N
i=1 g0,i

�������������������������
yi di +

∑N
j=i,j=1 aijpj

( )√
Q+∑N

i=1 di +
∑N

j=i,j=1 aijpj

( )
g0,i

,
yi

di +
∑N

j=i,j=1 aijpj
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