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Abstract A detailed study of the criteria for stability of the
scalar potential and the proper electroweak symmetry break-
ing pattern in the economical 3-3-1 model, is presented. For
the analysis we use and improve a method previously devel-
oped to study the scalar potential in the two-Higgs-doublet
extension of the standard model. A new theorem related to
the stability of the potential is stated. As a consequence of
this study, the consistency of the economical 3-3-1 model
emerges.

1 Introduction

Extensions of the standard model (SM) based on the local
gauge group SU(3)c ⊗SU(3)L ⊗U(1)X [1–18] (called here-
after 3-3-1 for short) contain, in general, a scalar sector quite
complicated to be analyzed in detail. For this type of mod-
els, three Higgs triplets, and in some cases one additional
Higgs sextet are used, in order to break the symmetry and
provide at the same time with masses to the fermion fields
of each model [19–25].

Among the 3-3-1 models with the simplest scalar sec-
tor are the ones proposed for the first time in Ref. [26] and
further analyzed in Refs. [27–34] (they make use of only
two scalar Higgs field triplets). This class of models include
eight different three-family models where the Higgs scalar
fields, the gauge-boson sector and the fermion field repre-
sentations are restricted to particles without exotic electric
charges [17, 18, 26]. Because of their minimal content of
Higgs scalar fields they are named in the literature “econom-
ical 3-3-1 models”.

A simple extension of the SM consists of adding to the
model a second Higgs scalar doublet [35–39], defining in
this way the so-called two-Higgs-doublet model (THDM).
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The different ways how the two Higgs scalar doublets cou-
ple to the fermion sector define the several versions of this
extension [35–45]. Many gauge group extensions of the SM
have the THDM as an effective low energy theory (in this
regard see the papers in [40–45] and references therein). In
these extensions one of the first steps in the symmetry break-
ing chain leads to the SU(3)c ⊗ SU(2)L ⊗U(1)Y gauge the-
ory with two Higss doublets in one of its several versions.

A novel method for a detailed analysis of the scalar
potential in the most general THDM was presented in
Refs. [46, 47] where, by using powerful algebraic tech-
niques, the authors studied in detail the stationary points
of the scalar potential. This allowed them to give, in a very
concise way, clear criteria for the stability of the scalar po-
tential and for the correct electroweak symmetry breaking
pattern. In the present work we use this approach to analyse
the scalar sector of the economical 3-3-1 model. No relevant
new additional conditions are necessary to be imposed in
order to implement the method in this last case.

One important advantage of the economical 3-3-1 model,
compared with the THDM, concerns the Higgs potential.
The 14 parameters required to describe the most general
potential for the second case, should be compared with the
six parameters required in the economical 3-3-1 model. For
the THDM this is associated to the fact that the two Higgs
doublets have the same U(1) hypercharge [35–45]. In the
economical 3-3-1 model, by contrast, the two scalar triplets
have different U(1)X hypercharges so that the most general
Higgs potential shows itself in a very simple form.

In this work we deduce constraints on the parameters
of the economical 3-3-1 scalar potential coming from the
stability and from the electroweak symmetry breaking con-
ditions. The stability of an scalar potential at the classical
level, which is fulfilled when it is bounded from below, is
a necessary condition in order to have a sound theory. The
global minimum of the potential is found by determining
its stationary points. Some of our results agree with those
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already presented in Refs. [26–34]. Our study extends thus
the method proposed in Refs. [46–48] to the economical 3-
3-1 model, where the results are very concise and should, in
principle, be used as a guide in order to extend the method
to other situations.

This paper is organized as follows: in Sect. 2 we briefly
review the mathematical formalism in order to make this
work self-contained; in Sect. 3 we apply the method to the
scalar sector of the economical 3-3-1 model, which is fol-
lowed in Sect. 4 by the introduction of new parameteriza-
tions. In Sect. 5 we derive expressions for the masses of the
scalar fields, and our conclusions are presented in Sect. 6. In
Appendix A a new theorem that facilitates the stability cri-
teria is proved. In Appendix B two exceptional solutions for
the global minimum of the potential are analyzed. Finally,
in Appendix C, it is verified that if only one scalar triplet
acquires a nonzero Vacuum Expectation Value (VEV), the
economical 3-3-1 model is inconsistent.

2 A review of the method

In this section, and following Refs. [46–48], we review a
new algebraic approach used to determine the global mini-
mum of the Higgs scalar potential, its stability, and the spon-
taneous symmetry breaking from SU(2)L ⊗ U(1)Y down to
U(1)em, in the extension of the SM known as the THDM,
where ϕ1 and ϕ2 stand for two Higgs scalar field doublets
with identical quantum numbers

Stability and the stationary points of the potential can be
analyzed in terms of four real constants given by

K0 =
∑

i=1,2

ϕ
†
i ϕi,

(1)
Ka =

∑

i,j=1,2

(
ϕ

†
i ϕj

)
σa

ij (a = 1,2,3),

where σa(a = 1,2,3) are the Pauli spin matrices. The four
vector (K0,K) must lie on or inside the forward light cone,
that is

K0 ≥ 0, K2
0 − K2 ≥ 0. (2)

Then the positive and hermitian 2 × 2 matrix

K =
⎛

⎝
ϕ

†
1ϕ1 ϕ

†
2ϕ1

ϕ
†
1ϕ2 ϕ

†
2ϕ2

⎞

⎠ (3)

may be written as

Kij = 1

2

(
K0δij + Kaσ

a
ij

)
. (4)

Inverting (1) we obtain

ϕ
†
1ϕ1 = (K0 + K3)/2, ϕ

†
1ϕ2 = (K1 + iK2)/2,

(5)
ϕ

†
2ϕ2 = (K0 − K3)/2, ϕ

†
2ϕ1 = (K1 − iK2)/2.

The most general SU(2)L ⊗ U(1)Y invariant Higgs scalar
potential can thus be expressed as

V (ϕ1, ϕ2) = V2 + V4, (6a)

V2 = ξ0K0 + ξaKa, (6b)

V4 = η00K
2
0 + 2K0ηaKa + KaηabKb, (6c)

where the 14 independent parameters ξ0, ξa, η00, ηa and
ηab = ηba are real. Subsequently, we define K = (Ka), ξ =
(ξa), η = (ηa) and E = (ηab).

2.1 Stability

From (6), for K0 > 0 and defining k = K/K0, it is obtained

V2 = K0 J2(k), J2(k) := ξ0 + ξTk, (7)

V4 = K2
0 J4(k), J4(k) := η00 + 2ηTk + kTEk, (8)

where the functions J2(k) and J4(k) on the domain |k| ≤ 1
have been introduced. For the potential to be stable, it must
be bounded from below. The stability is determined by the
behavior of V in the limit K0 → ∞, and hence by the signs
of J4(k) and J2(k) in (7) and (8). In this analysis only the
strong criterion for stability is considered, that is, the stabil-
ity is determined solely by the V quartic terms

J4(k) > 0 for all |k| ≤ 1. (9)

To assure that J4(k) is always positive, it is sufficient to
consider its value for all its stationary points on the do-
main |k| < 1, and for all the stationary points on the bound-
ary |k| = 1. This leads to bounds on η00, ηa and ηab , which
parameterize the quartic term V4 of the potential.

The regular solutions for the two cases |k| < 1 and
|k| = 1 lead to

f (u) = u + η00 − ηT(E − u)−1η, (10)

f ′(u) = 1 − ηT(E − u)−2η, (11)

so that for all “regular” stationary points k of J4(k) both

f (u) = J4(k)|stat, and (12)

f ′(u) = 1 − k2 (13)

hold, where u = 0 must be set for the solution with |k| < 1.
There are stationary points of J4(k) with |k| < 1 and |k| = 1
exactly if f ′(0) > 0 and f ′(u) = 0, respectively, and the
value of J4(k) is then given by f (u).
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In a basis where E = diag(μ1,μ2,μ3) we obtain

f (u) = u + η00 −
3∑

a=1

η2
a

μa − u
, (14)

f ′(u) = 1 −
3∑

a=1

η2
a

(μa − u)2
. (15)

The derivative f ′(u) has at most six zeros. Notice that there
are no exceptional solutions if in this basis all three compo-
nents of η are different from zero.

Consider now the functions f (u) and f ′(u) and denote
by I

I = {u1, . . . , un} (16)

the set of values uj for which f ′(uj ) = 0. Add uk = 0
to I if f ′(0) > 0. Consider then the eigenvalues μa (a =
1,2,3) of E. Add those μa to I where f (μa) is finite and
f ′(μa) ≥ 0. Then n ≤ 10. The values of the function J4(k)

at its stationary points are given by

J4(k)|stat = f (ui) (17)

with ui ∈ I . In Appendix A we show that the stationary
point in I having the smallest value will produce the small-
est value of J4(k) in the domain |k| ≤ 1. We now state the
theorem.

Theorem 1 The global minimum of the function J4(k), in
the domain |k| ≤ 1, is given and guaranteed by the station-
ary point of the set I with the smallest value.

This result guarantees strong stability if f (u) > 0, where u

is the smallest value of I . The potential is unstable if we
have f (u) < 0. If f (u) = 0 we have to consider in addition
J2(k) in order to decide on the stability of the potential.

2.2 Location of stationary points and criteria for
electroweak symmetry breaking

The next step after the stability analysis in the preceding
section has been done is to determine the location of the
stationary points of the potential, since among these points
the local and global minima are found. To this end is defined

K̃ =
(

K0

K

)
, ξ̃ =

(
ξ0

ξ

)
, Ẽ =

(
η00 ηT

η E

)
. (18)

In this notation the potential (6) reads

V = K̃
T
ξ̃ + K̃

T
ẼK̃ (19)

and is defined on the domain

K̃
T
g̃K̃ ≥ 0, K0 ≥ 0, (20)

with

g̃ =
(

1 0
0 −1

)
. (21)

For the discussion of the stationary points of V , three dif-
ferent cases must be distinguished: K̃ = 0, K0 > |K|, which
are the solutions inside the forward light cone, and K0 =
|K| > 0, which are the solutions on the forward light cone.

The trivial configuration K̃ = 0 is a stationary point of
the potential with V = 0, as a direct consequence of the de-
finitions. The stationary points of V in the inner part of the
domain, K0 > |K|, are given by

ẼK̃ = −1

2
ξ̃ , with K̃

T
g̃K̃ > 0 and K0 > 0. (22)

The stationary points of V on the domain boundary K0 =
|K| > 0 are stationary points of the function

F̃ (K̃,w) := V − wK̃
T
g̃K̃, (23)

where w is a Lagrange multiplier. The relevant stationary
points of F̃ are given by

(Ẽ − wg̃)K̃ = −1

2
ξ̃ , with K̃

T
g̃K̃ = 0 and K0 > 0. (24)

For any stationary point the potential is given by

V |stat = 1

2
K̃

T
ξ̃ = −K̃

T
ẼK̃. (25)

Similarly to the stability analysis in Sect. 2.1, a unified de-
scription for the regular stationary points of V with K0 > 0
for both |K| < K0 and |K| = K0 can be used by defining the
functions

f̃ (w) = −1

4
ξ̃

T
(Ẽ − wg̃)−1ξ̃ , (26)

f̃ ′(w) = −1

4
ξ̃

T
(Ẽ − wg̃)−1g̃(Ẽ − wg̃)−1ξ̃ . (27)

Denoting the first component of K̃(w) as K0(w) the follow-
ing theorem holds.

Theorem 2 The stationary points of the potential are given
by

(Ia) K̃ = K̃(0) if f̃ ′(0) < 0, K0(0) > 0 and det Ẽ 	= 0,
(Ib) solutions K̃ of (22) if det Ẽ = 0,

(IIa) K̃ = K̃(w) for w with det(Ẽ − wg̃) 	= 0, f̃ ′(w) = 0
and K0(w) > 0,

(IIb) solutions K̃ of (24) for w with det(Ẽ − wg̃) = 0,
(III) K̃ = 0.

In what follows it is assumed that the potential is stable.
For parameters fulfilling ξ0 ≥ |ξ |, this immediately implies



464 Eur. Phys. J. C (2009) 63: 461–475

J2(k) ≥ 0 and hence, from the strong condition (9), V > 0
for all K̃ 	= 0. Therefore for these parameters the global min-
imum is at K̃ = 0. This leads to the requirement

ξ0 < |ξ |. (28)

Also, we obtain

∂V

∂K0

∣∣∣∣k fixed,
K0=0

= ξ0 + ξTk < 0 (29)

for some k, i.e. the global minimum of V lies at K̃ 	= 0 with

V |min < 0. (30)

Firstly, consider p0 = |p|. From (19) and (24) it follows that

∂V

∂K0

∣∣∣∣K fixed,

K̃=p̃

= ξ0 + 2(Ẽ p̃)0 = 2wp p0. (31)

If wp < 0, there are points K̃ with K0 > p0, K = p and
lower potential in the neighborhood of p̃, which therefore
cannot be a minimum. The conclusion is that in a theory with
the required electroweak symmetry breaking (EWSB) the
global minimum must have a Lagrange multiplier such that
w0 ≥ 0, and for the THDM, the global minimum lies on the
stationary points of the classes (IIa) and (IIb) of Theorem 2,
with the largest Lagrange multiplier [46, 47] (contrary to
what happens in the analysis that follows for the economical
3-3-1 model, where the global minimum must fall on the
stationary points in classes (Ia) and (Ib)).

3 The economical 3-3-1 model

As mentioned before, there exist a total of eight different
economical 3-3-1 models without exotic electric charges,
each one with a different fermion structure but with the same
gauge-boson sector and the same minimal scalar content
(two Higgs triplets) [26]. The particular economical 3-3-1
model most extensively studied in the literature has the fol-
lowing anomaly free fermion representations:

ψa
L = (

l−a, νa,N0a
)T

L
∼ (

1,3∗,−1/3
)
,

l+a
L ∼ (1,1,1),

Qi
L = (

ui, di,Di
)T

L
∼ (3,3,0),

Q1
L = (

d1, u1,U
)T

L
∼ (

3,3∗,1/3
)
,

uca
L ∼ (

3∗,1,−2/3
)
, dca

L ∼ (
3∗,1,1/3

)
,

Uc
L ∼ (

3∗,1,−2/3
)
, Dci

L ∼ (
3∗,1,1/3

)
,

where the numbers inside the parentheses stand for [SU(3)c ,
SU(3)L,U(1)Y ] representations, a = 1,2,3 is a family in-
dex and i = 1,2 is related to two of the three families.

Di and U are three exotic quarks with electric charges
−1/3, −1/3 and 2/3, respectively.

3.1 The scalar sector

If we pretend to use the simplest SU(3)L representations in
order to break the symmetry, at least two complex scalar
triplets, equivalent to twelve real scalar fields, are required.
The two Higgs scalars (together with their complex conju-
gates) that may develop nonzero VEV are

φ1

(
1,3∗,−1

3

)
=

⎛

⎜⎝
φ−

1

φ′0
1

φ0
1

⎞

⎟⎠ , φ2

(
1,3∗, 2

3

)
=

⎛

⎜⎝
φ0

2

φ+
2

φ′+
2

⎞

⎟⎠ .

(32)

Note that, unlike the THDM, these two scalar fields have
different X hypercharge. For this reason, a change of basis
of the Higgs fields in this model does not have any meaning.

The most general, renormalizable and 3-3-1 invariant
scalar potential can thus be written as

V (φ1, φ2) = μ2
1φ

†
1φ1 + μ2

2φ
†
2φ2 + λ1

(
φ

†
1φ1

)2 + λ2
(
φ

†
2φ2

)2

+ λ3
(
φ

†
1φ1

)(
φ

†
2φ2

) + λ4
(
φ

†
1φ2

)(
φ

†
2φ1

)
. (33)

The simplicity of this potential can be appreciated by notic-
ing first the natural absence of a trilinear scalar coupling and
by counting its number of free parameters: only six.

3.2 The orbital variables

Following the method presented in the previous section, the
potential (33) can be expressed in terms of the orbital vari-
ables K0, K1, K2 and K3 which, for our case, are associ-
ated to the real parameters

ξ0 = 1

2

(
μ2

1 + μ2
2

)
, ξ =

⎛

⎜⎝
0

0
1
2 (μ2

1 − μ2
2)

⎞

⎟⎠ , (34)

η00 = 1

4
(λ1 + λ2 + λ3), (35)

η =
⎛

⎜⎝
0

0
1
4 (λ1 − λ2)

⎞

⎟⎠ ,

(36)

E =

⎛

⎜⎜⎝

λ4
4 0 0

0 λ4
4 0

0 0 1
4 (λ1 + λ2 − λ3)

⎞

⎟⎟⎠ .
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3.3 Stability

Note that E is a diagonal matrix. Then, we can calculate the
functions f (u) and f ′(u) directly from (14) and (15). We
obtain

f (u) = u + 1

4
(λ1 + λ2 + λ3) − (λ1 − λ2)

2

4(λ1 + λ2 − λ3) − 16u
,

(37)

f ′(u) = 1 − (λ1 − λ2)
2

(λ1 + λ2 − λ3 − 4u)2
. (38)

For λ1 	= λ2, the solutions of f ′(u) = 0, which determine
the stationary points of J4(k) on the boundary |k| = 1, lead
to the Lagrange multipliers

u1 = 1

4
(2λ1 − λ3), u2 = 1

4
(2λ2 − λ3). (39)

We must add the values

u3 = 0, u4 = λ4

4
, (40)

which correspond to the stationary point inside the sphere
(|k| < 1) and the exceptional solution, respectively. So, we
have the set

I =
{
u1 = 1

4
(2λ1 − λ3), u2 = 1

4
(2λ2 − λ3), u3 = 0,

u4 = λ4

4

}
, (41)

which contains all the possible valid solutions. Among the
solutions, the smallest value corresponds to the global min-
imum of J4(k) (See Appendix A for a demonstration). Let
us now consider the different possibilities.

1. u1 < u2, u3, u4: i.e. the global minimum occurs at u1.
In order to have a stable potential, in the strong sense, we
impose the condition

f (u1) > 0 ⇒ λ1 > 0. (42)

2. u2 < u1, u3, u4: in this case the strong stability leads to

f (u2) > 0 ⇒ λ2 > 0. (43)

3. u3 < u1, u2, u4 (remember u3 = 0): a valid solution re-
quires a positive value for the function (38). Let us verify
it:

f ′(0) = 16u1u2

(λ1 + λ2 − λ3)2
= 4u1u2

(u1 + u2)2
> 0. (44)

Imposing the strong stability condition

f (0) = λ2
3 − 4λ1λ2

4(λ3 − λ2 − λ1)
,

= 4λ1λ2 − λ2
3

8(u1 + u2)
= 4λ1λ2 − λ2

3

8(u1 + u2)
> 0, (45)

where λ3 − λ2 − λ1 = 2(u1 + u2) > 0 we get

4λ1λ2 − λ2
3 > 0 or 4λ1λ2 > λ2

3. (46)

4. u4 < u3, u1, u2 (again u3 = 0): once more f ′(u4)

must be positive. Since each one of the factors (u1 −
u4), (u2 − u4), (u1 + u2 − 2u4) are positive, we have

f ′(u4) = 4(u1 − u4)(u2 − u4)

(u1 + u2 − 2u4)2
> 0. (47)

The strong stability condition produces

f (u4) = 4λ1λ2 − (λ3 + λ4)
2

8(u1 + u2 − 2u4)
> 0, (48)

which means

4λ1λ2 > (λ3 + λ4)
2. (49)

Summarizing, the following are sufficient conditions (but
not necessary) to guarantee strong stability of the potential,
for all the possible values of the parameters, including the
special case λ1 = λ2:

λ1 > 0, (50a)

λ2 > 0, (50b)

4λ1λ2 > λ2
3, (50c)

4λ1λ2 > (λ3 + λ4)
2, (50d)

where the first two inequalities are also necessary condi-
tions.

3.4 Global minimum

According to the general notation introduced in (18), for the
economical 3-3-1 model we have

ξ̃ =

⎛

⎜⎜⎜⎜⎝

1
2 (μ2

1 + μ2
2)

0

0
1
2 (μ2

1 − μ2
2)

⎞

⎟⎟⎟⎟⎠
,

(51)

Ẽ =

⎛

⎜⎜⎜⎜⎜⎝

1
4 (λ1 + λ2 + λ3) 0 0 1

4 (λ1 − λ2)

0 λ4
4 0 0

0 0 λ4
4 0

1
4 (λ1 − λ2) 0 0 1

4 (λ1 + λ2 − λ3)

⎞

⎟⎟⎟⎟⎟⎠
.

The condition (28), ξ0 < |ξ | thus implies that μ2
1 + μ2

2 <

|μ2
1 − μ2

2|. This inequality is fulfilled if

μ2
1,μ

2
2 < 0, (52)

or when at least one of them is negative.
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In order to determine the stationary points of the potential
V (φ1, φ2) in (33) we must solve (24):

(Ẽ − wg̃)K̃ = −1

2
ξ̃ with K̃

T
g̃K̃ = 0

(53)(
or K̃

T
g̃K̃ > 0 when w = 0

)
and K0 > 0,

where w is the Lagrange multiplier. As stated above, for reg-
ular values of w with det(Ẽ − wg̃) 	= 0 we find solutions to
the equation

ξ̃
T
(Ẽ − wg̃)−1g̃(Ẽ − wg̃)−1ξ̃ = 0,

which gives the following Lagrange multipliers:

w1 = 1

4

(
λ3 − 2λ1μ

2
2

μ2
1

)
, w2 = 1

4

(
λ3 − 2λ2μ

2
1

μ2
2

)
, (54)

where we have assumed

μ2
1 	= 0 and μ2

2 	= 0 (55)

(μi = 0 for i = 1 or 2 is not relevant as we will show at the
end of this section).

The exceptional solutions are obtained from the equation
det(Ẽ − wg̃) = 0, which produces

w3 = −λ4

4
, w4 = λ3 − 2

√
λ1λ2

4
,

(56)

w5 = λ3 + 2
√

λ1λ2

4
.

Finally, for the case K̃
T
g̃K̃ > 0 we must add the possible

solution

w6 = 0. (57)

Not all w obtained are solutions of (53). Let us denote by Ĩ

the set of valid solutions which are related to the stationary
points of the potential

Ĩ = {w values in expressions (54), (56) and (57)

that are solutions of (53)}. (58)

The largest w in Ĩ corresponds to the global minimum of the
Higgs potential.

3.4.1 Not allowed solutions

The global minimum will be among the stationary points
in Ĩ . By using the Schwarz inequality we can see that the
regular and the exceptional solutions, corresponding to the
possibility K0 = |K|, implies that the two scalar triplet vec-
tors at VEV are linearly dependent, something which does

not have any sense (the quantum numbers of the two triplets
are different), situation which may be avoided in some cases
if only one of the two triplets develops nonzero VEV along
its neutral directions. Since at the same time, the global min-
imum must produce an adequate symmetry breaking pattern
(see Appendix C) this kind of solutions are not allowed. Let
us see this in more detail.

Regular solutions on the forward light cone We start by
considering the Lagrange multipliers w1 and w2 in (54). Let
us define max{Ĩ } as the maximum value of the solutions
in Ĩ . There are two possibilities:

1. w1 ∈ Ĩ and w1 = max{Ĩ }. That is, the point where the
global minimum occurs is associated to w1. After solving
(53), the global minimum is found at

K̃ = −1

2
(Ẽ − w1g̃)−1ξ̃ =

(
− μ2

1

2λ1
, 0, 0, − μ2

1

2λ1

)T

,

(59)

under the condition K0 = −μ2
1/2λ1 > 0. Then we have

the equivalence

w1 ∈ Ĩ ⇐⇒ μ2
1 < 0. (60)

Substituting (59) into (4) we get

1

2

(
K01 + K3σ

3) =
(

− μ2
1

2λ1
0

0 0

)
. (61)

Comparing (3) and (61) we arrive at the conclusion that
no VEV are found in the scalar elements of φ2, i.e. for
this global minimum we have 〈φ2〉 = 0, something that
should not be accepted, as mentioned above.

2. w2 ∈ Ĩ and w2 = max{Ĩ }; in this case the global mini-
mum is associated to w2, and it is found at

K̃ =
(

− μ2
2

2λ2
, 0, 0,

μ2
2

2λ2

)T

, with K0 = − μ2
2

2λ2
> 0;

(62)

then, for this case we have

w2 ∈ Ĩ ⇐⇒ μ2
2 < 0, (63)

and

1

2

(
K01 + K3σ

3) =
⎛

⎝
0 0

0 − μ2
2

2λ2

⎞

⎠ , (64)

implying 〈φ1〉 = 0 which should not be accepted either.
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The two possibilities analyzed above must be discarded be-
cause they are unable to implement an adequate symmetry
breaking pattern. This conclusion can be expressed in the
following way:

If w1(w2) ∈ Ĩ ⇒ w1(w2) < max{Ĩ }. (65)

Exceptional solutions on the forward light cone The sta-
bility condition in (50c) implies w4 < 0; so, according to
the discussion following (31), w4 cannot give a global min-
imum either.

In Appendix B we study and show in detail that the La-
grange multipliers (w3 and w5) do not satisfy the conditions
to be global minima either.

We may conclude therefore that

If w3(w4,w5) ∈ Ĩ ⇒ w3(w4,w5) < max{Ĩ }. (66)

3.4.2 Allowed solution

The only allowed solution to the global minimum lies inside
the forward light cone and is associated to the value w6 = 0,
that is

max{Ĩ } = w6 = 0. (67)

From (56), the value for w3 allows us to say:

If w3 ∈ Ĩ ⇒ w3 < 0, that is λ4 > 0. (68)

Also, from (50c) and the value for w5 in (56) we have that
w5 > 0, implying w5 > w6, which means

w5 /∈ Ĩ . (69)

This result, together with (B.10) and (B.16) in Appendix B,
implies that
√

λ1μ
2
2 + √

λ2μ
2
1 	= 0. (70)

The conditions to have the global minimum at w6 require

that the solution must satisfy − 1
4 ξ̃

T
Ẽ−1g̃Ẽ−1ξ̃ < 0, which

implies that

−64(w1μ
2
1)(w2μ

2
2)

(4λ1λ2 − λ2
3)

2
< 0, (71)

reproducing the following stationary point:

K̃ =

⎛

⎜⎜⎜⎜⎜⎜⎝

4μ2
1w1+4μ2

2w2

4λ1λ2−λ2
3

0

0

4μ2
2w2−4μ2

1w1

4λ1λ2−λ2
3

⎞

⎟⎟⎟⎟⎟⎟⎠
, (72)

which is the global minimum as far as

K0 > 0 ⇒ 4μ2
1w1 + 4μ2

2w2 > 0, (73)

where the relation (50c) has been used.
Using (52), (60), (63) and (67), the inequalities in (71)

and (73) are fulfilled in the following three different cases
(this is going to be seen from another point of view in the
following subsection):

Case 1: w1,μ
2
1 < 0 and w2,μ

2
2 > 0, (74)

Case 2: w1,μ
2
1 > 0 and w2,μ

2
2 < 0, (75)

Case 3: w1,μ
2
1 < 0 and w2,μ

2
2 < 0. (76)

A detailed analysis of the three cases shows that only the
third one is realistic, and it is the only one consistent with a
right implementation of the spontaneous symmetry breaking

Analysis of case 3 Let us consider the aforementioned
Case 3 for which the condition (70) is immediately satisfied.
The inequalities in (76) imply that λ4 > 0 as we are going to
see soon.

To prove it, let us assume that λ4 < 0, that is w3 > 0.
Since w1 and w2 are negative we have w1 − w3 < 0 and
w2 − w3 < 0. Then, (B.4) in Appendix B is satisfied, but
(B.5) becomes (K2

0 −K2
3 ) = μ2

1μ
2
2(w1 −w3)(w2 −w3) > 0,

which allows for nonzero values in the directions K1 and
K2, which in turn implies w3(> 0) ∈ Ĩ , contrary to the con-
ditions expressed in (67) and (68). In this development we
have used the relation (50d) which in turn was used in (B.3).
Then, we can claim that

λ4 > 0. (77)

This result (λ4 > 0) makes redundant the inequality (50d),
which may be replaced by the inequality (77).

Now, from (54) and (76) we have that

λ3 <
2λ1μ

2
2

μ2
1

, and λ3 <
2λ2μ

2
1

μ2
2

, (78)

which does not rule out the possibility of a negative λ3 value.
Using the fact that the global minimum occurs at the

point given by (72), then from (3) and (4), we may claim
that

〈K〉 =
⎛

⎜⎝

4μ2
2w2

4λ1λ2−λ2
3

0

0
4μ2

1w1

4λ1λ2−λ2
3

⎞

⎟⎠ , (79)

where the nonzero VEV must be in both scalar fields, φ1

and φ2. Note also in (79) that the two off-diagonal entries
are zero, which implies two things: first the orthogonality
condition 〈φ1〉T · 〈φ2〉 = 0, and second the electric charge
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conservation in the model. So, the VEV of the scalars can
be written in the following form:

〈φ1〉 = 1√
2

⎛

⎝
0
v1

V1

⎞

⎠ , 〈φ2〉 = 1√
2

⎛

⎝
v2

0
0

⎞

⎠ , (80)

where the inclusion of complex phases does not affect the
analysis of the global minimum, as can be seen from the
structure of matrix (79). Note that φ1 can get a VEV at its
two neutral directions due to the fact that the minimum state
is best achieved in this way, as will be shown at the end of
this section; but at this point, the possibility v1 = 0 or V1 = 0
is excluded by this analysis.

Now, using (3) we have

v2
1 + V 2

1

2
= 4μ2

2w2

4λ1λ2 − λ2
3

= λ3μ
2
2 − 2λ2μ

2
1

4λ1λ2 − λ2
3

, (81)

v2
2

2
= 4μ2

1w1

4λ1λ2 − λ2
3

= λ3μ
2
1 − 2λ1μ

2
2

4λ1λ2 − λ2
3

. (82)

These equations are equivalent to the tree level constraint
equations

μ2
1 + λ1(v

2
1 + V 2

1 ) + λ3
v2

2

2
= 0, (83)

μ2
2 + λ3

(v2
1 + V 2

1 )

2
+ λ2v

2
2 = 0, (84)

the same equations obtained in Refs. [26–34] using a differ-
ent approach.

At the global minimum, the Higgs potential becomes

V |min. = 1

2
K̃

T
ξ̃ = 2μ2

1μ
2
2(w1 + w2)

4λ1λ2 − λ3

= 2μ2
1μ

2
2w2 + 2μ2

1μ
2
2w1

4λ1λ2 − λ2
3

; (85)

using (30), (81) and (82) we get

V |min. = μ2
1(v

2
1 + V 2

1 )

4
+ μ2

2v
2
2

4
< 0. (86)

Therefore, in order to have the deepest minimum value for
the potential as stated by Nature, the following conditions
are highly suggested:

μ2
1 < 0 and μ2

2 < 0, (87)

v1,V1, v2 	= 0. (88)

These last two expressions explain why Case 3 in (76) was
chosen as the most viable solution. The expression (88) re-
veals, for the first time, that the elements of the Higgs scalar
triplets develop VEV in all their neutral directions, although

a hierarchy among the VEV cannot be concluded from the
mathematical point of view.

Finally we must verify the remnant symmetry U(1)em

left in the scalar potential after the spontaneous symmetry
breakdown. For this purpose, we arrange the triplets in (32)
using the following 2×3 matrix:

Φ(x) =
(

φ−
1 φ′0

1 φ0
1

φ0
2 φ+

2 φ′+
2

)
. (89)

An SU(3)L ⊗ U(1)X gauge transformation UG(x) maps the
scalar triplets as

φα
i → φ′α

i = [
UG(x)

]α
β
φ

β
i , i = 1,2. (90)

Then, the matrix Φ(x) transforms as

Φ(x) → Φ ′(x) = Φ(x)UT
G(x). (91)

The scalar matrix Φ(x), in terms of the VEV of the scalar
fields, acquires the form

Φvac =
(

0 v1 V1

v2 0 0

)
. (92)

So, under the transformation (91) we have

Φ ′
vac = ΦvacU

T
G. (93)

Note that the invariance of Φvac is always possible for UG 	=
1, because in (93) we would have more variables than equa-
tions.

3.5 The scalar potential with explicit VEV content

An alternative way of writing the scalar potential (33), show-
ing explicitly its global minimum, is

V (φ1, φ2) = a

[
φ2

1 + φ2
2 − (v2

2 + z2)

2

]2

+ b1

(
φ2

1 − z2

2

)2

+ b2

(
φ2

2 − v2
2

2

)2

+ λ
(
φ

†
1φ2

)(
φ

†
2φ1

)
, (94)

where z2 = v2
1 + V 2

1 and φ2
i = φ

†
i φi , i = 1,2.

This way of writing the scalar potential and the analysis
which follows parallels the study used in the first paper of
Ref. [40–45] for the THDM; for this reason we may call this
form of writing the scalar potential as the Gunion parame-
terization.

Notice first that V (φ1, φ2) has six free parameters.
A glance to (94) shows that a sufficient (but not neces-
sary) condition to produce a global minimum at 〈φ1〉 =
(0, v1/

√
2,V1/

√
2) and 〈φ2〉 = (v2/

√
2,0,0) is that

a, b1, b2, λ > 0 (95)
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(which by the way does not discard the possibility of nega-
tive values for some of them since the necessary conditions
are a + b1 > 0 and a + b2 > 0).

At this point, the criteria for a local minimum becomes

∂2V

(∂φ2
1)2

> 0 ⇒ a + b1 > 0, (96)

∂2V

(∂φ2
2)2

> 0 ⇒ a + b2 > 0. (97)

and

det

⎛

⎜⎝

∂2V

(∂φ2
1)2

∂2V

∂φ2
1∂φ2

2

∂2V

∂φ2
1∂φ2

2

∂2V

(∂φ2
2)2

⎞

⎟⎠ > 0 ⇒ (a + b1)(a + b2) > a2.

(98)

On the other hand, comparing (94) with (33), we see that the
parameters in the two representations are related as follows:

μ2
1 = −(a + b1)z

2 − av2
2, (99a)

μ2
2 = −az2 − (a + b2)v

2
2, (99b)

λ1 = a + b1, (99c)

λ2 = a + b2, (99d)

λ3 = 2a, (99e)

λ4 = λ, (99f)

such that the relations (96), (97) and (98) correspond to the
inequalities (50a), (50b) and (50c), respectively.

Examining now (99a) and (99b) we have

μ2
1 = −(a + b1)z

2 − av2
2 = −λ1z

2 − λ3

2
v2

2, (100)

μ2
2 = −az2 − (a + b2)v

2
2 = −λ3

2
− λ2v

2
2, (101)

which can be written as
(

μ2
1

μ2
2

)
=

(−λ1 −λ3
2

−λ3
2 −λ2

)(
z2

v2
2

)
. (102)

Solving, we obtain

1

2

(
z2

v2
2

)
=

⎛

⎜⎝

λ3μ
2
2−2λ2μ

2
1

4λ1λ2−λ2
3

λ3μ
2
1−2λ1μ

2
2

4λ1λ2−λ2
3

⎞

⎟⎠ =
⎛

⎜⎝

4μ2
2w2

4λ1λ2−λ2
3

4μ2
1w1

4λ1λ2−λ2
3

⎞

⎟⎠ . (103)

The fact that z2 > 0 and v2
2 > 0 implies that the following

product must remain always positive:

μ2
2 w2 > 0 and μ2

1 w1 > 0, (104)

which shows in a different way the validity of the classi-
fication introduced in (74)–(76) for the required symmetry
breaking.

4 New parameterizations

The search and study of possible new parametrizations give
us the possibility of checking some of the previously ob-
tained results. New parameterizations for the invariant scalar
products, different to the ones given in (1), can be con-
structed. We will partially study two cases and, for each one,
we will verify the symmetry breaking SU(3)L ⊗ U(1)X →
U(1)em following the analysis of Sect. 2.2.

A new parameterization for the scalar potential (33) is
obtained by defining the variables

K1 = φ
†
1φ1, K2 = φ

†
2φ2, K3 = φ

†
1φ2, (105)

so that the potential is written as

V = μ2
1K1 + μ2

2K2 + λ1K
2
1 + λ2K

2
2 + λ3K1K2

+λ4K3K
∗
3 , (106)

V = K̃ · ξ̃ + K̃ · Ẽ · K̃,

with

K̃ =

⎛

⎜⎜⎜⎝

K1

K2

K3

K∗
3

⎞

⎟⎟⎟⎠ , ξ̃ =

⎛

⎜⎜⎜⎝

μ2
1

μ2
2

0
0

⎞

⎟⎟⎟⎠ ,

(107)

Ẽ =

⎛

⎜⎜⎜⎜⎜⎝

λ1
λ3
2 0 0

λ3
2 λ2 0 0

0 0 0 λ4
2

0 0 λ4
2 0

⎞

⎟⎟⎟⎟⎟⎠
.

The new parameters satisfy the constraints

K1 ≥ 0 (108)

K2 ≥ 0 (109)

K1K2 ≥ K3K
∗
3 , or K̃ · g̃ · K̃ ≥ 0, (110)

with

g̃ =

⎛

⎜⎜⎜⎝

0 1/2 0 0

1/2 0 0 0

0 0 0 −1/2

0 0 −1/2 0

⎞

⎟⎟⎟⎠ , (111)

where (110) comes from the Schwarz inequality.
Now, for the case K1K2 > K3K

∗
3 , we calculate the sta-

tionary point of the potential (106). To do this we solve the
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equation Ẽ · K̃ = − 1
2 ξ̃ , and we get

K̃ =

⎛

⎜⎜⎜⎜⎜⎜⎝

λ3μ
2
2−2λ2μ

2
1

4λ1λ2−λ2
3

λ3μ
2
1−2λ1μ

2
2

4λ1λ2−λ2
3

0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
, (112)

which coincides with the results in (81) and (82).

To obtain another different parameterization, let us con-

struct the following SU(3)L ⊗ U(1)X gauge invariant array:

K =
(

(φ
†
1φ1)

2 (φ
†
2φ1)(φ

†
1φ2)

(φ
†
2φ1)(φ

†
1φ2) (φ

†
2φ2)

2

)
. (113)

This matrix is real, symmetric and positive. We now write

this matrix using the basis
(

1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)
;

that is

K = K1

(
1 0
0 1

)
+ K2

(
1 0
0 −1

)
+ K3

(
0 1
1 0

)
, (114)

which, compared with (113) gives

(φ
†
1φ1)

2 = K1 + K2 =⇒ φ
†
1φ1 = √

K1 + K2, (115)

(φ
†
2φ2)

2 = K1 − K2 =⇒ φ
†
2φ2 = √

K1 − K2, (116)

(φ
†
2φ1)(φ

†
1φ2) = K3. (117)

Due to the positivity of (113) we have

K1 ≥ 0, K2
1 − K2

2 − K2
3 ≥ 0. (118)

Notice however that the scalar potential is not a polynomial

function of the parameters K1, K2 and K3 [see the rela-

tions (115) and (116)].

5 The potential after the electroweak symmetry
breaking

To analyze the form of the scalar potential after the elec-
troweak symmetry has been broken, we may throw some
insight into the physical problem, as we are now going to
see.

We start by assuming a stable potential which leads to the
desired symmetry breaking pattern as discussed in the pre-
vious sections, and thus we see what the consequences are
for the resulting physical fields. For this purpose we work in
the unitary gauge and use a basis for the scalar fields such
that the VEV in (80) hold. Furthermore, the relation

Imφ′0
1 = 0 (119)

immediately produces one Goldstone boson (Go1) which is
eaten up by one of the CP-odd gauge bosons.

We use as usual the following shifted Higgs fields in the
two triplets:

φ1 = 1√
2

⎛

⎜⎜⎝

√
2φ−

1

v1 + H ′
1

V1 + H1 + iA1

⎞

⎟⎟⎠ ,

(120)

φ2 = 1√
2

⎛

⎜⎜⎝

v2 + H2 + iA2√
2φ+

2√
2φ′+

2

⎞

⎟⎟⎠ .

We may now proceed to find the remaining Goldstone
bosons and the physical Higgs fields (three CP-even and one
CP-odd).

It is convenient to decompose K̃ according to the power
of the physical fields

K̃ = K̃{0} + K̃{1} + K̃{2}, (121)

with

K̃{0} =

⎛

⎜⎜⎜⎜⎜⎝

V 2
1
2 + v2

1
2 + v2

2
2

0
0

V 2
1
2 + v2

1
2 − v2

2
2

⎞

⎟⎟⎟⎟⎟⎠
, (122)

K̃{1} =

⎛

⎜⎜⎜⎜⎜⎝

V1H1 + v2H2 + v1H
′
1

V1√
2
φ′−

2 + V1√
2
φ′+

2 + v1√
2
φ−

2 + v1√
2
φ+

2 + v2√
2
φ−

1 + v2√
2
φ+

1

iV1√
2
φ′−

2 − iV1√
2
φ′+

2 + iv1√
2
φ−

2 − iv1√
2
φ+

2 + iv2√
2
φ−

1 − iv2√
2
φ+

1

V1H1 + v1H
′
1 − v2H2

⎞

⎟⎟⎟⎟⎟⎠
, (123)
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K̃{2} = 1

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H 2
2 + H 2

1 + A2
2 + A2

1 + H ′2
1 + 2φ′+

2 φ′−
2 + 2φ+

2 φ−
2 + 2φ+

1 φ−
1√

2φ′−
2 H1 + √

2φ′+
2 H1 + i

√
2φ′−

2 A1 − i
√

2φ′+
2 A1 + √

2φ−
2 H′

1+√
2φ+

2 H ′
1 + √

2φ−
1 H2 + √

2φ+
1 H2 − i

√
2φ−

1 A2 + i
√

2φ+
1 A2

i
√

2φ′−
2 H1 − i

√
2φ′+

2 H1 − √
2φ′−

2 A1 − √
2φ′+

2 A1 + i
√

2φ−
2 H′

1−
i
√

2φ+
2 H′

1 + i
√

2φ−
1 H2 − i

√
2φ+

1 H2 + √
2φ−

1 A2 + √
2φ+

1 A2

H 2
1 + A2

1 + H ′2
1 − H 2

2 − A2
2 − 2φ′+

2 φ′−
2 − 2φ+

2 φ−
2 − 2φ+

1 φ−
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (124)

The global minimum of the potential occurs when w = 0 in
(53). This leads to

ẼK̃{0} = −1

2
ξ̃ . (125)

Using equations (121) to (125), we get for the potential in
(19)

V = V{0} + V{2} + V{3} + V{4}, (126)

where V{k} are the terms of order kth in the physical fields

V{0} = 1

2
K̃{0} · ξ̃ , (127)

V{2} = K̃{1} · Ẽ · K̃{1}, (128)

V{3} = 2K̃{1} · Ẽ · K̃{2}, (129)

V{4} = K̃{1} · Ẽ · K̃{2}. (130)

The second order terms (128) determine the masses of the
physical Higgs fields and the remaining Goldstone bosons

V{2} = 1

2
(H1 H2 H ′

1)M2
neutral

⎛

⎝
H1

H2

H ′
1

⎞

⎠

+ (
φ+

1 φ+
2 φ′+

2

)
M2

charged

⎛

⎝
φ−

1
φ−

2
φ′−

2

⎞

⎠ , (131)

with

M2
neutral =

⎛

⎜⎝
2λ1V

2
1 λ3v2V1 2λ1v1V1

λ3v2V1 2λ2v
2
2 λ3v1v2

2λ1v1V1 λ3v1v2 2λ1v
2
1

⎞

⎟⎠ , (132)

M2
charged = λ4

2

⎛

⎜⎝

v2
2 v1v2 v2V1

v1v2 v2
1 v1V1

v2V1 v1V1 V 2
1

⎞

⎟⎠ . (133)

Clearly, the fields A1 and A2 are massless, providing two
other CP-odd Goldstone bosons Go2 and Go3. The neutral
sector (132) provides a CP-even Goldstone boson Ge4 and

two CP-even massive scalars Hgg1 and Hgg2 with masses

M2
Hgg1,Hgg2

= (
v2

1 + V 2
1

)
λ1 + v2

2λ2

±
√[(

v2
1 + V 2

1

)
λ1 + v2

2λ2
]2 + v2

2

(
v2

1 + V 2
1

)(
λ2

3 − 4λ1λ2
)
.

(134)

Now, the stability of the potential requires that λ1 > 0,
λ2 > 0 and 4λ1λ2 > λ2

3 (see (50a), (50b) and (50c)), which
in turn implies a positive value for the former masses of the
scalar fields predicted by the model.

For the charged sector (133) we get two zero eigenvalues
corresponding to four Goldstone bosons G±

5 ,G±
6 , two CP-

even and two CP-odd, and two charged scalars, one CP-even
and one CP-odd, with a degenerate mass λ4

2 (v2
1 + v2

2 + V 2
1 ),

which, according with (77), is positive.
The former analysis is in agreement with the results ob-

tained in Refs. [26–34].

6 Conclusions

A detailed study of the scalar potential for the economical
3-3-1 model has been carried through. In order to have an
acceptable theory, this potential should be stable; that is,
it should be bounded from below and lead to the correct
EWSB pattern observed in Nature.

For the scalar potential as presented in (33), the following
are the conditions which guarantee strong stability:

1. Necessary and sufficient conditions:

λ1 > 0 and λ2 > 0.

2. Sufficient (but not necessary) conditions

4λ1λ2 > λ2
3 and 4λ1λ2 > (λ3 + λ4)

2.

Now, at the global minimum of the potential, λ4 > 0 is re-
quired; a condition which makes redundant the last inequal-
ity.

Additional constraints coming from our analysis are:
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– The criteria used to find the minimum state leads us to
assure that the second order coefficients μ2

1 and μ2
2 in the

scalar potential must be negative.
– The required EWSB allows us to conclude that both

scalar triplets must develop nonzero VEV. Additionally,
the VEV are found to be necessary along the three elec-
trically neutral directions of the scalar fields.

– In the main text, specific new relations among several pa-
rameters of the scalar potential were derived, as for exam-
ple that

√
λ1μ

2
2 +√

λ2μ
2
1 	= 0. This condition is related to

the existence of a critical point on the scalar potential.
– In Refs. [26–34] λ3 was declared as a negative value pa-

rameter. Here we have shown that under special circum-
stances it can take positive values, constrained by

λ3 < min
{
2λ1|μ2

2/μ
2
1|,2λ2|μ2

1/μ
2
2|

}

– Unfortunately, from the mathematical point of view we
could not establish a hierarchy among V1, v1 and v2, un-
less a fine tuning is introduced (from the physical point of
view we know that V1 � v2 � v1 [27–34]).

But the most important conclusion of our study is that the
conditions for strong stability of the scalar potential guar-
antee positive masses for the scalar fields predicted by the
model. This outstanding result shows the consistency of the
economical 3-3-1 model, something that should not be taken
for granted due to the scarce number of parameters to deal
with.

Notice that the inclusion of imaginary VEV do not al-
ter the minimum of the scalar potential, due to the fact that
〈φ1〉T · 〈φ2〉 = 0.

Notice also that in order to implement the mathemati-
cal method in this particular model, the criteria for stability
were straightened, with a new theorem proved in Appen-
dix A.

The mathematical analysis presented here may be ex-
tended to other 3-3-1 models with three or more Higgs scalar
triplets (work in progress). For these other models the Gu-
nion parameterization may not be implemented easily.

The parameterization given in Sect. 2 for the scalars, us-
ing orbital variables, is not unique. Other acceptable para-
meterizations can be found in Sect. 4. These new schemes
seem to work well and deserve more attention, in particular
the last parameterization used has the additional property
that the scalar product terms are SU(3)L ⊗ U(1)X gauge in-
variant.

Finally we want to mention that some results presented
here either coincide or are compatible with partial results
already published in Refs. [26–34].
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Appendix A: The smallest Lagrange multiplier as the
global minimum of the function J4(k)

Let p and q be two stationary points with Lagrange multi-
pliers up and uq respectively, with |p| = |q| = 1 (we will
consider later the case up = 0, |p| < 1). Both p and q must
satisfy

(E − up)p = −η and (E − uq)q = −η. (A.1)

At these two stationary points, J4(k) takes the values

J4(p) = η00 + up + ηT · p, (A.2)

J4(q) = η00 + uq + ηT · q, (A.3)

where we have used (10), (12) and (A.1). Subtracting we
obtain

J4(p) − J4(q) = up − uq + ηT · (p − q). (A.4)

Now, recalling that (E−up)T = E−up , we transpose (A.1)

pT (E − up) = −ηT , qT (E − uq) = −ηT . (A.5)

Multiplying by q and p, we have

pT · (E − up)q = −ηT · q, (A.6)

qT · (E − uq)p = −ηT · p. (A.7)

Subtracting (A.6) and (A.7) it is obtained that

(uq − up)pT · q = ηT · (p − q), (A.8)

which we place into (A.4) to finally obtain

J4(p) − J4(q) = up − uq + (uq − up)pT · q
= (up − uq)(1 − pT · q), (A.9)

where pT · q = |p||q| cos θ = cos θ < 1.1 Notice that cos θ

cannot be equal to 1, because p and q cannot be parallel: if
we assume that they are parallel to each other, (A.1) leads to

(up − uq)p = 0, and then up = uq, (A.10)

but we have assumed up 	= uq . So, in all the cases we would
have

(
1 − pT · q)

> 0. (A.11)

From (A.9), we finally conclude that

if up < uq ⇔ J4(p) < J4(q). (A.12)

1If |p| < 1, then pT q = |p||q| cos θ < 1.
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Appendix B: The exceptional solutions w3 and w5

In what follows we are going to find the conditions which
avoid that the Lagrange multipliers w3 = −λ4

4 and w5 =
λ3+2

√
λ1λ2

4 be global minima.

B.1 The exceptional solution w3

Let us assume that w3 is the largest value among the accept-
able solutions in Ĩ , that is w3 = max{Ĩ }. For w3, let us solve
the equation (Ẽ − w3g̃)K̃ = − 1

2 ξ̃ , where

Ẽ − w3g̃ =

⎛

⎜⎜⎜⎜⎝

λ1+λ2+λ3+λ4
4 0 0 λ1−λ2

4

0 0 0 0
0 0 0 0

λ1−λ2
4 0 0 λ1+λ2−λ3−λ4

4

⎞

⎟⎟⎟⎟⎠
. (B.1)

By looking the parameters in (51), we see that the orbital
variables K1 and K2 would be arbitrary. But by the use of
(3) the cases K1 	= 0 or K2 	= 0 imply that φ

†
1φ2 	= 0, i.e. we

would have electric charge breaking.
If K1 = 0 and K2 = 0, we focus on the variables K0 and

K3:

(
λ1+λ2+λ3+λ4

4
λ1−λ2

4
λ1−λ2

4
λ1+λ2−λ3−λ4

4

)(
K0

K3

)
= −1

4

(
μ2

1 + μ2
2

μ2
1 − μ2

2

)
,

(B.2)

then

(
K0

K3

)
= a

(
(−2λ1 + λ3 + λ4)μ

2
2 + (−2λ2 + λ3 + λ4)μ

2
1

−(2λ2 + λ3 + λ4)μ
2
1 + (2λ1 + λ3 + λ4)μ

2
2

)
,

(B.3)

with a = 1/(4λ1λ2 − (λ3 + λ4)
2). The global minimum re-

quires that

K0 > 0 ⇒
(−2λ1 + λ3 + λ4)μ

2
2 + (−2λ2 + λ3 + λ4)μ

2
1

= (−2λ1μ
2
2 + λ4μ

2
1 + λ3μ

2
1

) + (−2λ2μ
2
1 + λ4μ

2
2 + λ3μ

2
2

)

= 4μ2
1(w1 − w3) + 4μ2

2(w2 − w3) > 0, (B.4)

and

K2
0 − K2

3 = 0 ⇒
(
2λ1μ

2
2 − λ3μ

2
1 − λ4μ

2
1

)(
2λ2μ

2
1 − λ3μ

2
2 − λ4μ

2
2

)

= μ2
1μ

2
2(w1 − w3)(w2 − w3) = 0, (B.5)

which implies either w3 = w1 or w3 = w2. These solutions
were already studied in Sect. 3.4.1.

B.2 The exceptional solution w5

In this case we solve the equation (Ẽ − w5g̃)K̃ = − 1
2 ξ̃ ,

where the matrix Ẽ − w5g̃ is equal to

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

λ1+λ2−2
√

λ1λ2
4 0 0 λ1−λ2

4

0 λ3+λ4+2
√

λ1λ2
4 0 0

0 0 λ3+λ4+2
√

λ1λ2
4 0

λ1−λ2
4 0 0 λ1+λ2+2

√
λ1λ2

4

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

(B.6)

From (50d) we have λ3+λ4+2
√

λ1λ2
4 > 0, then K1 = K2 = 0.

The equation relating K0 and K3 is

1

4

((√
λ1 − √

λ2
)2

λ1 − λ2

λ1 − λ2
(√

λ1 + √
λ2

)2

)(
K0

K3

)

= −1

4

(
μ2

1 + μ2
2

μ2
1 − μ2

2

)
. (B.7)

Notice that the 2 × 2 matrix in the left-hand side of (B.7) is
not invertible. Its entries are therefore linearly dependent

(
√

λ1 − √
λ2)

2K0 + (λ1 − λ2)K3 = −(
μ2

1 + μ2
2

)
, (B.8)

(λ1 − λ2)K0 + (
√

λ1 + √
λ2)

2K3 = −(
μ2

1 − μ2
2

)
. (B.9)

We will solve these equations in the following two cases:

(i) λ1 = λ2: then, from (B.8), we have

μ2
1 + μ2

2 = 0, (B.10)

which together with (B.9), gives

K3 = − μ2
1

2λ1
. (B.11)

Additionally

K2
0 − K2

3 = 0; (B.12)

then

K0 = ±K3. (B.13)

In both cases

K =
(

0 0

0 K0+K3
2

)
or K =

(
K0+K3

2 0

0 0

)
. (B.14)

(ii) λ1 	= λ2: in this case, taking into account (B.8) and
(B.9), the entries in the right hand side of (B.7) must
be such that
(
μ2

1 + μ2
2

) = α
(
μ2

1 − μ2
2

)
, (B.15)
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with α = (
√

λ1−√
λ2)

2

λ1−λ2
= (

√
λ1−√

λ2)√
λ1+√

λ2
, and |α| < 1. The

former implies
√

λ1μ
2
2 + √

λ2μ
2
1 = 0. (B.16)

Using (B.8) and (B.9) together with the condition
(B.12), we have two solutions. The first one is

K0 = μ2
1(

√
λ1 + √

λ2)

2(λ1
√

λ2 − λ2
√

λ1)
= −K3, (B.17)

where K0 > 0 if μ2
1 > 0, λ1 > λ2, or μ2

1 < 0, λ1 < λ2.
The second solution is

K0 = μ2
1(

√
λ1 + √

λ2)
2

2(λ1λ2 − λ2
1)

= K3, (B.18)

where K0 > 0 if μ2
1 > 0, λ2 > λ1, or μ2

1 < 0, λ2 < λ1.

Appendix C: EWSB in the case w0 > 0

It still remains to see if the economical 3-3-1 model is con-
sistent, when the global minimum is found at K0 = |K|, i.e.
if it is related to the Lagrange multiplier w0 > 0 (this situ-
ation was addressed in Sect. 3.4.1). In this case the vacuum
expectation vectors 〈φ1〉 and 〈φ2〉 become linearly depen-
dent, which implies that either V1 = v1 = 0 or v2 = 0 (cases
where the electric charge generator is broken are not consid-
ered).

Following a similar approach to the one presented in
Sect. 5, we analyze the second order term of the scalar po-
tential, the one responsible to provide with masses to the
physical Higgs fields. This term takes the form

V{2} = K̃
T

{1} Ẽ K̃{1} + 2w0 K̃
T

{0} g̃ K̃{2}. (C.1)

Let us examine the two possible cases:

– V1 = v1 = 0: in this case all particles are decoupled.
There are a total of six massive scalar particles with
masses given by

M2
H1

= 2w0v
2
2, M2

H2
= 2λ2v

2
2, M2

H ′
1
= 2w0v

2
2,

(C.2)
M2

A1
= 2w0v

2
2, M2

φ+
1 (φ−

1 )
= λ4v

2
2/2,

leaving the model with only six Goldstone bosons, which
are not enough to provide with masses to the eight gauge
bosons associated to the same number of broken genera-
tors present in 3-3-1 models.

– v2 = 0: for the notation established in (131) we have

M2
neutral =

⎛

⎜⎝

2λ1V
2
1 0 2λ1v1V1

0 2w0(v
2
1 + V 2

1 ) 0

2λ1v1V1 0 2λ1v
2
1

⎞

⎟⎠ ,

(C.3)

where m2
H2

= 2w0(v
2
1 + V 2

1 ). The remaining submatrix
has null determinant. In this way a total of two massive
CP-even particles show up. For the CP-odd sector a mas-
sive particle M2

A2
= 2w0(v

2
1 + V 2

1 ) is found.
In the charged sector we have

M2
charged =

⎛

⎜⎝

0 0 0

0 2w0(v
2
1 + V 2

1 ) + λ4v
2
1/4 λ4v1V1/2

0 λ4v1V1/2 2w0(v
2
1 + V 2

1 ) + λ4V
2
1 /4

⎞

⎟⎠ ,

(C.4)

where at least two additional massive charged particles
are present, for a total of five massive particles; there re-
maining in this way seven Goldstone bosons, which is not
enough to implement the Higgs mechanism in a consis-
tent way.
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