
R E S E A R C H A N D A N A LYS I S

Modeling and Assessing Variability
in Energy Consumption During the Use
Stage of Online Multimedia Services
Daniel Schien, Paul Shabajee, Mike Yearworth, and Chris Preist

Summary

In this study, we use an improved, more accurate model to analyze the energy footprint of
content downloaded from a major online newspaper by means of various combinations of
user devices and access networks. Our results indicate that previous analyses based on av-
erage figures for laptops or desktop personal computers predict national and global energy
consumption values that are unrealistically high. Additionally, we identify the components
that contribute most of the total energy consumption during the use stage of the life cycle
of digital services. We find that, depending on the type of user device and access network
employed, the data center where the news content originates consumes between 4% and
48% of the total energy consumption when news articles are read and between 2% and
11% when video content is viewed. Similarly, we find that user devices consume between
7% and 90% and 0.7% and 78% for articles and video content, respectively, depending on
the type of user device and access network that is employed. Though increasing awareness
of the energy consumption by data centers is justified, an analysis of our results shows that
for individual users of the online newspaper we studied, energy use by user devices and
the third-generation (3G) mobile network are usually bigger contributors to the service
footprint than the datacenters. Analysis of our results also shows that data transfer of video
content has a significant energy use on the 3G mobile network, but less so elsewhere.
Hence, a strategy of reducing the resolution of video would reduce the energy footprint
for individual users who are using mobile devices to access content by the 3G network.
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Introduction

The climate-change impact of information and communica-
tions technology (ICT) has been studied by the academic com-
munity for some time, for example, most recently by Malmodin
and colleagues (2010) and Weber and colleagues (2010a); it is
also attracting increasing interest from the public (Greenpeace
2012). Attributional life cycle assessment (LCA), the quantify-
ing of environmental impacts resulting from the creation, use,
and disposal of a product or service, has played a key role in this
analysis. A recent study by Weber (2012) of the sources and
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extent of variability in LCAs of a server computer has identi-
fied the use-phase energy consumption to be the most uncertain.
The observation that the variability in the use phase is very high
has also been made for end-user devices (Beauvisage 2009).

The International Reference Life Cycle Data System (ILCD)
Handbook distinguishes between variance as the degree of
stochastic uncertainty in a single process within an LCA
and variability as the single representation of multiple pro-
cesses and systems with differing impacts (European Union
European Union Joint Research [EU JRC]–Environment and
Sustainability 2011). When faced with variability in a process
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flow, an LCA practitioner has a choice between a more detailed
process model, which will require commensurately more acqui-
sition of associated data, or a less detailed model, which takes an
“average” or “prototypical” process and data set, concealing the
underlying variability. The latter approach has the advantage
of being easier, but may reduce the accuracy of the assessment
and hide potential opportunities for improvement.

In this article, we present an analysis of energy use in the de-
livery and consumption of online digital news content per indi-
vidual user, with particular reference to the variability in energy
use that occurs in the delivery of the service. To do this, we have
developed a model of digital service delivery that is significantly
more detailed than earlier art, and gathered associated data from
new primary and secondary sources. The model covers the use
phase of the life cycle of digital services, including the dy-
namic creation and delivery of content from a distributed set of
data centers, transmission of content through routers, switches,
and cable (“the Internet”), delivery of content through the
user access network, and consumption of content on user de-
vices. Regarding the access network, we consider connectivity
by digital subscriber line (DSL) modems in combination with
on-premise wireless network (WiFi) and third-generation (3G)
mobile networks. These are representative of the majority of ac-
cess modalities in the Organisation for Economic Co-operation
and Development (OECD) countries. In the United States,
wired Internet access by cable is more popular than DSL. For
the purposes of this text, the two are comparable, even though,
on average, the power consumption for cable Internet access
is higher than for DSL (Aleksić and Lovrić 2010). The model
we have developed, and much of the associated data, is of gen-
eral applicability to digital services. Our analysis is focused on
a specific case study: the provision of the multimedia Web site
by Guardian News & Media Limited (GNM). The majority of
visits to GNM’s Web site come from the UK, but there also
is a significant international audience. The functional unit we
adopt in this article is 10 minutes of content browsing, and we
explore the impact of variability in content type (video and
Web page), end-user device (desktop, laptop, tablet, and smart-
phone), access network, geographical location, and browsing
behavior on overall energy use. Regarding variability in brows-
ing behavior, we consider the impact of varying the speed of
changing between Web pages. We present results for a number
of scenarios exploring the impact of this variability and variance
within each scenario modeled, using a Monte Carlo approach,
and identify how the significance of different components of
delivery and consumption alters between scenarios.

This work contributes to state-of-the-art use stage energy
and greenhouse gas (GHG) footprinting of ICT in a number
of ways. First, the model of energy use by digital services we
present is both more detailed than previous studies and more
complete in its ability to capture and distinguish between dif-
ferent usage scenarios. Second, using the primary and secondary
data we have gathered, we present the first detailed analysis of a
diverse set of scenarios for digital media consumption, and thus
update and complement existing studies of the environmental
footprint of digital media. Third, we present novel methodolog-

ical advances in the modeling of digital services—specifically,
the use of Monte Carlo simulation to draw from alternative
subscenarios, rather than error estimates, and our discussion of
the appropriateness of different allocation methods for differ-
ent components of digital delivery. Allocation is an important
consideration in this study because some of the equipment is
used by multiple users and some of the equipment is used for
multiple purposes by the same user, and the energy used by the
equipment has to be reasonably apportioned to the functional
unit of the study. Fourth, we present initial results that can be
used for simplified analyses of digital services.

Our analysis of a large set of typical scenarios of digital
online media consumption provides results that can be com-
pared to several previous studies. The existing studies vary in
the degree to which they apply bottom-up or top-down models
for the majority of the life cycle processes. Our own model and
others (Moberg et al. 2010; Chandaria et al. 2011; Williams and
Tang 2011; Baliga et al. 2009) apply bottom-up models in as
far as they calculate the energy consumption from the additive
impacts for the most impactful processes per functional unit. A
bottom-up model of the energy consumption for Internet de-
livery, as applied by Baliga and colleagues (2009), for example,
sums the proportional energy consumption by each network de-
vice that plays a role in a typical route between two end points.
On the other hand, in studies that mostly apply top-down mod-
els, such as Taylor and Koomey (2008) and Malmodin and
colleagues (2012), the measured or estimated total aggregate
impact of an entire (sub)system is related to the total number
of functional units provided by the system. In Malmodin and
colleagues (2012), for example, the total impact from consump-
tion of electrical energy of a Swedish Internet network is related
to the estimated data volume transmitted through this network
by dividing the former by the latter to give the energy con-
sumption per unit of service. The result of both top-down and
bottom-up allocation is an average value for impact per func-
tional unit, yet only the bottom-up model contains data about
the elementary life cycle processes.

Our work draws from these studies, but goes beyond them
in several ways. First, whereas they use aggregate data and as-
sumptions regarding the average or typical user, we model the
variability explicitly in a number of scenarios. Second, we use a
Monte Carlo approach to account for both variance and vari-
ability within each scenario. Third, we present a principled
approach to the challenge of allocation as applied to digital
services and make use of it in our model.

To our knowledge, ours is also the first study that relates
the energy footprint of 3G networks to a functional unit of a
media service. Although Scharnhorst et al. (2006) and Stutz
and colleagues (2006) both provide an LCA assessment of a
3G cellular wireless network, their functional unit is that of
a year’s mobile service. At this level of aggregation, their re-
sults cannot be related to a single media service similar to our
functional unit. Toffel and Horvath (2004), on the other hand,
analyze the energy footprint of downloading newspaper con-
tent to a handheld reader by a mobile network, but do so for
a two-generation (2G) wireless network. They reference the

Schien et al., Energy Consumption During Use of Online Multimedia Services 801



R E S E A R C H A N D A N A LYS I S

total energy consumption of the wireless network based on an
LCA study from 1999 and relate it, in top-down fashion, to the
total number of subscribers in the network. The most widely
referenced top-down model of the energy footprint of Inter-
net data transfer is presented by Taylor and Koomey (2008)
in a study of the impact of Web advertisements, and we com-
pare its results to those derived from our model in the discus-
sion. The findings by Taylor and Koomey (2008) are applied by
Teehan and colleagues (2010) in a top-down model that is used
to analyze the total energy consumption in the United States
for a variety of tasks, assuming that user behavior in the United
States is similar to survey data from France 2005–2006. They do
not capture the wide variability in the energy footprint result-
ing from individual user behavior and variability in the power
consumption of devices.

This article is structured as follows: In the next section, we
present a conceptual system model and identify suitable ap-
proaches for allocating energy usage to the functional unit for
individual subsystems. This section is followed by a description
of the most significant model parameters. In the subsequent
section, we present the results of the analysis. In particular, we
demonstrate variance and variability between scenarios of de-
vice, service type, and access network combinations. We close
with a discussion and conclusion in the final section.

Models

Broadly, four categories of devices are involved during the
use phase of a digital service. First, data centers consisting
mainly of servers, but also of networking and storage infras-
tructure, provide the service content. In the case of GNM, this
content is split between origin servers belonging to the organiza-
tion itself and a number of third-party server data centers. These
third-party servers either provide additional content, such as ad-
vertising, or belong to content delivery networks (CDNs), which
cache content in different regions around the world to improve
service performance. Second, the devices that make up the edge
and core networks of the Internet, also called the Internet net-
work, transport content from its sources and the third-party
data centers to the end user. Third, the shared access network
(sometimes in conjunction with a customer premise access net-
work), which is DSL, 3G, or DSL in combination with WiFi,
links the user’s device with the Internet network. The fourth
and final category is the user’s device itself.

Figure 1 depicts the devices and energy flows that are the sub-
ject of this article. Not included in our assessment is the impact
of energy embodied in the devices (the energy during manufac-
turing and transport as well as the end-of-life stage of devices),
energy required for software development activities, and energy
used during editorial work. Our collaboration with GNM allows
us to use primary data for many, but not all, processes.

Our functional unit is 10 minutes of browsing, during which
we assume the user issues one or more requests for content. Each
such request involves opening an individual uniform resource
locator (URL) with a Web browser. The energy consumption

for each individual request is the sum of the consumption by
the four subsystems in the delivery model. The energy footprint
for the functional unit is the sum of the energy consumption of
all requests issued during the time of the functional unit. Not
included in this energy footprint is the energy consumption
of other life cycle phases, notably the manufacturing of the
devices.

In the remainder of this section, we will present the model in
detail, starting with the methodology for allocating energy used
by the shared information technology (IT) infrastructure: the
origin servers of the content provider; third-party servers; and
the Internet. We will then look at the energy consumption of
the network connection between the servers and the end user.
Finally, we will discuss the energy consumption of the end-user
equipment itself.

Allocation Approaches for Digital Products

A key methodological decision in LCAs, which can signifi-
cantly impact the assessment result, is made during the allocation
of environmental burden, which is defined as the act of “parti-
tioning the input or output flows of a process or a product system
between the product system under study and one or more other
product systems” (ISO 2006, 4). In this section, we consider
alternative allocation approaches possible for digital products
and discuss their appropriateness in different situations. In the
case of digital products, allocation is necessary for two reasons.
First, equipment use may be shared between multiple users,
such as a content server providing Web pages to many peo-
ple, or a DSL multiplexer providing broadband connections to
a number of households. Second, equipment may be used for
multiple services, such as a physical server running multiple
virtual machines, or a household laptop providing Web access
as well as e-mail, playing music, and many other applications.
In this study, allocation of energy use between multiple services
running on an end-user device, such as the household laptop
in this example, was not conducted; all the energy use for the
device was assumed to be used for accessing video content or
nonvideo content during the 10-minute functional unit.

The ILCD Handbook distinguishes between two approaches
to allocation. The preferred approach, physical causality, allo-
cates burden based on the share of some physical (or other) flow
that is directly related to the environmental burden generated
(EU JRC–Environment and Sustainability 2011). The second
approach is to use some other relationship, such as economic
activity.

We consider three approaches to allocation for digital
services:

1. Data flow: In the case of digital services, there is no clear
“physical” flow to study, but there is a flow of data. Allo-
cation can take place based on the share of data passing
through an energy-using device. This approach is adopted
by Lee and colleagues (2011) and Baliga and colleagues
(2009), which considered both energy consumption by
Internet routers and home access network devices.
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Figure 1 System boundaries. HTML = HyperText Markup Language.

2. Number of users: If a device is shared between services
offered to a number of users, the energy can be allocated
equally to each.

3. Service “attention” time: If a user is using a given device
for a number of services, energy usage by the device can
be allocated based on the amount of time the user spends
using the different services.

None of these cases correspond to the preferred approach
of physical causality because energy usage of devices does not
vary directly proportionally to data flow, users or services being
used. We discuss this in more detail for each device in subse-
quent sections. To determine which approach to use, we adopt
a principle of allocating based on which of these is the limiting
factor to device usage—namely, the factor which, if increased,
would first limit or degrade the quality of service. In the case
of most network devices, this is usually bandwidth. Similarly,
video, audio, or image content servers, such as those used by
CDNs, conduct relatively little computation and are limited by
their capacity to transmit data at speed. In the case of a DSL
multiplexer, on the other hand, which is used to provide access
to the Internet for a number of premises, the limiting factor
is the number of connections it can provide and therefore the
number of users it supports. Also, in the case of a Web server,
the limiting factor is the computational power required to con-
struct pages, rather than the speed of data it outputs. Finally, in
the case of a user device, the limiting factor is usually—but not
always—the user’s attention: The device could easily run more
applications, but the user would only be able to make use of a
limited number at a time.

In addition to the limiting factor, we allocate along that
dimension, which, if changed—given current levels of typical
utilization—would result in the most significant change in the
energy consumption. For user devices, for example, one such
choice is between data volume received and time of service
consumption. In the case of most online multimedia services,
and, in particular, online news, a reduction or increase in the
device operation time will result in a much greater change in
the energy consumption of the service than a change in the
data volume transferred. In summary, we allocate by duration
of use for user devices and network devices inside the customer
premises and by data volume for third-party servers and publicly
shared network devices. In the origin data center, we allocate
by number of services. In the “Allocation Approach” section of
the supporting information available on the Journal’s Web site,
we provide a detailed formalization of our model and allocation
approach for each system part.

Model Parameters

In the following section, we present a parameterization that
allows calculating an energy footprint for a media service pro-
vided by GNM. The main model parameters are power con-
sumption values, throughput capacity and operational use time
of servers, and network and user devices. We will look at each
parameter in turn and discuss possible sources for values and
variability.

First, we consider the GNM data center. GNM operates
virtualized blade servers that are arranged in a tiered array of
25 blades, each of which has a power consumption varying
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between 140 and 300 watts (W) (Beckett and Bradfield 2011)
from base to peak load. Apportioned to the relative number of
monthly visitors, this number of servers is similar to that re-
ported for the German online magazine, stern.de (heise Verlag
2011). The average number of pages served per second from all
servers ranges from approximately 40 to 200 with a trough dur-
ing what are the early morning hours in the UK (Wood 2012).
Also, from internal data, we know the load of the servers typ-
ically varies between 15% and 30%, which is in agreement
with typical utilization of data centers as presented by Barroso
and Hölzle (2007). Network and storage equipment in the data
centers are often shared between independent parts of organiza-
tions, which necessitates allocation decisions. In order to assess
the impact from varying the allocation of this equipment, we
sample this contribution from a triangular distribution between
a minimum of 10%, a maximum of 30%, and a mode value of
15% overhead each. For the additional overhead from cooling
and power transformation PUEorigin, we apply a distribution,
based on the values from Bertoldi (2010), between 1.25 and
2.86 (see figure S12 in the supporting information on the Web
for more details). Data transfer is measured in bits (b) or bytes
(B) (1 byte = 8 bits). During assessments of digital products and
services, it is common to estimate the energy consumption by
networks and servers from the energy intensity of data, which is
expressed in Joules per bit (J/b) or the equivalent kilowatt-hours
per gigabyte (kWh/GB). In the existing literature, values of en-
ergy have been presented in units of Joules (J) and watt-hours
(Wh) and energy intensity in J/b, Joules per megabit (J/Mb), or
kWh/GB. In order to make it easier to compare our results with
past studies, we provide numeric results for energy intensity
in this text in J/Mb and kWh/GB. GNM commissions several
CDNs, of which Akamai delivers the largest data volume, for
pages without video content. For September 2010, Akamai re-
ports a quarterly GHG footprint for sustained bandwidth of
serving data of 1.2 kilograms carbon dioxide equivalent (kg
CO2-eq)/megabit per second (Mbps) (Akamai 2010). Based on
this value and an assumed average carbon intensity of electric-
ity supplied to their globally distributed servers of 0.62 kg CO2-
eq/kWh, we estimate the energy consumption per data volume
transferred to be 2.0 × 10−3 kWh/GB (0.89 J/Mb). Details for
arriving at this estimate, including a rationale for the lower
and upper bound, are provided in the section titled “Energy
Intensity Akamai CDN Servers” in the supporting information
on the Web. Our estimated value is a 15th of the value re-
ported by Google for YouTube servers, which is 2.96 × 10−2

kWh/GB (13.3 J/Mb), assuming a bit rate of 900 kilobits per
second (kbps) (Google 2011) and more than two times higher
than the value of 8.89 × 10−4 kWh/GB (0.4 J/Mb) assumed
by Chandaria and colleagues (2011) for CDN servers streaming
video data. Given the discrepancy between those values, we do
not make additional assumptions about the possible variation
of energy efficiency from changing utilization at different times
of day.

Our network model for edge and core networks, including
fiber-optic equipment, is defined in equation (5) in the “Allo-
cation Approach” section in the supporting information on the

Web. It is a bottom-up model that needs to be parameterized
with the number of hops in the connection between a server
and the user. The alternative modeling approach of top-down
modeling, in the case of the core network, estimates the energy
efficiency of a single service by taking the total energy con-
sumption of the entire network and apportioning it to all ser-
vices delivered. Both approaches arrive at different values, and
we discuss the discrepancy between top-down and bottom-up
models in more detail below. During the Monte Carlo simu-
lation, we evaluate the impact of these different assumptions
by sampling from a triangular distribution. The minimum and
mode values of 0.010 and 0.023 kWh/GB (4.5 and 10.5 J/Mb)
are based on a bottom-up model, which we present in detail
elsewhere (Schien et al. 2012). For the maximum value, we
apply a value of 0.080 kWh/GB (36 J/Mb) based on a top-down
model (Malmodin et al. 2012).

The power consumption per subscriber by the DSL access
multiplexer (DSLAM) was assumed to be approximately 2 W
by several studies (Aleksić and Lovrić 2010; Lee et al. 2011;
Baliga et al. 2009). In addition to that earlier research, our own
measurements also find that the power consumption of DSL
modems is approximately 5 W. Separate WiFi routers have
a similar power consumption, as measurements for the new
Energy Star rating of small network equipment indicate (Energy
Star 2012a). We assume a home setup of a single wireless router
and single DSL modem with both being actively used for the
same time as the end-user devices.

The energy efficiency of cellular wireless networks varies
strongly with the allocation of the energy consumption for cell
subscription required to receive calls. In our Monte Carlo simu-
lation, we apply a triangular distribution with a maximum value
of 0.73 kWh/GB (328 J/Mb), which is based on uniform alloca-
tion of total power consumption to data packets. For the mode
and minimum of the distribution, we apply values that are based
on the allocation of the instantaneous power consumption of
the base station and the data rate per subscriber. We apply 0.12
kWh/GB (54 J/Mb) as the mode and 0.030 kWh/GB (13 J/Mb)
as the minimum, which are based on a power consumption of
460 W per subscriber and a data rate of 11 and 45 Mbps for
High Speed Packet Access, a 3G cellular network evolution
from Deruyck and colleagues (2010). The minimum and mode
value also include an overhead of 1.3 to account for the energy
consumption of the remaining parts of the cellular network in
addition to the mobile base station. This is based on the yearly
energy consumption of 4.177 gigawatt-hours (GWh) for the
whole network of the German mobile network operator, Voda-
fone, for operation of 224,000 base stations (Vodafone 2011),
resulting in an allocated average power draw of 2,129 W per
base station, which is approximately 30% more than the aver-
age nominal power consumption of base stations operated by
Vodafone Germany (Zwemke 2012). We assume that the en-
ergy efficiency of mobile networks is similar between countries
of the OECD, although no systematic study exists.

We distinguish between the following classes of end-user
devices: smartphones; tablets; laptops; and desktop computers.
For the laptop and desktop computers (including monitors),

804 Journal of Industrial Ecology



R E S E A R C H A N D A N A LYS I S

distributions of power consumption are based on data from the
Energy Star measurements (Energy Star 2011, 2012a). These
extensive lists contain power measurements of several thou-
sand energy-efficient devices that were awarded the Energy Star
rating. They do not represent the relative popularity of these
devices.

On top of the power consumption in active idle mode (non-
standby), the execution of computer programs introduces a
dynamic portion of power consumption relative to their uti-
lization of device components, such as the central processing
unit, network interfaces, or disk drives. The relative and ab-
solute magnitude of this dynamic power consumption depends
on several parameters: for example, the specific device and—in
the case of browsing online news—the amount of JavaScript
embedded in a page or the algorithm used to decode a video
data stream to images (codec) used. Yet, systematic research of
the influence of these parameters does not exist. We conducted
a scoping experiment on a single, modern Energy Star–rated
laptop and found no statistically significant variation from idle
power when browsing text; hence, we set α = 1 in equation (10)
in the “Allocation Approach” section in the supporting infor-
mation on the Web. In the consumption of video, however, the
same experimental setup found a significant increase in power
consumption. In our model, we assume the power consumption
of devices increases by 15% when video is viewed; hence, we
set α = 1.15, which is similar to values reported in Somavat
and colleagues (2010).

Based on GNM data, we apply an empirical distribution of
the duration that users spend reading or watching the news.
The distributions can be found in the “Sampled Distributions”
section in the supporting information on the Web in figures S9
and S10. The distribution of news reading is heavy tailed and
has its average at 1.5 minutes. Video content is being watched
for approximately two minutes, on average.

Method

We have conducted simulations of a number of different
scenarios of users accessing GNM digital services to explore the
impact of variability on the energy footprint. Each scenario has
a specific user device, access network technology, and service
type associated with it. The service type can be either a Hy-
perText Markup Language (HTML) Web page, including text,
images, and gif animations, or HTML with embedded video
content. The functional unit for either service is 10 minutes
of browsing. The average duration spent per Web site is 90
seconds for reading text and 121 seconds for videos. The pre-
cise value of the duration per page is randomly sampled during
each iteration of the Monte Carlo simulation. We simulate the
most popular user-device technologies: smartphones; tablets;
laptops; and desktop personal computers (PCs). We exclude
some exotic combinations of local-access network types and
user devices, such as the combination of wired connection of a
phone or a tablet to a DSL modem, but we include the simu-
lation of smartphones connecting to a WiFi. We only simulate

mobile network access for phones, tablets, and laptops. We do
not consider mobile access with a laptop in combination with
an external screen.

For each scenario, we conduct a Monte Carlo simulation
of 1 million runs. This figure was determined by experiment
to ensure convergence of average energy consumption of each
subsystem (servers, networks, and user devices) to within 1%
overall for the same scenario. Each run draws from distributions
based on both variance and variability within a given scenario.
Variance is handled in the usual way, by using distributions
around a mean value based on data quality factors and correla-
tion between different secondary data sources. We give details
of the distributions used in the Supporting Information on the
Web. Our approach to handling variability is novel; instead of
a statistical distribution around a mean, we make random draws
from a representative population of discrete observed values.
For example, in the case of time taken to view a given Web
page or video, we make draws from a distribution generated
from actual usage data provided by GNM. Similarly, the geo-
graphical location of the end user and the time of day accessed
draw from distributions of GNM primary data. In the case of
end-user device power consumption, we make draws from a
population of potential device models, each with an associated
power consumption. Again, details are provided in the Sup-
porting Information on the Web, except where commercially
confidential. In all cases of variability represented in this way,
our model allows values to be fixed to give results for a specific
subscenario—for example, modeling a user accessing the service
from Boston with an iPhone at 6:00 p.m. GMT.

Results

We now present results of our simulations for the scenarios
we explored. We start with the presentation of average abso-
lute values of energy consumption, broken down according to
contributions by different system components. We then show
which components affect the total allocated individual power
consumption most and explore this influence in more depth.

Figure 2 shows the average energy consumption for the differ-
ent scenarios. Error bars indicate the 25th and 75th percentile of
the total energy used for each device/access network scenario’s
sample distribution for ten minutes of viewing either text or
video content. The charts in this figure share the same vertical
scale. Energy consumption varies widely between the scenarios,
highlighting the need to take the particular combination of de-
vice types, local access networks, and service type into account
and precisely estimate their share of use by an audience when
assessing digital products or services.

Average energy consumption for consuming video is higher
than the energy for consuming text. Not surprisingly, in the
case of reading articles, the scenarios with a desktop computer
arrive at the highest total energy consumption, with an aver-
age of 96 kilojoules (kJ) for ten minutes of reading. The least
amount of energy is consumed when reading articles for ten min-
utes with a smartphone over a 3G cellular wireless connection
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Figure 2 Average energy consumption in kilojoules (kJ) for ten minutes of news consumption by system components for selected
combinations of access network and user device type. Shared access network is either the 3G mobile network base station or a digital
subscriber line (DSL) access multiplexer (DSLAM). WiFi = on-premise wireless networks (customer premise access network together with
a DSL modem); 3G = third-generation mobile networks; PC = personal computer.

with a 9-kJ energy consumption. In the case of consuming ten
minutes of video content, the scenarios with a cellular wireless
connection consume the most energy, with the 3G network
alone contributing 121 kJ, which is 83% of the average total en-
ergy consumption for this scenario for smartphones and tablets.
Energy consumption by the Internet network is smaller, but—
at 15 kJ—not insignificant. Energy consumption of scenarios
for consuming video with hand-held devices (smartphones and
tablets) is dominated by the Internet network when access-
ing content by WiFi and by the 3G network when video is
consumed over the 3G network. Energy consumption for con-
suming text with hand-held devices is dominated by both the
origin data centers and type of access network being used to ac-
cess content. In contrast, except for viewing video over the 3G
network on a laptop, energy consumption of scenarios with lap-
tops and desktops is primarily dependent on user-device power
consumption. Of particular significance is the energy consump-
tion by cellular wireless networks in the case of viewing video,
which outweighs all other subsystems. Total energy consump-
tion varies substantially between scenarios. The data center
where the news content originates consumes between 4% and
48% of the total energy consumption when news articles are
read and between 2% and 11% when video content is viewed.
Similarly, user devices consume between 7% and 90% and
0.7% and 78% for articles and video content, respectively. The
full numeric values are presented in the “Numerical Results”
section of the supporting information on the Web in tables
S1 and S2.

Figure 3 shows histograms of selected sample distributions
within the 2.5th and 97.5th percentile. The y-axis in this figure
is the number of times a given energy consumption was cal-
culated during the Monte Carlo simulation. Considering the
nonvideo scenarios, those with a smartphone show a much
smaller degree of variability, compared to those with PCs. This
is mainly a result of the larger variability in the power con-
sumption of PCs, in comparison to smartphones or tablets. The
histograms also show that there is a clear distinction in en-
ergy use between lap- and desktop computers, with laptops only
using more energy than desktops in 2.13% and 2.42% of the
scenario samples for text and video, respectively.

Following Weber (2012), we use a Spearman rank anal-
ysis over several scenarios, varying the access network type
and the service type, to determine how different parameters
of the model affect the final result. A Spearman rank analy-
sis generates coefficient values (ρ) between +1 and –1, with
+1 indicating perfect direct correlation, –1 indicating perfect
indirect correlation, or anticorrelation, and 0 indicating no
correlation.

Figure 4 shows the values of those correlation ranks between
scenarios of consuming video or text, depending on the local
access network type. The graphs only show the variables with
an absolute value in at least one scenario of greater than 0.05.
These are mainly the aggregate variables that represent the en-
ergy consumption of subsystems. The remaining variables are
listed with parameter values in the section on “Model Parameter
Values” in the supporting information on the Web. The markers
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Figure 3 Histograms of total energy consumption in kilojoules (kJ) by all subsystems for selected combinations of access network and
user-device types and consumption of ten minutes of news without video content and consumption of 10 ten of video content.
PC = personal computer ; UMTS = universal telephone mobile system (third-generation mobile network); WiFi = on-premise wireless
network.

in 4a show the Spearman rank values for scenarios with user
devices applying DSL plus WiFi access, namely, smartphones,
tablets, laptops, and desktops, whereas the markers in figure 4b
show the correlation values for user devices applying 3G mobile
access, namely, smartphones, tablets, and laptops. For example,
in the scenario of consuming video over WiFi in figure 4a,
the Spearman rank for the correlation between device power
and total energy consumption in the lowest energy-consuming
smartphone is 0.04 and in the scenario of the most energy-
consuming desktop it is 0.92. Importantly, for video services
consumed on hand-held devices, total energy consumption de-
pends most strongly on the access network, rather than the user
device. Also, for the video scenarios, the access network is much
more relevant to total energy usage than it is for the text scenar-
ios. Not surprisingly, the correlation between server utilization,
expressed by pages per second, and the total energy consump-
tion is higher in the ranks for 3G mobile access than in those
for WiFi, because the former do not include desktop scenarios.
Negatively correlated coefficients indicate inverse correlation
of components; for example, the lower the utilization of the
origin servers (indicated in the row “Page Request per Second
All Users” referring to the total number of page requests hitting
the origin servers, as opposed to the number of page requests
issued by the individual user, which is expressed by the variable
“Duration Reading/Watching Video”), the higher the total en-
ergy consumption. Also, the duration spent viewing each of the
possibly multiple Web pages visited during the ten minutes of
the functional unit appears negatively correlated with the total
energy footprint because it is inversely proportional to the num-
ber of repeated page requests submitted within the ten minutes
(indicated with negative values in the column “Duration” in
figure 4a and 4b). When connecting with 3G, the shared access
network has a stronger impact on the total power consumption
than the home networking equipment when connecting with
WiFi. In the case of watching video, data volume is directly de-
pendent on duration of service consumption. When consuming

text only, data volume has much less impact on total energy
consumption.

Discussion

Analysis

In this section, we discuss our results in the context of previ-
ous work modeling the use-phase energy consumption of digital
media. We compare the quantitative results with those of other
investigators, where there is overlap of the models, and explore
the reasons for differences. The energy per bit varies between
cellular wireless and wired access network connections such as
DSL. For comparison, we also calculate the energy intensity per
data volume for DSL and WiFi access networks, although, for
this subsytem, energy is allocated by time in our model. The en-
ergy consumption of edge and core networks is calculated as the
product of energy intensity and data volume. Our average energy
intensity for the edge and core network (the Internet network)
for either text or video is 0.038 kWh/GB (17 J/Mb), which is the
average value of a triangular distribution with the minimum,
mode, and maximum values, as defined above, equal to 0.010,
0.023, and 0.080 kWh/GB (4.5, 10.5, and 36 J/Mb). According
to the same approach, our value for average energy intensity
of 3G wireless networks is 0.293 kWh/GB (132 J/Mb). Energy
consumption by shared and customer premise equipment for
DSL (DSLAM, DSL modem, and WiFi router) is calculated
as the product of power consumption of devices and time of
use. A value for the effective energy intensity can be calcu-
lated as the energy consumption over the total data volume
transferred. Energy intensity of data over DSL and WiFi differs
between consuming text or video: 0.019 kWh/GB (8.49 J/Mb)
for video over DSL and WiFi, compared to an average total
consumption of 0.733 kWh/GB (330 J/Mb) for text. Williams
and Tang (2011) allocate power consumption only for the du-
ration of the data transfer, resulting in energy consumption
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Figure 4 Spearman rank correlation values between most impactful model variables and total energy consumption for (a) scenarios with
smartphones, tablets, and laptops for connections by digital subscriber line (DSL) and on-premise wireless networks (WiFi) and (b)
scenarios with smartphones, tablets, and laptops connecting by third-generation mobile networks (3G). The Internet consists of
transmission of content through routers, switches, and cable. Home network refers to DSL plus WiFi.

per bit for wired connections of approximately 0.009 kWh/GB
(4 J/Mb), which is approximately one fourth of our results of
0.038 kWh/GB (17 J/Mb). For the servers, on the other hand,
Williams and Tang (2011) arrive at a much higher energy foot-
print per user for browsing Web pages by assuming that a server
is occupied during 50% of the duration the user spends read-
ing a page, whereas we use primary data from GNM showing

that Web servers complete page requests in subsecond time
intervals. Figure 5 compares results for energy per bit on the
Internet and access network in two of our scenarios with the
results from the earlier works. In this figure, we include only
the energy consumption per bit by the Internet and the shared
access networks, which we assume to be independent from the
type of data transferred (text or video). Baliga and colleagues

808 Journal of Industrial Ecology



R E S E A R C H A N D A N A LYS I S

This - 3
G, Text

This - W
iFi, V

ideo

Baliga et al. 2
009

Chandaria et al. 2
011

Willia
ms & Tang 2011

0

20

40

60

80

100

120

140

160
En

er
gy

 p
er

 b
it 

[J
/M

b]
Internet
Access Network

Figure 5 Comparison of average energy consumption for data
transfer by Internet and access network for bottom-up studies.
WiFi = on-premise wireless networks; 3G = third-generation
mobile networks; J = Joule; Mb = megabits.

(2009) estimate a value of 0.0074 kWh/GB (3.32 J/Mb), which
is slightly lower than our minimum assumption of 0.01 kWh/GB
(4.5 J/Mb) for the sum of edge and core routers and fiber-optic
equipment. Whereas they assume 100% utilization of Internet
routers and we assume between 12% and 25% (TeleGeography
2005), our measurements of hop count per route (average of
12) is lower than their assumed value of 14. The difference
regarding the shared-access network power consumption is the
result of a different allocation model. They allocate by through-
put capacity; we allocate by time. We argue, in the “Models”
section above, why we believe time to be a more appropriate
metric. Moberg and colleagues (2010) do not take into account
energy consumption by servers. Idle energy consumption is then
apportioned relative to duration of service use.

Chandaria and colleagues (2011) do not take into account
energy consumption of the Internet in their calculations. Their
result for the wired-access network is 0.024 kWh/GB (11 J/Mb),
and ours is 0.019 kWh/GB (8.49 J/Mb). This similarity is ac-
cidental. They take into account the idle power consumption
of the DSL modem based on the assumption that it is used
for 10.75 hours per day and idle for the remaining time and
allocate it to the active use time similarly to Moberg and col-
leagues (2010). We, on the other hand, include a wireless net-
work router besides a modem (both 5 W), but do not account
for idle power consumption. The reason why we do not in-
clude idle power consumption of user equipment in this assess-
ment is the current lack of systematic studies of this important
factor to energy consumption at user premises. This problem
is further compounded by allocation questions of idle power
consumption.

Even though every new generation of mobile networks
brought a decrease of the energy consumption per bit of data,
the total power consumption of base stations increases with
their total throughput capacity (Manner et al. 2010). This, to-
gether with higher bandwidth usage by mobile services (Cisco
Newsroom 2012), means their relevance will grow. Our assump-
tions regarding the energy efficiency of mobile data transfer

overlap with those by Toffel and Horvath (2004). They relate
the total energy consumption of a 2G mobile network to the
total number of subscribers in the network and determine a
power draw of 840 W per subscriber. This average power draw
is then applied to the transmission of data, which is assumed to
endure 60 seconds over a 56-kbps modem. The resulting energy
consumption of 33.33 kWh/GB (15,000 J/Mb) is two orders of
magnitude higher than our average values of 0.293 kWh/GB
(132 J/Mb). This discrepancy mainly results from outdated val-
ues for the utilization of mobile networks and from using the
energy footprint of voice service to calculate the footprint of a
data service.

In their top-down study, Taylor and Koomey (2008) find
the energy footprint per data volume to range between 9 and
16 kWh/GB (4,050 to 7,200 J/Mb). This figure has been refer-
enced and updated by several other studies extrapolating using
a trend identified by Taylor and Koomey (2008). Weber and
colleagues (2010a) use this in a comparison of the environmen-
tal impact of different methods for delivering music and assume
a value of 5 to 7 kWh/GB (2,250 to 3,150 J/Mb). Preist and
Shabajee (2010) estimate an upper bound on future global en-
ergy use for the provision of media services and extrapolate to a
value of 4 kWh/GB (1,800 J/Mb) from Weber and colleague’s
value. In order to compare this value to the results derived from
our model, it is useful to consider the results separately for servers
and the network in the way that Moberg and colleagues (2010)
performed their calculation. For the data transport, they also
apply Taylor and Koomey’s (2008) values, excluding the con-
tribution of servers, to give a value of 3 kWh/GB (1,350 J/Mb).
Taylor and Koomey (2008) take the energy consumption val-
ues from a study by Roth and colleagues, which accounts for
network components used in a commercial context (Roth
et al. 2002). Roth and colleague’s inventory is now severely
outdated, but in order to compare Taylor’s values with ours, it
is necessary to analyze this data in more detail. They distin-
guish between several device types, among which only the wide
area network (WAN) switches and routers map to our model
of the public Internet. They calculate the energy consumption
on total shipments of network devices, which include Inter-
net service providers (ISPs), commercial intranet, and house-
hold deployments, and, accordingly, their results are likely to
overestimate the energy consumption when applied to calcu-
late the power consumption of the public Internet. Assuming
that three device categories (hubs, routers, and WAN switches)
contain the devices that we consider the public Internet, then
the energy consumption of the Internet would only account
for 14% of Taylor and Koomey’s (2008) values. Applied to the
values extrapolated by Preist and Shabajee (2010), this would
result in an energy footprint for the Internet of 0.52 kWh/GB
(230 J/Mb), which is roughly 14 times higher than our value
of 0.038 kWh/GB (17 J/Mb). Chiefly among the reasons for
this discrepancy are a potential overestimation on the side of
Roth and colleagues (2002), an underestimation of the network
traffic in the Internet, or a severe underestimation of the num-
ber of devices and their energy consumption in our bottom-up
model.
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Data Quality

Data on GNM server energy consumption and duration of
service use was provided as primary data by GNM, so it is of
high quality. For energy consumption by third-party servers, we
use a figure estimated from publicly available emissions data
from Akamai, one of the largest content delivery networks for
the media industry, and use this for all third parties. Other
CDNs that mainly provide static files are likely to operate their
servers at similar energy efficiency. For servers that provide cus-
tom content, such as advertising content providers and data
analytics servers, this energy-efficiency value is likely to be a
significant underestimate. Our model of the Internet distin-
guishes between edge and core routers. For each class of router,
we have a number of data points from manufacturers’ specifica-
tions and peer-reviewed literature, which we use to generate a
mean value and statistical distribution. Our model of the shared
wired access network uses a similar approach. It omits certain
equipment, which is operated by some, but not, all ISPs—for
example virtual private network (VPN) connection servers be-
tween the access network provider and the Internet ISP or
Remote Authentication Dial-In User Service servers—because
of a lack of publically available data. Although we believe that
this is acceptable as a lower bound for the shared access net-
work power consumption and that inclusion would increase the
portion of the shared access network without significantly alter-
ing the overall results of our assessment, further research would
benefit from transparency of ISPs in this area. Data on energy
use of end-user devices comes from Energy Star and so can be
considered primary data. The relative quality of the different
data points was used in determining the range of variance of pa-
rameter distributions used within the Monte Carlo simulation
described previously.

Implications and Applications

Our work highlights the importance of allocation techniques
that are in accord with the technical functionality and usage of
the system under study, and this is particularly challenging in
the area of IT systems. The choice of an allocation technique
can have a significant impact on the results of the LCA. Our
work makes a contribution to the debate of how best to do this,
although we do not claim that we have provided the definitive
answer. In particular, we allocate all energy of a user device to
one function—namely, browsing a Web site—while the user is
carrying this out, even though the system could be carrying out
other functions simultaneously. For example, it may be play-
ing music. Also, it is likely providing instantaneous availability
of services, such as e-mail, Internet telephony, or instant mes-
saging chat. The question of how best to allocate user-device
energy between these requires further work. Further, a user de-
vice has periods when it is consuming energy on standby, or
is on but not providing any active functionality. How best to
allocate the energy used during these periods between the vari-
ous functionalities it provides is also a question meriting further
exploration.

Beyond the scope of this article, it is relatively straight-
forward to extend our analysis to cover GHG emissions in a
specific location resulting from consumption of online content.
The model identifies the different locations where electricity
consumption takes place in the use phase of a service. This can
be combined with national and regional GHG emission figures,
where they exist, to give a more precise estimate than would
be possible using a single global or national figure. Our work
can also be extended to allocate energy and GHG emissions
associated with manufacturing the equipment used to provide
the digital services. This is obviously an important part of the
overall footprint and should be accounted for when making
comparisons with alternative delivery methods of news con-
tent, such as paper based.

The global IT system is responsible for the consumption of
3.9% of all electricity generated (Malmodin et al. 2010). A sig-
nificant amount of effort has been put into reducing energy use
of individual components—such as laptops and data centers—
motivated by eco-efficiency and cost savings. Although this
is valuable, it does not address the energy and environmental
consequences of design decisions taken by the various parties in-
volved in providing services across the Internet. The complexity
of the business ecosystem involved in such services means that
a design decision by one can have energy (and therefore en-
vironmental and cost) implications on many others. Similarly,
choices by the end user have effects throughout the system, and
those choices are influenced by the service provider. The en-
ergy model presented in this article is detailed enough to allow
assessment of the implications of such decisions and choices. It
allows the systemic approach that characterizes industrial ecol-
ogy to be applied to the IT business ecosystem in a number of
ways.

First, such a model can be used to support real-time feed-
back to a user about the energy and climate impacts of their
online behavior, as proposed by Weber and colleagues (2010b).
We discuss how distributed systems technology can be used to
support this in Schien and colleagues (2011). Though this may
be of interest to some users, we do not see this as likely to lead
to significant energy reduction without action by the service
providers. Service providers can use our model to assess the ef-
fect of possible user trends on energy use by their service and use
this to consider which trends to encourage and which to discour-
age. For example, in the case of consuming news for 10 minutes
analyzed here, the Spearman rank analysis shows that different
variables dominate the overall energy footprint depending on
which service type, user device, and access network are chosen.
When accessing nonvideo services by WiFi, the user device
dominates in the case of lap- and desktop devices, but when ac-
cessing nonvideo services by WiFi with smartphones or tablets,
the origin servers and per-page duration of reading are most
significant. In contrast, when accessing video content over cel-
lular wireless networks, the most significant factor is the wireless
access network. When reading text over a cellular wireless net-
work, the user device is most important when using a laptop and
the data volume and origin servers when using a smartphone or a
tablet.
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Figure 2 shows that except for viewing video over a 3G
network, scenarios with low-power user devices, such as smart-
phones and tablets, result in lower overall energy consump-
tion, compared to scenarios with lap- or desktops. This suggests
that encouraging a move to smartphone and tablet access will,
in many cases, decrease overall energy consumption. This can
be done through the provision of applications that enable en-
hanced experiences on such devices, provided that such a move
does not stimulate additional purchases or an increased upgrade
rate of such devices.

Second, such a model can be used to assess the impact of
decisions by designers of a digital service on the energy use
of that service across the IT system and propose design mod-
ifications that result in reduced energy use. For example, our
analysis shows that data transfer of video content has a signif-
icant energy use on the 3G mobile network, but is less when
transferred over other networks. Hence, a possible design in-
tervention would reduce the resolution of video automatically
when the service provider detects that the service is being deliv-
ered over 3G, but leave high resolution at other times. Such an
intervention, if widely adopted among video service providers,
could significantly reduce load on the 3G mobile network and
hence associated energy use, environmental impacts, and costs.
Beyond the analysis for GNM’s Web site that is presented in
this article, our approach can be used to evaluate other IT de-
sign and architectural decisions from an energy perspective. For
example, Apple’s iCloud music-match service fingerprints songs
of a user’s music collection locally and adds the identified songs
to the cloud library from the existing cloud repository and thus
avoids redundantly uploading terabytes of music files (Schien
2012). Another intervention that can be evaluated with the
model is increasing outsourcing of data from the servers of a
host, such as GNM to the CDNs, who can serve content more
efficiently and benefit from economies of scale at the same time
as reducing bandwidth in the core network, realizing additional
energy savings.

More broadly, such a detailed model can be applied to ques-
tions of “virtual industrial symbiosis.” Certain Internet architec-
tures used by service providers, such as the peer-to-peer archi-
tecture used by the Spotify music streaming service, use “waste”
compute cycles on customer machines to deliver content on
other machines. The prime motivation of such architectures is
cost reduction (by avoiding energy and infrastructure) at the
service provider. Our model could be extended to allow as-
sessment of such architectures to determine whether they do
reduce energy consumption across the system or simply move
the energy burden away from the service provider.

With the increasing pervasiveness of digital technology, so-
phistication of online services, energy consumption by IT, and
complexity of the business and technical systems that deliver
them, it is necessary to go beyond local optimization of energy
use and environmental impacts and adopt a systemic perspective
to mitigation, as advocated by industrial ecology. By providing
a model of digital services detailed enough to explore the im-
pact of design interventions on energy use across the system, we
facilitate the adoption of such a perspective.

Conclusion

The use of aggregate figures and assumptions about typical
user behavior may be adequate for environmental accounting
and reporting purposes, yet it can conceal insights into the
impact of variability on an energy footprint that can be used for a
number of other purposes. As proposed by Weber and colleagues
(2010b), a more detailed model can be used to support real-time
feedback to a user about the energy and climate impact of their
behavior. We discuss how distributed systems technology can
be used to support this in Schien and colleagues (2011). Such
a model can also be used to support the environmental strategy
of an organization wishing to reduce the footprint of its digital
services. It can be used to assess different interventions for their
potential impact and support “design for environment” of digital
products.

For example, our results show that data transfer of video con-
tent has a significant energy use on the 3G mobile network, but
less so elsewhere. Hence, a strategy of reducing the resolution of
video would be appropriate for mobile devices, but unnecessary
for other devices. If the browsing time of users is assumed con-
stant, the model also shows that the duration of time spent on a
page is inversely correlated with energy consumption, particu-
larly if that page is of text or images, rather than video, because
when the user is looking at multiple pages, the delivery of each
adds to energy consumption. This suggests that focusing on the
design of Web service and content to enable users to easily get
to content that is most of interest to them, and ensuring it is of
sufficiently high quality that they want to stay with it, is ben-
eficial in terms of both the energy footprint and as a business
strategy.

Recently, data-center energy consumption has received
heightened public attention, for example, by Cook and Van
Horn (2011). Though increasing awareness of this issue is jus-
tified, our analysis, together with that of others, shows that in
most cases, energy use by user devices and the 3G mobile net-
work are bigger contributors to the service footprint. In the
case of online news, it is only when accessing text by a mo-
bile device on the 3G network that energy consumed by data
centers is dominant (this might differ for other more computa-
tionally intensive services). Data centers are assuming the role
that plastic bags have for supermarkets, receiving attention dis-
proportionate to their relative contribution of environmental
burden, compared to other parts of the retail business. It is im-
portant that the analysis of the impacts of ICT, and the means
to mitigate these, takes a view of the entire system.
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