
◆ Latency in Cloud-Based Interactive
Streaming Content
Ron Sharp

Personal cloud computing will offer individuals and small businesses
unlimited computing and network resources with no restrictions of
hardware, operating systems, and access networks and without the hassle
and cost of regular maintenance and security. However, moving these
applications into the cloud can add a good bit of latency between an action
(e.g., dragging a mouse) and the expected result (highlighted text). Our
initial investigation found that user-acceptable latency depends on the
application, but the most stringent games demand a roundtrip latency of less
than 100 ms. Examining the entire action-response path, we identified the
major contributors to latency and what can be done to minimize it for
personal computer (PC) applications executed in the cloud. In this paper, we
provide target latency values for each stage and suggestions on how to
achieve this target. Special focus is given to video encoding since current
encoders do not sufficiently support multiple streams and the low latency
required for a cost-effective personal cloud computing service.
© 2012 Alcatel-Lucent.

frames per second (fps) or more as depicted in Figure

1a. Each frame of the video (one screen image) is cre-

ated by a computer application, often with help from

a graphics coprocessor. The primary difference

between this video and a television show or a

streamed Netflix* movie is that each frame of the

video from the computer is created a fraction of a sec-

ond prior to viewing. The other important difference

is that the content displayed is dynamically influenced

by the consumer in real time. For some applications,

such as reading email, the frame content does not

change often but the frames are still redisplayed

(refreshed) many times a second.

Introduction
Interactive content is video (or other media)

which is dynamically influenced by user input. For

this paper, we will focus on interactive video for a

personal cloud computing (PCC) service. Figure 1
depicts this service. Figure 1a shows a typical personal

computer (PC) setup with all application processing

performed locally. Figure 1b shows the PCC service

with all input being sent over the network to a remote

server and the resulting video being sent back to the

user’s screen. It is important for the discussion to

understand that all computer-generated content

viewed on a computer monitor, television (TV), or

mobile device is in effect a video running at 25 to 60

Bell Labs Technical Journal 17(2), 67–80 (2012) © 2012 Alcatel-Lucent. Published by Wiley Periodicals, Inc.
Published online in Wiley Online Library (wileyonlinelibrary.com) • DOI: 10.1002/bltj.21545

68 Bell Labs Technical Journal DOI: 10.1002/bltj

With interactive content there is always some gap

between a user action and the resulting change

as perceived by the user. For some functions, such as

moving the cursor with the mouse, we do not notice

this delay. However, time is required to detect mouse

movement, calculate the new position on the screen

for the cursor, determine appropriate changes to the

next frame, modify the frame, wait for next frame

time, and send the frame to the monitor. When all of

this occurs on your local computer it takes less then a

twentieth of a second (50 ms) and you cannot per-

ceive the delay. However, when streaming interactive

video from the cloud, the processor is moved far away

from the user’s keyboard, mouse, and monitor. This

introduces many additional requirements and steps

which add to the overall latency.

Let’s define what we mean by latency in this envi-

ronment. Let’s assume an application (e.g., game or

Panel 1. Abbreviations, Acronyms, and Terms

3D—Three dimensional
3G—Third generation
4G—Fourth generation
ASP—Application service provider
CPU—Control processor unit
CRT—Cathode ray tube
DSL—Digital subscriber line
FPGA—Field programmable gate array
FPS—Frames per second
GDR—Gradual decoder refresh
GPU—Graphics processor unit
GSM—Global System for Mobile

Communications
GTA—Grand Theft Auto
HDTV—High-definition television
HSPA—High Speed Packet Access
HTML—Hypertext Markup Language

IP—Internet Protocol
ISP—Internet service provider
ITU—International Telecommunication Union
LCD—Liquid crystal display
LTE—Long Term Evolution
NAL—Network abstraction layer
PC—Personal computer
PCC—Personal cloud computing
PCIe—Peripheral component interconnect

express
PON—Passive optical network
PS2—PlayStation 2
RTP—Real Time Transport Protocol
STB—Set-top box
TCP—Transmission Control Protocol
TV—Television
USB—Universal serial buss

Key clicks

Mouse actions

Video
 frames

(a) Local processing

Key clicks and mouse actions

Video frames

PCC server
(b) Remote processing via PCC service

PCC—Personal cloud computing

Key clicks

Mouse actions

Figure 1.
Interactive video for a personal cloud computing service.

DOI: 10.1002/bltj Bell Labs Technical Journal 69

photo editor) is running on a server many miles away

(see Figure 1b). All keyboard and mouse input are

sent over the network to an application running on a

remote server. The video frames generated by the

application on the remote server are diverted from

going to the host’s video monitor and sent back over

the network to a simple client box which forwards the

frames to a connected display (monitor, TV, or hand-

held). Latency represents the time from a local user

event (e.g., mouse move) to the user seeing the

response on the screen (cursor move). Figure 2
shows the steps which impact latency for interactive

content created in the cloud. A short description of

each of these steps is included in Table I.
Steps 2 through 4, and steps 6 through 11 in Table I

were added as a result of moving this application

to the cloud. The focus of our research is to minimize

the added latency from these steps. In this paper we

will provide a detailed description of the complete

round trip, and explain how each step contributes to

the total latency and what has been done or can be

done to reduce its impact. We will go into additional

detail in the area of compression, which can add

greatly to this latency and which has been the focus of

much of our work.

Previous Work
Hypertext Markup Language (HTML) web pages

serve as the primary interface mechanism to the web.

Web servers do not create each video frame but rather

send instructions to the client on how to build and

display each page. Much work has been done on the

latency between a mouse click and the resulting web

page being displayed due to the financial impact to

web vendors. Google determined that a search results

page that was delayed by more then 500 ms (half a

second) resulted in 20 percent less traffic. Amazon

found that every 100 ms of latency cost the company

one percent in sales [7]. Other research has studied

latency in multi-player games. In these games, the

video frames are created locally, but user input is sent

to a remote server and instructions on their impact

are returned. Thus, high latency could result in shoot-

ing at a target which is no longer there. Both [3] and

[5] discuss the impact of network latency on multi-

player games. The consensus was that a user’s tolerance

to latency can vary greatly by the type of game and

also the extent to which the developers worked to

hide any latency (e.g., shotguns tolerate latency much

better then sniper rifles). Other work has been done

on latency in video conferencing. It is a common

Access network

App App App

GPU

Encoder

Packetizer

CPU (virtualized)

Virtualized compute server

1

VM hypervisor

App—Application
CPU—Central processor unit

GPU—Graphics processor unit
VM—Virtual machine

12 2

3

10

Internet

4

9

8

11 7

6

5

Figure 2.
Round trip latency path.

70 Bell Labs Technical Journal DOI: 10.1002/bltj

occurrence today for the audio and video in a video

conference to be out of sync. This is primarily due to

latency introduced by the extra processing required

by the video [6]. Very little work has been done in

the area of latency on streaming interactive video

content in which the remote server creates and trans-

mits each video frame. The primary reason for this is

that until recently few homes could support the band-

width required for this content. An emerging leader in

the area of offering a streaming, interactive video

Added by Latency Latency Latency
Steps cloud low typical high

1 User action and detection: Depresses mouse key
(or tap a touchscreen) and event sent to local device 2 4 8
(STB, PC, TV, Tablet). Low assumes optimized user device.

2 Event packetization: Package event notification in a X 0 0 1
packet and send. Computer cycles, negligible impact.

3 Event packet to ISP: Travels over access network to X 2 4 8
Internet service provider

4 Event packet to ASP: Travels over Internet to X 2 6 20
application service provider.

5 Application processing: Application receives packet
and makes changes (working with GPU) to next 40 40 80
video frame.
Includes rendering time. High assumes 30 fps.

6 Frame transfer to encoder: Frame is transferred from
GPU to encoder. Low assumes minimal CPU intervention X 3 18 32
and frame pushed directly to encoder.

7 Encoding: Frame is encoded (compressed). Low is time X 4 16 30
required for first segment to be encoded.

8 Frame packetization: Encoded frame is broken into X 1 12 16
packets and sent out. Higher numbers assume queuing.

9 Frame packets to ISP: Travel over ASP network and X 2 8 35
Internet to service provider.

10 Frame packets to user: Travel over access network to X 8 20 32
user. Low assumes a fast (>30 MB/s) access network.

11 Decode frame: Local processor reconstructs and X 8 16 32
decodes (decompresses) frame

12 Display frame: Frame is sent to user display. Low
8 16 62assumes 0 processing by display.

Total 80 160 356

Total for ms added by cloud X 30 100 206

Table I. Latency contributors.

Note: Latency times in milliseconds (1/1000 second).

ASP—Application service provider
CPU—Control processor unit
fps—Frames per second
GPU—Graphics processor unit

ISP—Internet service provider
PC—Personal computer
STB—Set-top box
TV—Television

DOI: 10.1002/bltj Bell Labs Technical Journal 71

service is OnLive* [12]. It is a startup offering online

gaming via streaming content. Throughout this paper,

I will cite examples of their efforts. OnLive has obvi-

ously done considerable research in this area over the

years but has published very little, presumably to pro-

tect their trade secrets.

Acceptable Latency
How much latency will a user tolerate? Not sur-

prisingly, the answer depends on the service and

action. For voice applications, the International

Telecommunication Union (ITU) G.114 standard [10]

recommends a maximum “one-way” latency of 150 ms.

Video conferencing uses the same value for maximum

latency. However, it is recommended that the voice

and video should not be separated by more than

75 ms [6] to avoid a detectable lip sync issue. For per-

sonal cloud computing (PCC), the tolerable amount of

latency can vary greatly by the application. For many

office applications, such as word processing and email,

the latency (round trip) can be as high as 1/3 second

(333 ms) without a user noticing the extra lag.

A notable exception to this is mouse cursor movement

which our tests have found distracting above 100 ms.

When the application is a game, latency requirements

are even more stringent. Some hardcore gamers will

say it must be less than 50 ms. However, most agree

the desired target is between 50 ms and 100 ms for

interactive games. It is interesting to note that many

console games (e.g., PlayStation*, Xbox*, Wii*) exceed

this target anywhere from 51 ms to a high of 166 ms

for Grand Theft Auto (GTA*) [18]. Some of the reason

for this added delay in console games is due to the

expanding market for high-definition televisions

(HDTVs) over those with cathode ray tubes (CRTs).

This is discussed further in the “Latency Contributors”

section.

OnLive Gaming Service
OnLive offers PC gaming from the cloud. From a

PC or Mac*, TV (with set-top box), or tablet/cellphone

you can play high-end PC games. OnLive had publicly

stated a target of 80 ms for latency. Considering that

half of that number can be from the game itself (steps

1, 5, and 12 in Table I) this is a very challenging goal

to reach. OnLive plans to place five data centers

around the country to service all of the United States

(U.S.), with each data center sited within a 1,000 mile

radius of the others. Currently they have centers in

Virginia and California. I tested the OnLive service

from locations which were 25 miles and 250 miles

from the OnLive data center in Virginia. Results are

shown in Table II. Playing a first person shooter

game, I measured latency of 150 ms and above. This

is considerably above OnLive’s target as well as most

hard-core gamers’ “stated” threshold. However, OnLive’s

business seems to be succeeding. Reviews of the ser-

vice are mostly positive. The reviewers all mention

the noticeable latency but they feel the average gamer

can compensate and the service is worth it. However,

many hard core gamers give it poor reviews due to

latency and swear they would never pay for the ser-

vice. The most common complaint is the degraded

quality due to compression and decompression of the

video stream.

I found the service very acceptable for most

games. Video quality was lower than with the PC ver-

sion and the latency was only somewhat noticeable.

The only latency issue I encountered was with games

where fast and accurate mouse movement was

required, such as a trivia game which required using

the mouse to select the proper answer as quickly as

possible. I surveyed a few avid gamers (age 18–25)

who noted that they could detect the slower response

times but felt the games were playable and it is a ser-

vice they would consider. Their primary concern was

the loss of video quality. Video quality from encoding

is highly dependent on available bandwidth so we can

expect video quality to improve as access speeds

increase. Digital Foundry performed a detailed review

of the OnLive service in the United Kingdom (U.K.),

and provided test results for latency and evaluations

of video quality and game performance [11].

Latency Contributors
Table I provides the list of steps for the total round

trip for cloud-based interactive video content. With

each is an estimate of the expected time in millisec-

onds for minimum, typical, and high latency. Some of

the latency values shown are measured and some are

estimated using data from other studies. The minimum

(low latency) column is highly optimized and assumes

72 Bell Labs Technical Journal DOI: 10.1002/bltj

all recommendations described in this paper were

implemented. This is the column we should use as

our target for each segment. The typical column is

what can be expected with today’s technology,

Internet, and access networks and servers tuned for

interactive content. The high column shows the

latency with no tuning for interactive content and

poor choice for user equipment. The sections below

describe each step in more detail and provide sugges-

tions on how to reduce the latency for the step.

User Action and Detection
This step is the same for local or cloud processing.

The local device, whether PC, set-top box, or tablet,

must detect an event from a peripheral such as a key-

board, mouse, or touchscreen. The latency can vary

greatly depending on the device and the protocol used

to connect to it. For example, the standard Microsoft

Windows* universal service bus (USB) port polls at

125 Hz so it can take up to 8 ms to detect a mouse

movement. On average, it will take 4 ms. PlayStation

2 (PS2*) ports scan at varying rates but most are set at

100 Hz so it is a little slower than a USB device. Both

of these numbers were verified with lab tests. Wireless

(Bluetooth*) peripherals can add a good bit of extra

lag. Bluetooth can add up to 20 ms or more. This was

confirmed in our lab using a Bluetooth keyboard and

mouse. Most local processing can afford this extra

latency but cloud applications cannot.

In another test, I used a wireless performance

mouse from Logitech (M705). It uses a wireless pro-

tocol in the 2.4 GHz range. The result was 125 Hz,

matching the USB port into which its receiver was

plugged. I performed another test on a touchpad for a

laptop computer and obtained a result of 80 Hz (an

average of 6.25 ms delay). Clearly a USB mouse or

keyboard is the preferred device, however even they

still used precious milliseconds.

One method used by gamers to lower this latency

is to overclock the USB or PS2 port [13]. You can, in

theory, overclock the USB port to 1000 Hz reducing

the added latency to 1 ms. Of course, your mouse

(and keyboard) must be fast enough to take advan-

tage of the increase in speed. OnLive decided to go

with the IEEE 802.15.4 wireless standard [9] for their

microconsole (TV set-top box (STB)). They report that

Location Murray Hill, New Jersey Greenbelt, Maryland

Miles to OnLive data center �200 �10

Access service Comcast FIOS‡

Access type Cable Fiber optic

Speed – downstream 23 Mb/s 42 Mb/s

Ping time to OnLive server network 21 ms 6 ms

Traceroute hops to OnLive network 14 7

OnLive downstream video speeds 4–6 Mb/s 4–6 Mb/s

OnLive frame rate 40–60 fps 40–60 fps

Average latency using keyboard 175 ms 160 ms

Average latency using mouse click 160 ms 140 ms

Average latency using mouse movement 155 ms 140 ms

Table II. Test results for the Online† service.

fps—Frames per second †Registered trademark of OnLive, Inc.
‡Registered trademark of Verizon Trademark Services LLC.

DOI: 10.1002/bltj Bell Labs Technical Journal 73

it adds only 800 ms (for one controller) and a maxi-

mum of 2 ms for four controllers [8].

Event Packetization
The event details (mouse button or keyboard key

depressions) are enclosed in a small Internet Protocol

(IP) packet. This is handled by the processor on the

PC, set-top box, or mobile device and adds negligible

latency.

Event Packet to ISP
The small event packet is sent up the access net-

work to the Internet service provider (ISP). The

amount of time for this will vary greatly with the

access technology. In a passive optical network (PON)

(fiber), the latency can be as low as 1 ms with an opti-

mized scheduling algorithm. For cable, we measured

average latencies of 4 ms in our lab using Comcast

cable. For digital subscriber line (DSL), the numbers

are higher with a minimum of 5 ms to a typical of 15

ms. The numbers for PON and DSL were obtained

from experts within Bell Labs. In wireless networks,

latency can be even higher [14]. For example, in a

Global System for Mobile Communications (GSM)

network, it can be 120 ms, but with newer technolo-

gies, latency is decreasing. For High Speed Packet

Access (HSPA) it is 40 ms, and for Long Term Evolution

(LTE) latency can be reduced to 20 ms. A lab within

Alcatel-Lucent has reported latencies below 15 ms for

packets going from a mobile device to an LTE base

station node. For both wireline and wireless tech-

nologies the latency can be reduced with better

scheduling algorithms and minimizing hops within

the ISP’s network. A traceroute test with a Comcast

cable service revealed the packet traversed eight

routers in the Comcast network before exiting to the

Internet or to the application service provider (ASP)

network.

Event Packet to ASP
The packet now must travel over the Internet to

the ASP. The cost here is speed of light and processing

time at each router it encounters. The speed of light

through a fiber [4] creates a delay of approximately 4

ms for each 500 miles traveled. The latency added at

a router varies considerably from under 50 ms to over a

millisecond. The variance is caused by the amount of

time the packet must wait in a queue behind other

packets going out a particular network port. If there is

no congestion, the latency added by large Internet

routers is small. However, a packet may have to tra-

verse many routers before reaching its destination.

During the test of the OnLive service from our lab,

packets traversed 15 routers (30 total for round trip).

Using the “ping” tool, I measured a total round trip

time of only 16 ms. Pinging the nearest router showed

that half of that 16 ms was for the access network

(i.e., event packet to ISP). Half of the remaining 8 ms

was speed of light cost. So each router contributed

less than 1/8 of a millisecond (4 ms/30). Of course a

few of the ping measurements showed much higher

numbers (up to 78 ms), presumably due to conges-

tion. If these numbers were to increase or become

more common, the network cost would be much

higher. The Internet and most access networks pro-

vide no latency guarantees. The current strategy is to

add more bandwidth capability rather than quality of

service controls.

ISPs often set up peering agreements with one

another so traffic travels directly between their two

networks. This will reduce latency. In addition, an ASP

will often negotiate with its ISP to get preferred treat-

ment for packets going to or from the network. OnLive

went a step further and connects its data center to sev-

eral ISPs. When a connection is established, it tests

each ISP link to see which offers the better connec-

tion (for latency and bandwidth) back to the user.

OnLive plans to set up only five data centers to service

the entire U.S. The company calculates that a data cen-

ter can afford to be up to 1,000 miles from the user.

Just accounting for the speed of light within a fiber,

1,000 miles will add 16 ms (round trip) to the latency.

The optimum solution to reduce latency for this

and the previous step (event packet to ISP) is to place

the application servers in the ISP network, close to the

access point of the user. This eliminates all of

the latency for this step. In addition, it eliminates the

latency for travel within the ISP network to

the Internet in the previous step.

Application Processing
Applications are generally input-oriented. When

input arrives, the application makes the appropriate

change to the screen in the next video frame. An

74 Bell Labs Technical Journal DOI: 10.1002/bltj

example would be to type into a word processor.

When there is no input, the screen remains the same.

These applications are said to be “event driven.” For

games and other similar applications, the screen may

need to change based on user events or it may need to

change just due to time. Therefore most games will

invoke a “game loop.” Pseudo code from a basic game

loop is shown in Figure 3.

Let’s say the application is an interactive game.

The software will receive the event packet which

might be a move of the onscreen character. It will cal-

culate the required change to the displayed scene and

communicate these desired changes to the graphics

processor unit (GPU). The application must then wait

(0 ms to 32 ms) for the next frame time slot before

releasing the frame. The GPU will then fill in all of

the changes to the three-dimensional (3D) landscape.

Several factors will affect the latency at this point.

Let’s assume the game operates at 30 fps, which

implies that each frame time is 32 ms in length. The

game has 32 ms for the loop to check for new input,

calculate changes, and determine the appropriate

changes to the screen. On average we can expect the

packet will arrive 16 ms into this loop. It will then

wait 16 ms until it is recognized by the application

and another 32 ms to process for a total time of 48 ms.

After releasing the frame, the GPU will take another

frame time to make the changes. The total for the

application and GPU is 2.5 � frame time or 80 ms for

a game running at 30 fps. To reduce this cost, most

games run at 60 fps (16 ms frame time) and thus the

delay is only 40 ms (2.5 1 � 6 ms). More detail is pro-

vided on the fps penalty in a later section.

There is not much we can do to reduce applica-

tion latency. Providing a more powerful control

processor unit (CPU) and GPU can make a game

run faster, but the average latency will always be

2.5 � 1/frame rate. And running the game at a faster

fps will dramatically increase the required bandwidth.

An idea proposed by the author is to run the game at

30 fps and increase to 60 fps only for a very short

period after a user event such as a mouse click.

Frame Transfer to Encoder
The created frame resides in the local memory of

the GPU peripheral component interconnect express

(PCIe) card. It must be transmitted over the PCIe bus

to the encoder. With the high speed of PCIe (16–64

Gb/s) you would expect delay to be minimal but the

frame is very large at this point. A single 720P frame

is 30 Mbits. A 1080P frame is twice that. If the CPU

has to be employed to transfer this frame, the latency

as well as the added burden to the CPU can be quite

high. Our team has developed a way to transfer the

frame directly with minimal CPU intervention.

Obtaining even lower latency numbers would require

removing the PCIe bus, placing the GPU and encoder

on the same line card, and using a higher speed con-

nection or shared memory. Even better is to perform

some or all of the encoding in the GPU. The initial

stage of encoding (chroma subsampling) can be per-

formed in the GPU and this can reduce the required

bandwidth by up to 50 percent.

The other issue is caused by multiple streams

sharing the same encoder card. This can cause a

resource contention problem, adding more latency

while a frame waits its turn. See the section on

“Resource Contention Penalty” for more discussion.

Encoding
Encoding is a very compute intensive step which

compresses a 720P stream from 1 Gb/s to less than 5

Mb/s (a 200x reduction). The primary method used in

most video compression is referred to as “prediction”

and sends only the differences from a previous frame.

This requires a good bit of search in the previous

frames to find duplicate (or similar) blocks of pixels.

Most real time encoders process at frame rate 30 fps

which means it requires a full 32 ms to complete the

encoding. However, this adds directly to the latency so

while(player alive)
 check for user input
 calulate change to user or objects
 move characters based on AI
 resolve collisions
 draw graphics
end while

Figure 3.
Pseudo code of a basic “game loop.”

DOI: 10.1002/bltj Bell Labs Technical Journal 75

a faster encoder is required. We are looking at

encoders that can encode a frame within 5 to 10 ms

as well as supporting many streams simultaneously.

Good encoder algorithms such as ITU H.264 also use

“B-frames” to improve video quality and reduce band-

width. With B-frames (or B slices) [15], the encoder

will search past and future frames for matches. This

requires a reordering of frames and more buffering at

the server and client, resulting in additional latency of

one or two frames. For this reason, this, and other

latency-insensitive encoder options are typically not

invoked for real time encoding. Within the H.264

standard, real time encoders typically only implement

the “baseline profile.” In addition, they are not able to

spend as much time searching for the best match dur-

ing prediction. These limitations result either in an

increase in the bandwidth required to transmit the

stream, or a reduction in video quality. Highly effi-

cient H.264 encoders can reduce a 720P stream to 3

Mb/s. To maintain the same level of quality, a low

latency encoder will require roughly twice the band-

width of a non-interactive video stream. We have

spent some time looking into encoder efficiency and

a special section on that subject is provided later in

this document.

Frame Packetization
After the frame is encoded, it must be broken up

into packets and sent out. Since the frame is much

smaller, less bandwidth is required for the transfer

over the PCIe, however even this small penalty can be

reduced somewhat by placing the packetizer and net-

work interface on the same card as the encoder. The

actual packetization requires minimal time. However,

video streams must stay within a certain bit rate to

ensure they do not overrun access network band-

widths as well as the buffers on the client side. One

solution is to buffer the packets to achieve the proper

bit rate but this would impact latency. The typical

solution is to lower the quality of the video during

encoding (increase quantification/noise, lower reso-

lution and/or frame rate) to achieve a constant bit

rate. This allows the stream to stay within required

bit rates without adding additional latency. As needed,

a frame can also be skipped (dropped) to keep a

stream within bandwidth requirements. A skipped

frame will result in the previous frame being displayed

twice on the client. The impact to the viewer is

negligible, assuming the dropped frame was not ref-

erenced by the encoder for decoding another frame.

Buffering can be reduced if packetization and the

transmission of packets to the network occurs as each

piece of a frame is completed by the encoder. This

parallelization is discussed further in the “Frame

Pipelining” section.

Frame Packets to ISP
Even after encoding, a typical 720P frame is 20K

to 30K bytes (before the network abstraction layer

(NAL) and Real Time Transport Protocol (RTP) head-

ers), resulting in 15 to 30 IP packets. These packets are

much larger and will take longer to send than the

event packet. Except for this difference, the descrip-

tion and possible improvements described in “Event

Packet to ASP” also apply here. A key element here

and for the access network is to reduce jitter between

frames. This is where a network element may delay

one frame more than others causing two or more

frames to arrive very closely spaced. Decoders are

forced to buffer several frames to absorb this frame

jitter. If the network can maintain the frame separa-

tion, the decoder can remove these buffers, which

eliminates much of the latency.

Frame Packets to User
These 15 to 30 packets must now traverse the

access network. Many access networks are optimized

for traffic to the user rather than from the user, and

offer higher speed and lower latency for downstream

traffic. However, the speeds will not be nearly as fast

as those in the Internet. The server may be able to

send out the packets comprising a single frame in less

than 5 ms from first to last using its fast network

connection. When these packets hit the slower access

network they will be buffered and spaced-out. A 25

Kbyte frame will take a minimum of 20 ms to tra-

verse a 10 Mb/s cable link. Quality is also an issue

here. With so many packets, there is the chance for

dropped or modified packets, particularly with wireless

connections. H.264 decoding relies on information

from previous packets, so one lost or corrupted packet

can affect the quality of many frames. Retransmit

with Transmission Control Protocol (TCP) or at the

76 Bell Labs Technical Journal DOI: 10.1002/bltj

wireless node is not feasible due to the added latency.

There are mechanisms to reduce this impact such as

using slices [15] where an error only affects one piece

of the frame rather then the whole frame. Another is

using gradual decoder refresh (GDR) [17] as discussed

later in the “Encoder Efficiency” section.

As with the “Event Packet to ISP” step there is

much work that can be done in scheduling these real

time video packets over the access network to

decrease latency. Shared access networks such as fiber

and cable actually provide 100 Mb/s to 2.5 Gb/s to

the home. The scheduler provides a share to each cus-

tomer, resulting in transmission speeds of 10 Mb to

100 Mb for each home. However, the scheduler could

allow a frame’s worth of packets to momentarily use

a larger portion of the network, which would reduce

or eliminate buffering. In addition, during congestion,

a smart queue manager at the access headend could

drop all packets for a frame rather than only one

packet, since the dropped packet makes the rest of

the packets useless. In addition, forward error con-

trol can be used to protect all or some of the more

critical frames.

Decode Frame
H.264 is optimized such that most of the work is

done during encode so decode requires less time and

hardware. The primary challenge here is how the

decoder was designed. A hardware decoder can

decode a 720P frame in less than 4 ms. However, since

most streaming video is buffered, it is logical to

assume the power of the decoder was set to the maxi-

mum fps it must support. For 30 fps, that is 32 ms. At

60 fps, decoding must occur in under 16 ms. We have

less control here since in many applications the ser-

vice provider will not want to replace the set-top box.

As discussed later in the “Frame Pipelining” section,

the decoder can reduce the impact of a slower access

network by starting the decode as soon as the first

slice of a frame arrives. This is particularly true for

wireless devices. In the low latency column in Table I,

we assumed a latency-optimized decoder. However,

if we use an existing set-top box, this figure may not

be practical. OnLive provides its own set-top box,

which provides latency-optimized decoding.

Display Frame
The primary concern here is that it is typical to

buffer frames before starting the video to better tol-

erate jitter (variation in the time between packet

arrivals). This buffering could add several seconds of

latency. For non-interactive video this is not a prob-

lem. For interactive video we need to turn off buffer-

ing on the client device. This places an added burden

on the server and network to supply these packets

with very little jitter so that the video is not frozen or

jerky. Use of gradual decoder refresh is important here

to reduce the impact of I-frames to the frame buffer.

Even with no buffering, the incoming frame must

wait for the next screen refresh, which even at 60 fps

is every 16 ms. So on average it must wait 8 ms. The

frame could be displayed immediately, but that would

cause screen tearing. There is also delay added by the

monitor itself. CRTs are best since they do not process

the image before displaying it. Liquid crystal display

(LCD) computer monitors are good, but some still can

add significant delay [16]. With transmission to HDTV,

there can be added delay to process the frame prior to

display, and with some screens the delay can be as high

as 50 ms [2] to enhance or resize the picture to the

TV’s natural resolution. This can be a real problem with

HDTVs. Some have a “game mode” which reduces

delay, but it can still approach 10 ms to 35 ms. The best

solution (besides TV makers fixing their problem) is to

output video to the screen at its native resolution. For

most HDTVs that is 1920x1080, which requires double

the bandwidth of 720P. Another solution would be

to up-convert the resolution at the set-top box prior to

sending it to the TV. This is what OnLive does with the

console they offer for using their service with a TV.

Frame Pipelining
We have described a pipeline of tasks for the

downstream processing and transmission of each

frame:

• Rendering,

• PCIe transfer,

• Encoding,

• Network transmission, and

• Decoding.

DOI: 10.1002/bltj Bell Labs Technical Journal 77

Each requires precious microseconds to process a

frame. However, each can break up the frames into

segments (slices or packets) for processing. If each

stage waited for the entire frame to arrive before start-

ing, the latency incurred would be the sum of the

total processing time for each stage, as shown in

Figure 4. (The millisecond values in this figure are

chosen just for demonstration.) However, if each stage

started as soon as the first segment arrived, the latency

penalty would be the total processing time for just

the first segment, plus the time required for the last

stage processing the rest of the packet. Note that we

show no overlap for the rendering stage. GPUs finish

segments of the frame in random order, so it is not

possible to pass a segment of the frame to the PCIe

until the whole frame has been rendered.

Pipelining also has the advantage of reducing

the latency requirement for stages which are not in the

critical path. For example, in Figure 3 there would be

little impact to the latency if the length of the PCIe or

the encoder stages were increased. The key is how

fast the first segment can be processed at each stage.

The network typically always represents the slowest

stage, and thus hides much of the delay from the

other stages.

Encoder Efficiency
In our work we have given encoding special

emphasis. The primary reason is the expense of the

encoding stage due to the heavy processing required.

With the use of field programmable gate arrays

(FPGAs) or custom multiprocessor chips, we can

reduce that cost and support many video streams with

a single encoder card. An important factor in these

designs is latency. To maintain 30 fps, a real time

(non-interactive) video encoder needs only to encode

a frame in 32 ms. Of course we cannot afford a level

of latency representing nearly one-third of our total

target budget. There are several methods we use to

reduce this latency. First, as described earlier, we turn

off H.264 options which add to latency such as

B-frames, look-ahead features, and extended predic-

tion search. This lowers the effectiveness of the com-

pression, but it is required for low latency encoding.

Next, we use the H.264 option of splitting the frame

into independent slices allowing us to spread the pro-

cessing over several processing cores to work in paral-

lel. In addition this allows the packetization stage to

start as soon as the first slice is encoded, enabling the

frame pipelining described in the previous section.

A potentially significant source of latency is a

multi-frame frame buffer installed on at the decoder

side to absorb jitter and large frames. This alone can

add 100 ms or more to the latency. We want to elimi-

nate this buffer. There are two key enhancements

required to do so. First, the networks between the

application provider and the end user must ensure

the orderly flow of frames. Though the “bunching”

Rendering PCIe Encode Network Decode

0 ms 5 10 15 20 25 30 35 40 45 50

0 ms 5 10 15 20 25 30 35 40 45 50

Rendering PCIe

Encode

Network

Decode

PCIe—Peripheral component interconnect express

Figure 4.
Frame pipeline with and without parallelization.

78 Bell Labs Technical Journal DOI: 10.1002/bltj

of packets making up a frame is not a problem, each

frame in total should take approximately the same

amount of time to traverse the networks. Since a real

time encoder will separate frames by a fixed amount

of time, the network needs only to send these frames

to the client as quickly as possible with minimal or

no buffering to prevent jitter.

The second requirement is for the encoder to

ensure all frames are approximately the same size. By

adjusting the quantization factor, most frames can be

kept to the same size. However, an “I-frame” must

be sent every so often (approximately every 5 frames to

100 frames) to prevent error propagation. An I-frame

does not use other frames for prediction so its com-

pression is much less efficient, which results in a

much larger encoded frame. To avoid this, we can use

gradual decoder refresh [17]. With this H.264 option,

an I-frame is sent only at the start of the stream, and

a portion of each successive frame is encoded without

referencing other frames. In this way, GDR spreads

the cost of I-frame functionality over many frames.

It turns out that this method also increases resiliency

to packet drops in the network over the I-frame

method.

Resource Contention Penalty
One of the primary reasons to move applications

to the cloud is the cost savings due to sharing of

resources such as the CPU, GPU, and encoder. Games

on your local PC or smartphone typically have exclu-

sive use of the local resources when they are running.

On a cloud server, we need to allow multiple cus-

tomers to share the CPU, GPU, and encoder to spread

the cost. However there can be an impact to latency.

Applications or frames that are ready for a resource

may have to wait until it is available. For example, if

two frames from different applications are ready at

the same time and delivered to the same encoder, the

second frame will have to wait the time it takes to

encode the first frame. The minimum latency times

shown in Table I assume there is very little contention

for resources.

Fortunately, events are not random and have a

tendency to line up to some degree. For example, an

application may have to wait for the CPU to send its

first frame to the GPU. Its frame sequence will not

line up with the first application, and thus the result-

ing frames will not be delivered to the encoder at the

same time. However, this is a new area and much

more work is required to understand the true queu-

ing relationship. Some type of stream scheduling may

be required to reduce the impact of resource con-

tention. We can also reduce the latency of the encoder

and/or enable it to process multiple frames in parallel.

In addition, we can restrict access to the CPU and GPU

to smaller segments of time to reduce penalties for

resource request collisions.

Frames Per Second Tradeoff
There is a tradeoff between latency and through-

put. As discussed, there are several places in the path

where a frame must wait for the current frame to

complete. This was mentioned in the “Applications

Processing” and “Display Frame” sections. In addition, a

higher frame rate can cause more resource contention

situations. The standard rate for televisions in the U.S.

is 30 fps (in Europe it is 25 fps), but the standard for

computers is 60 fps and many operate at 72 fps. Some

gamers like to set their fps rate even higher. At 30 fps,

a frame is received and displayed every 32 ms, and

at 60 fps it is of course twice as fast, at 16 ms. At a

minimum, going from 30 fps to 60 fps will decrease

latency by 16 ms on average, but in reality the gain

will be greater. However, the cost of going to 60 fps is

high, nearly doubling the required bandwidth. For

wireless links this is not an option. Presumably to

lower the latency, the OnLive service tries to achieve

60 fps and only lowers the frame rate if the game can-

not do any better, or if the link bandwidth cannot

handle it.

Mobile Considerations
More and more customers are using their mobile

handsets and tablets as their primary device for com-

munication, information, and entertainment.

Providing interactive video over third generation (3G)

and fourth generation (4G) networks presents an

interesting set of opportunities and challenges. All of

the factors contributing to latency discussed in this

document pertain to the mobile architecture as well.

DOI: 10.1002/bltj Bell Labs Technical Journal 79

There are a few important differences. First, wireless

technology offers lower bandwidth and greater error

rate. Slower rates will add latency transmitting the

frames. Encoding needs to be much more effective to

reduce packet size.

To further reduce bandwidth, the frame rate will

likely be reduced to between 20 fps and 25 fps. As

noted in the previous section, this will increase

latency as well. Errors will reduce quality. Methods

should be employed to reduce their impact.

Fortunately mobile customers have a history of being

willing to trade quality for new capabilities.

LTE is a leading contender for the 4G crown. In an

LTE network, packets from a mobile device must go

from the base station node via a backhaul network to

a set of gateways before they can access the ISP’s data

network or go on to the Internet. These gateways can

often be a good distance away, increasing the speed of

light penalty as well as any delay added by interven-

ing routers. Placing content servers near these gate-

ways will help to counter this cost.

In a home, it is tempting to do as OnLive has

done and create a custom set-top box. However, for

a mobile device we need to work with the avail-

able devices and operating systems. We must use

the hardware decoders supported in these devices,

which are typically H.264. The challenges discussed

in the decoder section apply here and are made

more difficult due to limited control over these

devices. With faster processors in mobile devices,

we may be able to decode via software, but there is

also a possibility this may be no faster at all and it

will consume more power. Finally, we could add

some software to help other unique obstacles such

as error tolerance.

The additional challenges imposed by mobile

devices are greatly offset by the benefits users will

receive from a personal cloud computing service

which will provide near-limitless computing, stor-

age, content, and networking capabilities not possi-

ble from their mobile device. Latency estimates from

laboratory tests of LTE networks provide good

promise that LTE will be able to support interactive

video content. Advancements such as Alcatel-

Lucent’s lightRadio™ [1] may well provide the

additional bandwidth required to support this new

service at an affordable rate.

Conclusion
In this paper we looked at the elements which

impact latency for interactive video. We have a goal of

less than 100 ms of latency for the round trip from the

event to seeing a response on the screen. Many factors

account for this latency, some of which we can control

and others we cannot. Much work is needed to

reduce and maintain latency in the areas over which

we have control. We can learn from OnLive, which has

implemented a solution and has already hit most of

these barriers. Due to Alcatel-Lucent’s position with

service providers, there are unique solutions we can

implement that are not available to OnLive. One

example is to move the interactive content server into

the ISP network and closer to the customer, thus

removing the latency caused by the Internet, the

speed of light distance, as well as latency in the ISP’s

network. Other work can be done on the access side

to improve packet scheduling in both directions. The

initial step should be to build an interactive content

service node and network, and implement these

enhancements directly.

Acknowledgements
The author would like to thank the Bell Labs

Cygnet team for their assistance with this work as

well as this paper. I would also like to thank Ken

Sharp and Elias Ayrey for their user experience test-

ing support and contributions.

*Trademarks
Bluetooth is a registered trademark of Bluetooth SIG,

Inc.
GTA is a registered trademark of Take-Two Interactive

Software, Inc.
Mac is a registered trademark of Apple, Inc.
Netflix is a registered trademark of Netflix, Inc.
OnLive is registered trademark of OnLive, Inc.
PlayStation and PS2 are registered trademarks of

Kabushiki Kaisha Sony Computer Entertainment TA
Sony Computer Entertainment Inc.

Wii is a registered trademark of Nintendo of America,
Inc.

Windows and Xbox are registered trademarks of
Microsoft Corporation.

80 Bell Labs Technical Journal DOI: 10.1002/bltj

References
[1] Alcatel-Lucent, “lightRadio: Evolve Your

Wireless Broadband Network for the New
Generation of Applications and Users,”
�www.alcatel-lucent.com/features/
light_radio/�.

[2] G. Block, “HDTV-Gaming-Lag: An Epidemic
Exposed,” IGN, June 12, 2006, �http://www
.ign.com/articles/2006/06/12/hdtv-gaming-
lag-an-epidemic-exposed�.

[3] M. Claypool and K. Claypool, “Latency Can
Kill: Precision and Deadline in Online Games,”
Proc. 1st Annual ACM Conf. on Multimedia
Syst. (MMSys ‘10) (Phoenix, AZ, 2010),
pp. 215–222.

[4] J. Crisp and B. Elliott, Introduction to Fiber
Optics, 3rd ed., Newnes, Amsterdam, Boston,
2005.

[5] M. Dick, O. Wellnitz, and L. Wolf, “Analysis of
Factors Affecting Players’ Performance and
Perception in Multiplayer Games,” Proc. 4th
ACM SIGCOMM Workshop on Network and
Syst. Support for Games (NetGames ‘05)
(Hawthorne, NY, 2005).

[6] S. Firestone, T. Ramalingam, and S. Fry, Voice
and Video Conferencing Fundamentals:
Design, Develop, Select, Deploy, and Support
Advanced IP-Based Audio and Video
Conferencing Systems, Cisco Press,
Indianapolis, IN, 2007.

[7] T. Hoff, “Latency Is Everywhere and It Costs
You Sales—How to Crush It,” High Scalability,
July 25, 2009, �http://highscalability.com/
latency-everywhere-and-it-costs-you-sales-
how-crush-it�.

[8] S. Hollister, “OnLive MicroConsole Official at
$99, We Go Hands-On and Bombard You with
Details,” Engadget, Nov. 18, 2010, �http://
www.engadget.com/2010/11/18/onlive-
microconsole-official-at-99-we-go-hands-on/�.

[9] Institute of Electrical and Electronics
Engineers, “Part 15.4: Wireless Medium
Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless
Personal Area Networks (WPANs),” IEEE
802.15.4, 2006, �http://www.ieee.org�.

[10] International Telecommunication Union,
Telecommunication Standardization Sector,
“One-Way Transmission Time,” ITU-T Rec.
G.114, May 2003, �http://www.itu.int�.

[11] R. Leadbetter, “Digital Foundry vs. OnLive
UK,” Eurogamer, Oct. 1, 2011,

�http://www.eurogamer.net/articles/digitalfo
undry-vs-onlive-uk�.

[12] OnLive, �http://www.onlive.com�.
[13] Pure E-Sports, “Mouse Optimization Guide,”

Jan. 11, 2007, �http://purehighspeed.com/
forum/showthread.php?t�83�.

[14] M. Ricknäs, “LTE Will Improve Latency As
Well As Speed,” Techworld, Mar. 3, 2010,
�http://news.techworld.com/mobile-
wireless/3214090/lte-will-improve-latency-as-
well-as-speed/�.

[15] R. Schäfer, T. Wiegand, and H. Schwarz, “The
Emerging H.264/AVC Standard,” EBU Tech.
Rev., 293 (2003), �http://tech.ebu.ch/docs/
techreview/trev_293-schaefer.pdf�.

[16] T. Thiemann, “An Investigation of the Test
Process Used to Date for Determining the
Response Time of an LCD Monitor, Known as
Input Lag,” PRAD, Aug. 8, 2009, �http://
www.prad.de/en/monitore/specials/inputlag/
inputlag.html�.

[17] Y.-K. Wang and M. M. Hannuksela, “Gradual
Decoder Refresh Using Isolated Regions,” Joint
Video Team (JVT) of ISO/IEC MPEG and ITU-
T VCEG (ISO/IEC JTC1/SC29/WG11 and
ITU/T SG16 Q.6), Doc. JVT-C074, May 2002,
�wftp3.itu.int/av-arch/jvt-site/2002_05_
Fairfax/JVT-C074.doc�.

[18] M. West, “Measuring Responsiveness in Video
Games,” Gamasutra, July 16, 2008, �http://
www.gamasutra.com/view/feature/3725/measu
ring_responsiveness_in_video_.php?page�3�.

(Manuscript approved March 2012)

RON SHARP is a distinguished member of technical
staff in the Bell Labs’ Access Solutions
department in Murray Hill, New Jersey. He
has worked at Bell Labs for over 25 years,
and has published many papers on network
security and high speed networking,

including four for this journal. He authored a book on
Internet firewalls and holds five patents, with six more
currently pending. He is a retired U.S. Air Force Officer.
Mr. Sharp earned a B.S. degree in computer science and
systems design from the University of Arkansas,
Fayetteville, and an M.S. from the University of Texas. He
was one of the original three engineers who created the
Alcatel-Lucent VPN Firewall Brick®. His current research
work is in the area of cloud computing with emphasis in
video encoding and embedded multiprocessors. ◆

Copyright of Bell Labs Technical Journal is the property of John Wiley & Sons, Inc. and its content may not be

copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.

