
Published in IET Science, Measurement and Technology
Received on 29th July 2011
Revised on 26th December 2011
doi: 10.1049/iet-smt.2011.0158

ISSN 1751-8822

Novel binary tree Huffman decoding algorithm and
field programmable gate array implementation for
terrestrial-digital multimedia broadcasting mobile
handheld
S. Beak1 B. Van Hieu1 H. Lee1 S. Choi1 I. Kim1 K. Lee2 Y. Lee2 T. Jeong1

1Department of Electronic Engineering, Myongji University, Korea
2Korea Electric Telecommunication Institute, Korea
E-mail: sbeak@mju.ac.kr

Abstract: Recent mobile devices, which adopted Eureka-147, terrestrial-digital multimedia broadcasting (T-DMB) systems, are
developed as integrated circuit. As a result, the space of memory expands hardly on mobile handheld. Therefore most mobile
handheld must operate a lot of application on limited memory. To solve the problem, most of the mobile devices use some
kind of compression algorithms to overcome the memory shortage. Among such algorithms, Huffman algorithm is most
widely used. In this study, the authors present a novel binary tree expression of the Huffman decoding algorithm which
reduces the memory use approximately by 50% and increases the decoding speed up to 30%. The authors experiment the
decoding speed on an evaluation kit (SMDK 6400), which is a T-DMB mobile handheld with an advanced risk machine
processor. Later to enhance the decoding speed, the authors present an optimum Huffman decoder based on hardware
implementation.

1 Introduction

Terrestrial-digital multimedia broadcasting (T-DMB), based
on Eureka-147 digital audio broadcasting, is now employed
as a marvellous broadcasting system for mobile handheld. It
is able to provide a multimedia broadcasting public service
under a fixed, portable mobile environment [1]. However,
the limited memory of a mobile device limits the operation
of various multimedia applications on the mobile device.
To overcome such a problem, Huffman code is widely used
on mobile devices

Since Huffman encoding scheme was proposed by D.A.
Huffman in 1952, Huffman code has been adopted to
mobile platform in text, image and video compression [2].
An advantage of this compression algorithm is an efficient
utilisation of channel bandwidth and storage size [3].
Among Huffman decoding algorithms, the binary tree
method is the simplest method. The binary tree method uses
pointers to represent the tree structure. It is difficult to
achieve memory efficiency on mobile device. In addition,
the decoding speed of this method is slow.

Therefore many works try to improve the memory
utilisation or the decoding speed. However, to the best of
our knowledge, there has not been a single work that
satisfies the two factors simultaneously – fast decoding
speed while using the minimal memory.

Hence, we propose a novel Huffman decoding algorithm
based on binary tree search that satisfies both factors at the

same time. In addition, using a proposed algorithm, we
designed a Huffman decoder on a field programmable gate
array (FPGA), which is suitable for T-DMB.

This paper is organised as follows. Section 1 introduces the
T-DMB and Huffman coding. Sections 2 and 3 explain the
conventional Huffman encoding and decoding, respectively.
Section 4 presents the proposed Huffman decoding algorithm
with a reduced memory size and a fast decoding speed. In
Section 5, the performance of the conventional and the
proposed algorithm are compared on T-DMB platform using
the two factors as the comparison metric. Section 6 shows the
implementation of the algorithm in hardware. Section 7 shows
the result of the implementation using a private company’s
FPGA. Finally, concluding remarks are given in Section 8.

1.1 Huffman encoding algorithm

Huffman code is a variable length code, which means that
symbols are mapped into code words with different number
of bits [3–5]. Giving a set of symbols, Huffman code of
the set is generated by constructing a binary tree. The
binary tree is created based on probabilities of symbols.
Once the frequency data have been determined [6–8] like
Fig. 1a, the two parentless nodes with the lowest
probabilities are selected. After that, a new node called the
parent of the two lowest probability nodes is created. The
probability of the new node is equal to the sum of its
children’s probabilities. This process is repeated until there

IET Sci. Meas. Technol., 2012, Vol. 6, Iss. 6, pp. 527–532 527
doi: 10.1049/iet-smt.2011.0158 & The Institution of Engineering and Technology 2012

www.ietdl.org



is only one parentless node left. Fig. 1b is the binary tree
corresponding with data in Fig. 1a.

Huffman code is obtained from the binary tree. The left and
right branches of a node are assigned 0 and 1, respectively.
The path from the top parent node to the lowest node is the
code word used to encode the symbol. Table 1 is the
Huffman code generated from binary tree in Fig. 1b.

2 Conventional Huffman decoding algorithm

Giving a Huffman code, conventional Huffman decoding
method regenerates the binary tree, called decoding tree, to
decode data. For example, Fig. 1b is the decoding tree
corresponding with the Huffman code in Table 1. In order
to visualise the difference between leaf nodes and
intermediate nodes of the tree, we use squares for leaf
nodes and circles for intermediate node. The numbers
inside the squares are leaf node values, which correspond to
the symbol values. A path from the root node (the top of
circles in Fig. 1b) to a leaf node (any square in Fig. 1b) is
the codeword corresponding to that leaf node. For example,
the path from the root node to the leaf node 6 is 0-0-0,
which is the codeword of the symbol 6 as in row seven of
the Table 1.

Using the decoding tree, algorithm may be accomplished
by reading the encoded data one bit at a time. The process
starts at the root node. If the received bit is 0 or 1, the left
or right child node will be considered, respectively. If the
child node is a leaf node, a new symbol whose value is the
leaf node’s value is decoded and the process restart at
the root node. In contrast, the process continues until it
reaches a leaf node.

There are two methods to implement the binary tree for
Huffman tree, array data structure and linked list. The
advantages of the linked list data structure are low memory
usage, insertion and deletion of a node. Although the linked
list data structure has above merits, it is not used in reality
because of a major drawback, difficulty in accessing the
parent node of the tree. On the other hand, the array data
structure allows accessing the intermediate node. Therefore
it has been adopted for decoding Huffman tree. But, the

major disadvantage is the memory spent on storing such a
complete binary tree [9–11].

Lastly, the calculation about need of memory spread
widely. Formula (1) shows the memory used (in bytes) by a
conventional Huffman binary tree

m = 2(n − 1) (1)

where ‘m’ is the Memory Usage, ‘n ’ is the number of leaf
node.

2.1 Proposed Huffman decoding algorithm

The advantage of our method for representing the above
Huffman binary tree is the low memory use while
maintaining an easy accessibility to the original date –
combining the advantages of the two data structures (linked
list and array data structure). From the decoding tree, our
method generates a tabular representation of the decoding
tree. And the decoding process is performed on this tabular
representation. The following describes the proposed
algorithm in more detail.

Firstly, each intermediate node is assigned a unique
number. If a decoding tree has n leaf nodes, it will have
n 2 1 intermediate nodes. As a consequence, intermediate
nodes’ index number is from 0 to n 2 2. Fig. 2 is the
decoding tree in which all intermediate nodes are indexed.
The numbers inside circles are index numbers of
intermediate nodes. In Fig. 2, we use depth-first-search to
assign index number. The index number is from 0 to 6.

After indexing the decoding tree, it can be represented in a
tabular representation like Table 2. Each entry of the
representation is a transition of the decoding tree. Because
all intermediate nodes always have two child nodes, each
intermediate node always occupy two entries of the
representation. In our method, the transitions to left and
right nodes of the intermediate node K occupy position 2K
and 2K + 1 of the tabular representation, respectively. Each
entry of the representation includes two fields called
Classify code and Value. Classify code specifies whether a
child node is a leaf node or intermediate node. If a child
node is an intermediate node, Value specifies the index
number of that node. If a child node is a leaf node, Value
specifies the symbol value of that node.

We visualise the value of each entry of the tabular
representation in Fig. 2. A pair of number in rectangle is an
entry. The number in grey is Classify code and the other is

Table 1 Encoded data by Huffman algorithm

Symbol Codeword Length Symbol Codeword Length

0 1111 4 4 001 3

1 110 3 5 011 3

2 010 3 6 000 3

3 1110 4 7 10 2

Fig. 2 Proposed Huffman decoding binary tree

Fig. 1 Procedure of Huffman encoding

a Number of frequency times
b Huffman binary tree

528 IET Sci. Meas. Technol., 2012, Vol. 6, Iss. 6, pp. 527–532

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-smt.2011.0158

www.ietdl.org



Value. Table 2 is the tabular representation corresponding to
the decoding tree in Fig. 2.

Using the tabular representation, the decoding process is as
follows. The decoding process is a table lookup process. At
the beginning, an index is assigned zero. When a new data
bit is received, this bit is added with the index to generate
the new value of the index. Then, the entry whose position
is specified by index is fetched. If its Classify code is 1, a
new symbol whose value is entry’s Value is decoded and
the index is reset to zero. In contrast, if Classify code is 0,
the index is set to 2 × Value.

At last, Formula (2) shows proposed algorithm memory
calculation based on bits.

m = 2(n − 1)(d + 1) (2)

where ‘m’ is Memory Usage, ‘n ’ is the number of leaf node
and ‘d’ is the symbol length.

3 Comparison of the conventional and the
proposed algorithm

Table 3 compares the amount of memory used by the
conventional and the proposed Huffman decoding
algorithm. As mentioned above, the formula for the
proposed Huffman decoding algorithm is expressed in bits;
thus, the value of the calculation needs to be divided by
eight. As shown in Table 3, the proposed algorithm only
uses half of the memory.

To prove that the proposed algorithm is faster than the
conventional algorithm, we first experiment the two
algorithms, conventional and proposed Huffman algorithm,
on a T-DMB platform. The T-DMB platform is based on
WinCE OS, and consists of 16/32 bit RISC microcontroller,

SDRAM, TFT, LCD etc. as shown in Fig. 3. The
Microcontroller has 16 KB I-Cache, 16 KB D-Cache and 64
and 128 MB SDRAMs. We run the two decoding
algorithms on six files of various lengths. To get an
accurate result, each file is tested four times, and those
results are averaged. The results of the test are shown in
Fig. 4. The proposed algorithm is faster than the
conventional decoding tree search method as shown in Fig. 4.

4 Implementation on hardware

To validate the hardware implementation of the decoder, the
Test Environment shown in Fig. 5 is used. The software
component, the encoder and its peripherals, is written in C;
the hardware component, the decoder and its peripherals, is
written in Verilog. The following two sections describe the
implementation of the software and hardware components
in more detail, respectively.

4.1 Implementation of algorithm in software

Original data (Software part shown in Fig. 5): Huffman
encoding scheme has been used to compress data in the
diverse digital field. Hence, Huffman encoder deals with
some data types. To prove our decoding algorithm, the text
file with 64 Kbyte is chosen.

4.1.1 Encoder: The encoder performs Huffman encoding
from the original data. After encoding, it generates two
Huffman Rom Data and Encoded Rom Data. Huffman Rom

Table 3 Compare the quantity of memory

Conventional

Huffman decoding

algorithm

Proposed Huffman

decoding

algorithm

calculation 2(n 2 1) ¼ 2(8 2 1) 2(n 2 1)(d + 1) ¼

[2(8 2 1)(3 + 1)]/8

total

memory

14 byte 7 byte

Fig. 3 Block Diagram of T-DMB platform

Fig. 4 Test result on the T-DMB mobile platform

Table 2 Memory storage technique of proposed decoder

Intermediate

node, K

Memory

address

Classify

code

Value

0 0 0 1

1 0 4

1 2 0 2

3 0 3

2 4 1 6

5 1 4

3 6 1 2

7 1 5

4 8 1 7

9 0 5

5 10 1 1

11 0 6

6 12 1 3

13 1 0

IET Sci. Meas. Technol., 2012, Vol. 6, Iss. 6, pp. 527–532 529
doi: 10.1049/iet-smt.2011.0158 & The Institution of Engineering and Technology 2012

www.ietdl.org



Data are the tabular representation of the Huffman decoding
tree and Encoded Rom Data are the content of encoded
data. Both of them are stored to ROM so that the hardware
can read and perform decoding.

4.2 Implementation of algorithm in hardware

4.2.1 Decoder: The decoder is based on the flowchart
shown in Fig. 6. The decoder access data from ROM,
which stores Tabular representation of Huffman decoding
tree, based on the new data bit from inData signal. At the
beginning, romAddr is set to 0. When there is a new bit of
data, it is added with current romAddr form address to
access ROM. Since each memory word of the ROM is a
entry of the tabular representation, the first bit or romData
(romData[0]) is the IsSymbol field. If it is 1, a new symbol
is decoded. So a signal called hasData is set to 1 to
announce, the new symbol is loaded to a register called
outData, and the romAddr is resetted to 0. If it is 0, the new
ROM address is calculated as romData[8:1].

Using the flowchart in Fig. 6, the structure of the Huffman
decoder is shown in Fig. 7. All registers connect Clk, nRst
signals for synchronous and asynchronous operation and
link EN signal for test. The function of pins shown in
Fig. 7 is described as follows. The decoding circuit is very
simple with only some registers.

† inData: input encoded data (1 bit/clock);
† Clk: system clock;
† EN: decoder enable (synchronous);
† nRst: decoder reset (asynchronous);
† outData: (8 bits) decoded data;
† hasData: indicates that decoder is outputting data;
† romAddr: (9 bits) address signals for accessing rom;
† romData: (9 bits) data from ROM.

Hence, the performance of hardware depends on users’ FPGA
shown in Fig. 8. So we derive the formula about the speed.

S = N × T (3)

where S is speed result and N is data size (bit) and T is clock
speed.

4.2.2 Controller: The data in ROM are stored in byte (8
bits) unit. However, our decoding circuit decode one bit
after one clock cycle. Controller will read data from ROM,
then serial shift it to the decoding circuit.

Fig. 9 shows a register transfer level (RTL) code which is a
part of the proposed 1-bit controller.Fig. 6 Flowchart of Huffman decoder

Fig. 7 Structure of the Huffman decoder

Fig. 8 Proposed decoder design in RTL code

Fig. 5 Data flow structure of test environment

530 IET Sci. Meas. Technol., 2012, Vol. 6, Iss. 6, pp. 527–532

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-smt.2011.0158

www.ietdl.org



4.2.3 Original data (Hardware part shown in Fig. 5):
To compare decoded result against the original data, we
simulate the proposed Huffman decoder using a private
company’s software. The Huffman hardware decoder
correctly encoded data having a character, that is, ‘HELLO’
message as shown in Fig. 10.

5 Test and results

Since the proposed algorithm can decode any type of digital
data, MP3 data were used for testing. To test decoding
speed, we use 65.3 Kbyte MP3 data.

The performance is measured on five different series of a
same vender. We express five different series as A to
E. Among each series, the proposed decoder was tested on
multiple models and the best performance result was
recorded. Among each series, E series is superior to the other
series. The complete simulation result is shown in Fig. 11.

Fig. 12 shows decoding speed of the best performance result
on various FPGA series. The decoding speed of ‘E’ model is

4.7 ns and total logic elements are 87. In the case of ‘D’,
decoding speed 7.6 ns and total logic elements are 99. As
mentioned above, E series is superior to the other series. The
complete simulation result is shown in Fig. 12. Finally,
Figs. 13 and 14 show the synthesis result for verification.

Fig. 10 Waveform verification result using Huffman decoder

Fig. 12 Decoding speed result of a private company’s FPGA

Fig. 13 Logic elements verification of B series on FPGA

Fig. 9 Proposed controller design in RTL code

Fig. 14 Frequency verification of B series on FPGA

Fig. 11 Logic elements result of a private company’s FPGA

IET Sci. Meas. Technol., 2012, Vol. 6, Iss. 6, pp. 527–532 531
doi: 10.1049/iet-smt.2011.0158 & The Institution of Engineering and Technology 2012

www.ietdl.org



6 Conclusion

In this paper, the implementation of the proposed Huffman
decoder on an FPGA has been shown. We prove the advantage
of our algorithm from the experimental results. Hence, we
expect the proposed method to be applied to T-DMB systems.
The speed of proposed hardware decoder is limited by the
sequential processing. Hence, a customised IC design using
VLSI [12] technology can further improve the speed. A new
Huffman hardware decoder using pipeline technology [9, 13],
which is our next research topic, may contribute to improve speed.

7 Acknowledgments

This work was supported by National Science Foundation
(NRF) grant funded by the Korea government (MEST)
(No. 20090069991). This work was supported by the Korea
Government Ministry of Knowledge and Economics (MKE)
under the grant No. I-2010-1-012 of the Electric Power
Industry Tech. Evaluation and Planning Center (ETEP).
This work was supported by the IT R&D program of The
MKE/KEIT. 10040191, the development of Automotive
Synchronous Ethernet combined IVN/OVN and safety
control system for 1 Gbps class.

A preliminary version of this paper is presented at IEEE ICCE
2010 in LV, US in January 12, 2010 and edited with an
honourable request by the program committee of IEEE ICCE
2010 for a journal publication (corresponding author T. Jeong).

8 References

1 Kim, S.-H., Kim, Y.-S., Lim, J.-S., Ahn, C., Choi, U.-R., Soe, B.-S.:
‘Design of the channel estimation algorithm for advanced terrestrial
DMB system’, IEEE Trans. Broadcast., 2008, 54, pp. 816–820

2 Wang, P.-C., Yang, Y.-R., Lee, C.-L., Change, H.-Y.: ‘A memory-
efficient Huffman decoding algorithm’. 19th Int Conf on, Advanced
Information Networking and Applications, AINA 2005, March 2005,
vol. 2, pp. 475–479

3 Aspar, Z., Mohd Yusof, Z., Suleiman, I.: ‘Parallel Huffman
decoder with an optimize look up table option on FPGA’.
TENCON 2000. Proc. of TESCON, September 2000, vol. 1,
pp. 73–76

4 Rigler, S., Bishop, W., Kennings, A.: ‘FPGA-based lossless data
compression using Huffman and LZ77 algorithms’. Electrical and
Computer Engineering, CCECE 2007. Canadian Conf., April 2007,
pp. 1235–1238

5 Ezhilarasan, M., Thambidurai, P., Praveena, K., Srinivasan, S, Sumathi,
N.: ‘A new entropy encoding technique for multimedia data
compression’. Int. Conf. on Computational Intelligence and
Multimedia Applications, December 2007, vol. 4, pp. 157–161

6 Huffman, D.A.: ‘A method for the construction of minimum redundancy
codes’. Proc. IRE40, 1952, pp. 1098–1101

7 Roman, S.: ‘Coding and information theory’ (Springer, New York,
1992)

8 Chung, K.L., Wu, J.G.: ‘Level-compressed Huffman decoding’, IEEE
Trans. Commun., 1999, 47, (10), pp. 1445–1447

9 Parhi, K.K.: ‘High-speed Huffman decoder architectures’. Signals,
Systems and Computer, 1991. Conf. Record of the 25th Asilomar
Conf., November 1991, vol. 1, pp. 64–68

10 Oh, H.-Y., Erturk, S., Chang, T.-G.: ‘Low complexity video
encoding with one-bit transform based network-driven motion
estimation’, IEEE Trans. Consum. Electron., 2007, 53, (2),
pp. 601–608

11 Jeong, T., Hieu, B., Beak, S.: ‘Memory efficient multimedia Huffman
decoding method and apparatus for adapting Huffman table based on
symbol from probability table’, South Korea Patent File
No.10-1030726, November 26. 2009

12 Chang, S.-F., Messerschmitt, D.G.: ‘VLSI designs for high-
speed Huffman decoder’. Proc. IEEE Int. Conf. on Computer Design:
VLSI in computers and Processors, ICCD’91, October 1991,
pp. 500–503

13 Parhi, K.K.: ‘High-speed VLSI architectures for Huffman and Viterbi
decoders’, IEEE Trans. Circuits Syst. II: Analog Digit. Signal
Process., 1992, 39, pp. 385–391

532 IET Sci. Meas. Technol., 2012, Vol. 6, Iss. 6, pp. 527–532

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-smt.2011.0158

www.ietdl.org



Copyright of IET Science, Measurement & Technology is the property of Institution of Engineering &

Technology and its content may not be copied or emailed to multiple sites or posted to a listserv without the

copyright holder's express written permission. However, users may print, download, or email articles for

individual use.


