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It is not unusual for portable devices to be damaged when they are accidentally dropped on hard floors. Shock tests are increasingly
being used to evaluate the drop impact response of portable devices. However, the underlying failure mechanisms have not been fully
theoretically explored. There are two candidate failure mechanisms that can account for the drop impact fragility of the display in
a smart mobile phone during a shock test: weakest link failure and cumulative damage failure. The weakest link theory provides
a basis on a Weibull distribution and the cumulative damage theory on an inverse Gaussian distribution. This article proposes a
discrimination procedure for the two distribution types. The probability of correct selection is computed using asymptotic results on
the ratio of the Maximum Likelihood (ML) to discriminate between the two distributions. Expressions are provided that can be used
to compute the asymptotic distributions of ML estimators or their functions when there is model mis-specification. The proposed
method is applied to real shock test data for smart mobile phone display modules to determine the underlying failure mechanisms.

Keywords: Discrimination, inverse Gaussian distribution, model mis-specification, probability of correct selection, shock damage,
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1. Introduction

Rapid developments in the telecommunications industry
in the last decade have facilitated the widespread use of
portable electronic devices such as digital cameras, mobile
phones, and tablet Personal Computers (PCs). However,
portable devices are often accidentally dropped onto hard
floors due to inadvertent handling while using a device. This
may cause the plastic housing of the device to fracture, as-
semblies to come apart, and fragile components such as
the liquid crystal display and organic light-emitting diode
to crack. Drop-induced failure is a dominant failure mode
of portable electronic products. The forces and accelera-
tions experienced by the portable electronic device during
impact with a hard surface depend on the drop height,
mass, impact orientation, and the surface on which the de-
vice is dropped (Lim et al., 2002). Most existing studies on
impact-proof designs have been confined to packaging or
cushioning design (Goyal et al., 1997). With the advent of
expensive portable electronic devices such as Smart Mobile
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Phones (SMPs) and tablet PCs, the device’s capability to
survive the damage created by an accidental drop has be-
come an important design requirement. Evaluation of the
physical strength of a product must be preceded by the cre-
ation of products that can accommodate occasional severe
impacts or sustain minimal damage from drop impacts.
Durability and fragility have traditionally been evaluated
using physical drop tests on prototypes. Although experi-
mental drop tests allow direct and accurate evaluation on
product is robustness, these tests are expensive and time-
consuming to performs. Moreover, if the ability to survice
a severe drop shock is unsatisfactory, the prototypes may
have to be redesigned through a painful correction process.

The research presented in this article is motivated by one
of the current critical issues associated with SMPs: display
damage resulting from an accidental drop during usage.
Because of customer demand for versatile functions and at-
tractive SMP designs, the displays of SMPs have increased
in size and this part of the device is more vulnerable than
the other components to accidental shocks. SMP manufac-
turers perform drop tests to evaluate the device is fragility
caused by a drop shock, focusing mainly on the display’s
structure. The drop test increases the drop height of the
device until failure is observed; however, impact angle or
impact area cannot be accurately controlled in drop tests.
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A (impact) shock test, which assesses drop impact on a
targeted area, has been proposed and is increasingly being
used. In a shock test, we support the device with a fixture
on the carriage of a shock test machine and the carriage is
dropped to deliver a given level of shock to the device at a
fixed height. The impact angle and area can be adjusted in
this test and the test machines can also control impact ac-
celeration (as a degree of shock measure) and shock pulse
to be loaded. This shock test involves gradually increas-
ing the impact acceleration and continues until failure is
observed. In general, durability to drop shock is evaluated
by a Damage Boundary Curve (DBC). The DBC was first
suggested by Newton (1968) to quantify the fragility of me-
chanical/electronic products in response to a drop impact.
The formal procedure to draw a DBC is specified in ASTM
D3332-99 (ASTM, 1999). The DBC is based on the weakest
link theory, which states that an item’s strength is limited
to the weakest link or part that cannot sustain a threshold
stress, even if the smallest impact is loaded. However, the
exact physical mechanisms that lead to cracking of SMP
displays in response to a drop shock have not yet been
satisfactorily identified.

In this article, we propose a discrimination procedure to
select the best model for drop impact durability of SMP
displays in a shock test. This procedure is based on two
candidate failure mechanisms: weakest link failure and cu-
mulative shock failure. The weakest link theory is based on
a Weibull distribution, which has been widely used in the
fields of reliability and biostatistics. The cumulative dam-
age theory is based on an inverse Gaussian distribution that
is derived as the time to first passage of a Wiener process
with a positive drift to a fixed threshold level. The inverse
Gaussian distribution has been previously applied to the
tensile strength of carbon fibers and fibrous carbon com-
posite materials (Durham and Padgett, 1997).

The problem of testing whether some given data follows
one of two candidate distributions has been extensively
studied in the literature on statistics. The idea of discrim-
inating between two distributions was originally proposed
by Cox (1961). Chambers and Cox (1967) and Atkinson
(1970) provided significant theoretical contributions to this
discrimination problem. In particular, special attention
has been paid to discriminating between lognormal and
Weibull distributions (Dumonceaux and Antle, 1973;
Pereira, 1978; Chen, 1980; Quesenberry and Kent, 1982;
Kundu and Manglick, 2004; Pascual, 2005), gamma and
Weibull distributions (Bain and Englehardt, 1980; Fearn
and Nebenzahl, 1991), gamma and lognormal distributions
(Kundu and Manglick, 2005), lognormal and generalized
exponential distributions (Kundu et al. 2005), Weibull and
generalized exponential distributions (Gupta and Kundu,
1951), and normal and extreme value distributions for
a linear regression model (Yu, 2007). Recently, Tsai et
al. (2011) investigated the mis-specification effect on the
prediction of a product’s Mean-Time-to-Failure (MTTF)
when a Wiener process or gamma process was wrongly fit-

ted to the degradation data. To the best of our knowledge,
however, no studies have reported how to discriminate
between Weibull and inverse Gaussian distributions.

In this article, we provide expressions to compute the
asymptotic distribution of Maximum Likelihood Estima-
tors (MLEs) under the Weibull and inverse Gaussian distri-
butions when there is model mis-specification. We use the
analytical approach proposed in White (1982a) to address
the effects of model mis-specification on the properties of
interest; e.g., distribution quantiles and MTTF. To discrim-
inate between Weibull and inverse Gaussian distributions,
we also compute the Probability of Correct Selection (PCS)
using asymptotic results for the Ratio of the Maximum
Likelihood (RML).

The rest of this article is organized as follows. In
Section 2, we derive the quasi-MLEs of the Weibull
and inverse Gaussian distributions under model mis-
specification. Then, we compute the accuracy and precision
of failure-time characteristics based on the quasi-MLEs
when a distribution is wrongly fitted. In Section 3, we illus-
trate the computation of the PCS between the Weibull and
inverse Gaussian distributions, based on the asymptotic
distribution of the RML. Real shock test data for SMP
display modules are analyzed in Section 4. Some numeri-
cal experiments are performed in Section 5. We conclude
in Section 6 with a discussion on future research and con-
cluding remarks.

2. Mis-specification between Weibull and inverse
Gaussian distributions

2.1. MLEs under no model mis-specification

Suppose that there is a single item with length or size l
that is divided into several independent sections. The item’s
strength, S(l), is viewed as the minimum strength of the in-
dependent sections as an expression of the weakest-link size
effect. This theory suggests that the distribution function
of strength for an item with length l, F(x; l) = Pr[S(l) ≤ x],
should satisfy the relation

Pr[S(l) > x] = 1 − F(x; l) = {1 − F(x; 1)}l

= {Pr(S(1) > x]}l
. (1)

A Weibull distribution, denoted by model M1, is the only
type of distribution that satisfies Equation (1), and the
probability density function (p.d.f.) of the Weibull distri-
bution with scale parameter λ(> 0) and shape parameter
β(> 0) is

M1 : fWE(x; λ, β) = βλβ xβ−1 exp
{−(λx)β

}
. (2)

The mean and variance of the Weibull distribution
are λ−1� (1 + 1/β) = (λβ)−1� (1/β) and λ−2[� (1 + 2/β) −
� (1 + 1/β)2], respectively, where �(·) is the gamma func-
tion. The Weibull pth quantile is xp = λ−1[− ln(1 − p)]1/β .
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Based on cumulative damage theory, an inverse Gaus-
sian distribution, denoted by model M2, was introduced
to model the strength of an item with length or size l (see
Durham and Padgett (1997) and Onar and Padgett (2000)).
The p.d.f. of the inverse Gaussian is

M2 : fIG(x; μ, κ) =
√

κ

2πx3
exp

{
−κ(x − μ)2

2μ2x

}
, (3)

where the parameter μ(> 0) is the mean of the distribution
and κ(> 0) is a scale parameter. The variance of the inverse
Gaussian distribution is μ3/κ, implying that μ is not a lo-
cation parameter in the usual sense. The shape parameter
of the distribution is defined by φ = κ/μ, which is invari-
ant under changes of scale. The cumulative distribution
function (c.d.f.) of the inverse Gaussian is

FIG(x; μ, κ) = �

[√
κ

x

(
x
μ

− 1
)]

+ exp
{

2κ

μ

}

× �

[
−

√
κ

x

(
x
μ

+ 1
)]

,

where �(·) is the standard normal c.d.f. There is no simple
closed-form expression for the inverse Gaussian pth quan-
tile, thus it must be computed by numerically inverting
p = FIG(xp; μ, κ).

To derive MLEs for the two distributions, suppose
x1, . . . , xn are random samples from either one of the two
distribution functions. Based on the samples x1, . . . , xn,
the log-likelihood function of the Weibull distribution is
defined by

LWE(λ, β) =
n∑

i=1

ln fWE(xi ; λ, β)

= n ln β+nβ ln λ+
n∑

i=1

{
(β − 1) ln xi − (λxi )β

}
,

(4)

and the MLEs of θ1 ≡ (λ, β) for the Weibull distribution,
θ̂1 ≡ (λ̂, β̂), satisfy the following relationship:

λ̂ =
(

n/

n∑
i=1

xβ̂

i

)1/β̂

.

By denoting
a.s.−→ as the almost sure convergence, the MLEs

θ̂1
a.s.−→ θ1,0 ≡ (λ0, β0) as n → ∞ under no model mis-

specification, where (λ0, β0) are the values satisfying the
following condition:

EM1 (LWE (λ0, β0)) = max
λ̃,β̃

EM1

(LWE(λ̃, β̃)
)
, (5)

and
√

n(θ̂1 − θ1,0) is asymptotically normal with mean of
0 and the variance–covariance matrix �̂θ̂1

, where �̂θ̂1
is

the inverse of the estimated Fisher information matrix.
Asymptotic normality will be denoted by

√
n(θ̂1 − θ1,0)

·∼

N (0, �̂θ̂1
) hereafter. See Meeker and Escobar (1998) for

more details on the asymptotic distribution of MLEs for
the Weibull distribution.

For the inverse Gaussian distribution, the log-likelihood
function is defined by

LIG(μ, κ) =
n∑

i=1

ln fIG(xi ; μ, κ)

= n
2

ln
( κ

2π

)
−

n∑
i=1

{
3
2

ln xi + κ

2μ2

(xi − μ)2

xi

}
,

(6)

and the MLEs of θ2 ≡ (μ, κ) , θ̂2 ≡ (μ̂, κ̂) are obtained
by μ̂ ≡ x̄ = ∑n

i=1 xi/n, and κ̂−1 = ∑n
i=1(x−1

i − x̄−1)/n. It
should be noted that x̄ and

∑n
i=1(x−1

i − x̄−1) are indepen-
dent, μ̂ has an inverse Gaussian distribution with mean
μ and scale parameter nκ, and nκ/κ̂ has a chi-square
distribution with (n − 1) degrees of freedom. The MLEs
of the parameters in the inverse Gaussian distribution,
θ̂2

a.s.−→ θ2,0 ≡ (μ0, κ0) as n → ∞ under no model mis-
specification, where (μ0, κ0) are the values satisfying the
following condition:

EM2 (LIG (μ0, κ0)) = max
μ̃,κ̃

EM2 (LIG(μ̃, κ̃)) . (7)

Similarly,
√

n(θ̂2 − θ2,0)
·∼ N (0, �̂θ̂2

), where �̂θ̂2
is the in-

verse of the estimated Fisher information matrix for the in-
verse Gaussian distribution. See Chhikara and Folks (1989)
for more details on the convergence properties of MLEs for
the inverse Gaussian distribution.

2.2. Asymptotic results of quasi-MLEs under model
mis-specification

In this section, the results in White (1982a) are used to
derive the asymptotic distribution of the MLEs when the
assumed model is incorrect. These incorrect MLEs were
referred to as Quasi-MLEs (QMLEs) by White (1982a)
(true estimators under no model mis-specification will be
referred to as MLEs hereafter). The primary concern here
is the accuracy and precision of failure-time characteristics
when a distribution is wrongly fitted.

Let Mi and Mj be the correct model and (wrongly) fit-
ted model, respectively. Let L(θi ) and L(θ j ) be the log-
likelihood function under model Mi and Mj , respectively.
When the true distribution is unknown, the MLE is a
natural estimator for the parameters that minimize the
Kullback–Leibler Information Criterion (KLIC; see Kull-
back and Leibler (1951))

I(θi ,θ j ) = EMi (L(θi ) − L(θ j )). (8)

The KLIC measures the difference between the correct
model and the fitted model under model mis-specification.
For a fixed θi , let θ∗

j be the value of θ j that mini-
mizes I(θi ,θ j ) over all θ j with respect to Mi ; that is,



1082 Kim and Bae

θ∗
j = arg minθ j

[I(θi ,θ j )]. Because EMi (L(θi )) does not
depend on θ j , the value θ∗

j can be obtained by

θ∗
j = arg min

θ j

[EMi (−L(θ j ))].

Note that θ∗
j is a function of θi . Assuming that the true

model is a Weibull distribution, the expected value of the
negative log-likelihood with respect to M1 is

EM1 (−L(θ2)) ∝ −n
2

ln κ − nκ

μ

+
n∑

i=1

{
3
2

EM1 (ln xi ) + κ

2μ2
EM1 (xi ) + κ

2
EM1

(
x−1

i

)}
,

for θ2 ≡ (μ, κ). It can be easily shown that

EM1 (ln xi ) = − ln λ − γ /β, EM1 (xi )

= 1
λβ

�

(
1
β

)
, and EM1

(
x−1

i

) = λ�

(
1 − 1

β

)
,

where γ = −ψ(1) ≈ 0.5772 is Euler’s constant and where
ψ(x) ≡ (d/dx) ln �(x) is the digamma function. Hence,
EM1 (−L(θ2)) can be simplified to

EM1 (−L(θ2)) ∝ n
2

(
κ

μ2λβ
�

(
1
β

)
+ λκ�

(
1 − 1

β

)

− 2κ

μ
− ln κ − 3 ln λ − 3γ

β

)
.

θ∗
2 ≡ (μ∗, κ∗) are obtained by solving the following

equations:

∂ EM1 (−L(θ2))
∂μ

= − 2κ

μ3λβ
�

(
1
β

)
+ 2κ

μ2
= 0,

∂ EM1 (−L(θ2))
∂κ

= 1
μ2λβ

�

(
1
β

)
+ λ�

(
1 − 1

β

)

− 2
μ

− 1
κ

= 0. (9)

The resulting solution to the QMLEs in Equation (9) is

(μ∗, κ∗) =
(

1
λβ

�

(
1
β

)
, λ−1

(
�

(
1 − 1

β

)

−β�

(
1
β

)−1 )−1)
. (10)

Inversely, assuming that the true model is an inverse Gaus-
sian distribution, the expected value of the negative log-
likelihood with respect to M2 is

EM2 (−L(θ1)) = −n ln β − nβ ln λ

+
n∑

i=1

{(β − 1)EM2 (ln xi ) − λβ EM2

(
xβ

i

)}
.

Similarly, θ∗
1 ≡ (λ∗, β∗) are obtained as solutions of the

following equations:

∂ EM2 (−L(θ1))
∂λ

∣∣∣
θ1=θ∗

1

= −nβ∗

λ∗ − β∗λ∗β∗−1
n∑

i=1

EM2

(
xβ∗

i

)
= 0,

∂ EM2 (−L(θ1))
∂β

∣∣∣
θ1=θ∗

1

(11)

= − n
β∗ − n ln λ∗ +

n∑
i=1

{
EM2 (ln xi ) − λ∗β∗

ln λ∗EM2

(
xβ∗

i

)

− λ∗β∗ ∂ EM2

(
xβ

i

)
∂β

∣∣∣
β=β∗

}
= 0,

where EM2 (ln x) = ∫ ∞
0 ln x · fIG(x; μ, κ) dx, and

EM2

(
xβ

) = ∫ ∞
0 xβ · fIG(x; μ, κ) dx. Obviously, there

is no closed-form solution to the QMLEs in Equation (11),
and these equations must be solved numerically.

Let us define the following 2 × 2 matrices:

A(θi : θ j ) =
[

EMi

(
∂2L(θ j )
∂θ jr∂θ j s

)]
,

B(θi : θ j ) =
[

EMi

(
∂L(θ j )
∂θ jr

∂L(θ j )
∂θ j s

)]
,

and

C(θi : θ j ) = A(θi : θ j )−1 B(θi : θ j ) A(θi : θ j )−1, (12)

where θ jr is the r th element of θ j . Note that if there is
no model mis-specification (i.e., i = j ), −A(θi : θi ) is the
usual Fisher information matrix. The detailed expression
of A(θi : θ j ) and B(θi : θ j ) for i, j = 1, 2 are relegated to
Appendix A. With model Mi as the true model, let θ̂ j be
the QMLEs when model Mj is fitted to a data set of size n.

By Theorem 1 in White (1982b), θ̂1 ≡ (λ̂, β̂)
a.s.−→ (λ∗, β∗),

and θ̂2 ≡ (μ̂, κ̂)
a.s.−→ (μ∗, κ∗) as n → ∞ under model mis-

specification. In addition, by Theorem 3.2 in White (1982a),√
n(θ̂ j − θ∗

j ) is asymptotically normal with a mean of 0
and an Asymptotic Variance–Covariance (AVCV) matrix
of C(θi : θ j = θ∗

j ) for i �= j , i, j = 1, 2.

2.3. Asymptotic properties of the functions of QMLEs

Suppose that the main objective is to estimate a function
of the parameters, which is denoted by h. The exact form
of h will vary across the assumed models. In this section,
we address the effect of model mis-specification on the ac-
curacy and precision of the failure-time characteristics of
interest such as quantiles and MTTF. Let h j (θ j ) denote h
under Mj for j = 1, 2. By the invariance property, h j (θ̂ j )
is the QMLE of h under the mis-specified model Mj , and
is asymptotically normal with an asymptotic mean h j (θ

∗
j )
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and Asymptotic Variance (AVAE):

AVAR
(

h j (θ̂ j )|Mi

)
= 1

n

(
∂h j (θ j )

∂θ j

∣∣∣
θ j =θ∗

j

)T

C(θi :θ j =θ∗
j )

(
∂h j (θ j )

∂θ j

∣∣∣
θ j =θ∗

j

)
.

(13)

For instance, suppose that the population MTTF is of
interest. Let ̂MTTF2 denote the QMLE of the MTTF
when the true model is M1. The QMLE of the MTTF2

is ̂MTTF2 ≡ μ̂ = x̄. Then, using the KLIC to measure the
difference between the correct model (Weibull distribution)
and the fitted model (inverse Gaussian distribution), we ob-
tain the following result.

Theorem 1.

̂MTTF2
·∼ N

(
MTTF1,

c11

n

)
,

where MTTF1 = (λβ)−1� (1/β) and c11 is the (1, 1)th ele-
ment of the AVCV matrix C(θ1 : θ2 = θ∗

2).

Proof. The proof follows immediately from Equations
(10) and (13).

Next, we are interested in the asymptotic distribution
for the QMLE of the MTTF for the Weibull distribution
when the true model is the inverse Gaussian distribution.
Let ̂MTTF1 denote the QMLE of the MTTF when the
true model is M2. The QMLE of the MTTF1 is ̂MTTF1 =
λ̂−1�(1 + 1/β̂). This yields the following result. �

Result 1.

̂MTTF1
·∼ N

(
1
λ∗ �

(
1 + 1

β∗

)
,

1
n

UC(θ2 : θ1 = θ∗
1)UT

)
,

where λ∗ and β∗ are derived by solving Equation (11),
C(θ2 : θ1 = θ∗

1) is derived via A(θ2 : θ1 = θ∗
1) and B(θ2 :

θ1 = θ∗
1) in Appendix A, and

U =
(

∂ MTTF1

∂λ
,
∂ MTTF1

∂β

) ∣∣∣
θ1=θ∗

1

=
(

− 1
λ∗2

�

(
1 + 1

β∗

)
, − 1

λ∗β∗2
�′

(
1 + 1

β∗

))
.

Its proof follows from h1(θ̂1)
a.s.−→ h1(θ∗

1) as n → ∞,
̂MTTF1

a.s.−→ λ∗−1� (1 + 1/β∗), and the asymptotic vari-
ance for ̂MTTF1 results from Equation (13).

Let ŷ1,p denote the QMLE of the pth quantile when the
true model is M2. The QMLE of y1,p is ŷ1,p = λ̂−1[− ln(1 −
p)]1/β̂ . This yields the following result.

Result 2.

ŷ1,p
·∼ N

(
1
λ∗ [− ln(1 − p)]1/β∗

,

× 1
n

VC(θ2 : θ1 = θ∗
1)VT

)
,

where

V =
(

∂y1,p

∂λ
,
∂y1,p

∂β

) ∣∣∣
θ1=θ∗

1

=
(

− 1
λ∗2

[− ln(1 − p)]1/β∗
, − ln(− ln(1 − p))

λ∗β∗2

× [− ln(1 − p)]1/β∗
)

.

Let Bias(h j (θ̂ j )|Mi ) denote the approximate bias of
h j (θ̂ j ) as an estimate of hi (θi ) when the true model is
Mi . The observed bias

Bias(h j (θ̂ j )|Mi ) = h j (θ̂ j ) − hi (θi ) (14)

is asymptotically normal with an asymptotic mean and
asymptotic variance, respectively, of

ABias
(
h j (θ

∗
j )|Mi

) = h j (θ
∗
j ) − hi (θi ), and

AVAR
(
ABias(h j (θ

∗
j )|Mi )

) = AVAR
(

h j (θ̂ j )|Mi

)
. (15)

Note that AVAR
(
ABias(h j (θ

∗
j )|Mi )

)
depends on θi and

the sample size n, whereas ABias(h j (θ
∗
j )|Mi ) depends on θi

but not on n. Let us define the Asymptotic Mean Squared
Error (AMSE) of the QMLE h j (θ̂ j ) to estimate the correct
hi (θi ) by

AMSE[h j (θ̂ j )|Mi ] = lim
n→∞EMi {(h j (θ̂ j ) − hi (θi ))2}

= AVAR(h j (θ̂ j )|Mi )

+ {ABias(h j (θ
∗
j )|Mi )}2. (16)

Then, by Theorem 1, AVAR[ ̂MTTF2|M1] → 0 and
AMSE[ ̂MTTF2|M1] → 0 for a large n.

3. Discrimination between Weibull and inverse Gaussian
distributions

In this section, the PCS is computed to discriminate be-
tween the Weibull and inverse Gaussian distributions,
based on the asymptotic distribution of the RML. The
RML has been used to discriminate between pairs of
overlapping families of distributions: Weibull and gener-
alized exponential distributions (Gupta and Kundu, 1951),
Weibull and lognormal distributions (Kundu and Man-
glick, 2004), and lognormal and generalized exponential
distributions (Kundu and Manglick, 2005). Kundu and
Manglick (2004) showed that the asymptotic distribution
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of the RML under the Weibull and lognormal distributions
is normal and independent of unknown parameters. They
also used the PCS to determine the minimum sample size
required to discriminate between the Weibull and lognor-
mal distributions.

3.1. Asymptotic distribution of likelihood ratio statistics

For the Weibull log-likelihood (4) and the inverse Gaussian
log-likelihood (6), the logarithm of the RML is defined as

Q = LIG(θ̂2) − LWE(θ̂1) ≡ LIG(μ̂, κ̂) − LWE(λ̂, β̂),

where (λ̂, β̂) and (μ̂, κ̂) are the respective MLEs of (λ, β)
and (μ, κ), based on the samples x1, . . . , xn. The logarithm
of the RML can be written as

Q = λ̂β̂

n∑
i=1

xβ̂

i −
(

1
2

+ β̂

)
x̃ + n ln

(
κ̂1/2

β̂λ̂β̂

)

− n
2

(ln(2π) + 1) , (17)

where x̃ = ∑n
i=1 ln xi . We choose the inverse Gaussian if

the test statistic Q > 0; otherwise, we choose the Weibull
distribution as the preferred model (Kundu and Manglick,
2004).

Let Q∗ = LIG(μ∗, κ∗) − LWE(λ0, β0), where (λ0, β0) are
true values of (λ, β) that satisfy Equation (5). Suppose that
the true distribution is the Weibull (M1); then, by Theorem
1 in White (1982b), n−1/2(Q − EM1 (Q)) is asymptotically
equivalent in distribution to n−1/2(Q∗ − EM1 (Q∗)), where
EM1 (Q) and EM1 (Q∗) are the mean of Q and the mean of
Q∗ under the correct model M1, respectively. By defining
the variance of Q as VARM1 (Q), Q is asymptotically nor-
mally distributed with a mean of EM1 (Q) and variance of
VARM1 (Q) because n−1/2(Q∗ − EM1 (Q∗)) is asymptotically
normally distributed. Denote limn→∞[EM1 (Q)/n] = AMM1

and limn→∞[VARM1 (Q)/n] = AVARM1 , then AMM1 and
AVARM1 exist. For a large n:

EM1 (Q)
n

� AMM1 = EM1 (ln fIG(μ∗, κ∗) − ln fWE(λ0, β0))

= 1
2

{
− ln ϒ(β0) + 1 − ln(2π) + γ

(
2 + 1

β0

)}
− ln β0, (18)

where ϒ(β0) = � (1 − 1/β0) − β0� (1/β0)−1. The deriva-
tion of Equation (18) is detailed in Appendix B. Note that
the approximated mean of Q is independent of the Weibull
scale parameter λ and only depends on the shape parameter
β. For a large n:

VARM1 (Q)
n

� AVARM1 = VARM1

(
ln fIG(μ∗, κ∗)

− ln fWE(λ0, β0)
)
.

By letting y = λx, y has a Weibull distribution with a scale
parameter of one and shape parameter of β, and

AVARM1 = VAR
(

− 1
2

κ∗

λ0μ∗2
y − λ0κ

∗

2
y−1 −

(
β0 + 1

2

)

× ln y + yβ0

)

= κ∗2

4λ2
0μ

∗4

(
�

(
1 + 2

β0

)
− �

(
1 + 1

β0

)2 )

+ λ2
0κ

∗2

4

(
�

(
1 − 2

β0

)
− �

(
1 − 1

β0

)2
)

+
(

β0 + 1
2

)2
ψ ′(1)

β2
0

+ 1 + κ∗

λ0μ∗2

(
1 + 1

2β0

)

×
(

ψ

(
1 + 1

β0

)
�

(
1 + 1

β0

)
− �

(
1 + 1

β0

)

×ψ(1)
)

+ κ∗λ0

(
1 + 1

2β0

)(
ψ

(
1 − 1

β0

)

× �

(
1 − 1

β0

)
− �

(
1 − 1

β0

)
ψ(1)

)

−2
(

1 + 1
2β0

)
(ψ(2) − ψ(1)) + κ∗2

2μ∗2

×
(

1 − �

(
1 + 1

β0

)
�

(
1 − 1

β0

))

− κ∗

μ∗2λ0

(
�

(
1 + β0 + 1

β0

)
− �

(
1 + 1

β0

))

− κ∗λ0

(
�

(
1 + β0 − 1

β0

)
− �

(
1 − 1

β0

))
,

(19)

where ψ ′(x) ≡ (d/dx)ψ(x) is the polygamma function.
Similarly, denote limn→∞[EM2 (Q)/n] = AMM2 and

limn→∞[VARM2 (Q)/n] = AVARM2 . Under the existence of
AMM2 and AVARM2 , for a large n:

EM2 (Q)
n

� AMM2 = EM2

(
ln fIG(μ0, κ0)

− ln fWE(λ∗, β∗),
)
,

VARM2 (Q)
n

� AVARM2 = VARM2

(
ln fIG(μ0, κ0)

− ln fWE(λ∗, β∗)
)
. (20)

AMM2 and AVARM2 can be obtained numerically after
plugging λ∗ and β∗ into Equation (20).

3.2. Computation of the PCS

In the previous section, we noted that the logarithm of
the RML is Q

·∼ N (EM1 (Q), VARM1 (Q)). The aymptotic
mean and variance of Q can be approximated via the mean
and variance of Q∗ by using asymptotic equivalence in
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distribution. The PCS is approximated by

PCS = Pr [Q < 0] ≈ �

[
− EM1 (Q)√

VARM1 (Q)

]

� 1 − �

(
n · AMM1√
n · AVARM1

)
. (21)

The PCS can be used for hypothesis test of

H0 : Weibull versus H1 : Inverse Gaussian.

Dumonceaux and Antle (1973) provided the exact criti-
cal regions and the powers of the likelihood ratio tests
as the discrimination problem between the lognormal and
Weibull distribution, based on Monte Carlo simulations.
Following the approach of Dumonceaux and Antle (1973),
we reject the null hypothesis H0 at an α-level of signifi-
cance if Q > −n · AMM1 + zα

√
n · AVARM1 and accept it

otherwise. Here, zα is the 100(1 − α) percentile point of a
standard normal distribution.

The minimum sample size needed to discriminate be-
tween Weibull and inverse Gaussian distributions can be
determined for a given user-specified PCS. The PCS is as-
sumed to be specified by the user in advance. At the least
p∗ protection level, the minimum sample size is derived by
equating

�

(
n · AMM1√
n · AVARM1

)
= 1 − p∗

and obtaining

n = z2
p∗ · AVARM1

(AMM1 )2
, (22)

where zp∗ is the 100(1 − p∗) percentile point of a standard
normal distribution.

4. Shock test data for SMP display modules

We conducted shock tests after mounting SMP display
modules on the carriage of a shock test machine. The shock
test machine must have a flat horizontal test surface (car-
riage) with sufficient strength and rigidity to remain flat
and horizontal under the stresses that develop during the
shock test. A damaged SMP display module can render the
product unacceptable because it fails to meet performance
specifications. The fragility of a product is specified by the
DBC. The DBC, shown in Fig. 1, mainly consists of the crit-
ical acceleration (Ac) and the critical velocity change (Vc).

Fig. 1. A DBC (◦: non-failure, ×: failure).

Critical acceleration is obtained by regularly increasing the
drop height of the carriage to which the SMP display mod-
ule is mounted at fixed velocity change until failure occurs.
The velocity change is adjusted using a number of cushion-
ing layers that decrease the severity of the shock delivered
to the carriage. The critical velocity change is determined
by eliminating the cushioning layers one at a time at a fixed
drop height until failure occurs. In this experiment, 14 SMP
display modules were used for the critical acceleration test
and an additional 14 were used for the critical velocity
change test. The shock test results are given in Table 1.

The Weibull and inverse Gaussian distributions were fit-
ted to the critical acceleration test data of the SMP display
modules. MLEs of the parameters, along with correspond-
ing log-likelihood value are summarized in Table 2. As a
measure of goodness-of-fit, the Kolmogorov–Smirnov (K–
S) distance between the data and the fitted distribution was
calculated. The K–S distance for the fitted Weibull distribu-
tion is 0.2484 with a corresponding p-value of 0.3011, and
the K–S distance for the fitted inverse Gaussian distribution
is 0.2260, with a corresponding p-value of 0.4108. We also
fitted the critical velocity change data of the SMP display
modules to the Weibull and inverse Gaussian distributions
and resulting MLEs of the parameters, along with corre-
sponding log-likelihood value, which are also presented in
Table 2. The K–S distance between the data and the fitted
Weibull distribution is 0.2188 with a corresponding p-value
of 0.5143. In contrast, the K–S distance between the data
and the fitted inverse Gaussian distribution is 0.1947 with
a corresponding p-value of 0.6637.

Weibull and inverse Gaussian survival functions were
fitted to the critical acceleration and critical velocity change
data and are individually plotted in Fig. 2, along with a

Table 1. Shock failure data for SMP display modules evaluated using the critical acceleration test (n = 14) and the critical velocity
change test (n = 14)

Ac
(×103) 5.396 6.076 6.083 6.173 6.240 6.333 6.543 6.720 8.203 8.520 8.756 8.933 9.503 10.500

Vc 4.967 4.967 5.214 5.459 5.459 5.459 5.459 5.702 5.702 5.702 5.702 5.702 5.944 6.184
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Table 2. MLEs of the Weibull and inverse Gaussian distribution

Weibull Inverse Gaussian

(λ̂, β̂) LWE K–S (p-value) (μ̂, κ̂) LIG K–S (p-value)

Ac (0.1240, 5.1585) −26.2447 0.2484 (0.3011) (7.4276, 181.79) −25.1219 0.2260 (0.4108)
Vc (0.1755, 18.4606) −4.5963 0.2188 (0.5143) (5.5442, 1563.1943) −4.3157 0.1947 (0.6637)
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Fig. 2. Fitting of a nonparametric survival function, Weibull, and
inverse Gaussian survival functions to (a) the critical acceleration
data and (b) the critical velocity change data of the SMP display
modules (· · · nonparametric, - - - Weibull, — inverse Gaussian).

nonparametric survival function for comparison. The K–
S distances and Fig. 2 indicate that both the Weibull and
inverse Gaussian distributions provide a good fit to the
critical acceleration and critical velocity change test data.

In comparison with the logarithmic value of RML,
QAc = −25.1219 + 26.2447 = 1.1228 > 0 for the critical
acceleration test data (see Table 3). To compute the PCS
to identify the better distribution, when we assumed that
the true distribution was a Weibull, the PCS is 0.7196
based on a sample size of 14. To test the hypothesis H0:
Weibull versus H1: inverse Gaussian, QAc < 14 · 0.0984 +
1.645

√
14 · 0.4008 = 3.4605; thus, the null hypothesis of

a Weibull distribution was not rejected at the significance
level α = 0.05. In contrast, when we assumed that the true
distribution was an inverse Gaussian, the PCS was 0.7495.
To test hypothesis H0: inverse Gaussian versus H1: Weibull,
QAc > 14 · 0.0802 − 1.645

√
14 · 0.1986 = −0.3434; thus,

the null hypothesis of the inverse Gaussian distribution
was not rejected at the significance level α = 0.05. In this
case, the PCS was at least min{0.7196, 0.7495} = 0.7196.
When we assumed that the Ac data followed a Weibull
distribution, the p-value was 0.1455, whereas when we
assumed that the Ac data followed an inverse Gaussian
distribution, the p-value was 0.5002. The Q value, K–S
distances, and p-values indicate that the inverse Gaussian
distribution best describes the data, and the probability
of correct selection is at least 71.96% for the critical
acceleration data. The minimum sample size required to
achieve an overall p∗ protection level is

n Ac
= z2

p∗max
{

AVARM1,Ac

(AMM1,Ac )2
,

AVARM2,Ac

(AMM2,Ac )2

}
= z2

p∗max{41.3940, 30.8767} = 41.3940 · z2
p∗ .

The minimum sample sizes required to discriminate
between Weibull and inverse Gaussian distribution for
each p∗ protection level are indicated in Table 4.

For the critical velocity change test data, QVc =
−4.3157 + 4.5963 = 0.2807 > 0. To compute the PCS to

Table 3. PCS of the Weibull and inverse Gaussian distribution

Weibull Inverse Gaussian

AMM1 AVARM1 PCS AMM2 AVARM2 PCS Q

Ac −0.0984 0.4008 0.7196 0.0802 0.1986 0.7495 1.1228
Vc −1.4137 0.6337 ≈ 1.00 0.0893 0.2163 0.7425 0.2807
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Table 4. Minimum sample size required for each p∗ protection
level

p∗

0.6 0.7 0.8 0.9

Ac 2.6569 11.3832 29.3205 67.9845
Vc 2.2455 9.6205 24.7802 57.4572

identify the better fitting distribution, when we assumed
that the true distribution was a Weibull, the PCS ≈ 1.00
based on a sample size of 14 (see Table 3). To test the hy-
pothesis H0: Weibull versus H1: inverse Gaussian, QVc <

14 · 1.4137 + 1.645
√

14 · 0.6337 = 24.6915; thus, the null
hypothesis of a Weibull distribution was not rejected at
the significance level α = 0.05. However, when we assumed
that the true distribution was an inverse Gaussian, the PCS
was 0.7425. To test the hypothesis H0: inverse Gaussian ver-
sus H1: Weibull, QVc > 14 · 0.0893 − 1.645

√
14 · 0.2163 =

−1.6124; thus, the null hypothesis of an inverse Gaussian
distribution was not failed rejected at the significance level
α = 0.05 for the critical velocity change test data. In this
case, the PCS was at least min{1.00, 0.7425} = 0.7425. Un-
der the assumption that the Vc data followed a Weibull
distribution, the p-value was 0.2201, whereas under the as-
sumption that the Vc data followed the inverse Gaussian
distribution, the p-value was 0.3121. The Q value, K–S
distances, and p-values indicate that an inverse Gaussian
distribution best fits the data, and the probability of correct
selection is at least 74.25% for the critical acceleration data.
The minimum sample size needed to achieve an overall p∗
protection level is

nVc
= z2

p∗max
{

AVARM1,Vc

(AMM1,Vc )2
,

AVARM2,Vc

(AMM2,Vc )2

}
= z2

p∗max{34.9842, 33.0225} = 34.9842 · z2
p∗ .

For the critical velocity change data, the minimum sample
sizes required for each p∗ protection level are also shown
in Table 4.

In conclusion, we chose the inverse Gaussian model as
the best-fitting model for both the critical acceleration and

Velocity Change (m/s)

(t
ra

ns
fo

rm
ed

) 
P

ea
k 

A
cc

el
er

at
io

n 
(G

)
4 6 8 10 12

4
6

8
10

12
14

16
18

20

Fig. 3. The DBC based on the MLE estimate of MTTF in fitting
the inverse Gaussian distribution, along with 95% confidence
bands.

critical velocity change data. Point estimates of the pth
quantiles and MTTF with the Weibull and the inverse
Gaussian distributions, along with their 95% pointwise
confidence intervals (in parentheses), are shown in Table
5. Note that the confidence intervals of the inverse Gaus-
sian estimates of the pth quantiles and MTTF are consis-
tently narrower than those of the Weibull estimates. Figure
3 depicts the DBC based on the MLE of MTTF, along
with 95% confidence bands, for when the inverse Gaussian
distribution was fitted to the shock data set.

5. Numerical experiments

In this section, we report the results of simulation ex-
periments that we performed to determine the PCS and

Table 5. MLE of quantiles and MTTF along with their 95% confidence intervals for the Weibull and the inverse Gaussian failure-time
distributions

Quantile

0.05 0.10 0.50 0.90 0.95 MTTF

Ac Weibull 4.535 5.214 7.512 9.480 9.977 7.403
(3.416, 6.022) (4.132, 6.580) (6.662, 8.472) (8.532, 10.534) (8.915, 11.164) (6.660, 8.230)

Inverse Gaussian 5.239 5.631 7.279 9.413 10.119 7.427
(4.467, 6.145) (4.891, 6.483) (6.555, 8.083) (8.171, 10.843) 8.620, 11.879) (6.641, 8.213)

Vc Weibull 4.850 5.043 5.585 5.960 6.045 5.534
(4.487, 5.242) (4.731, 5.376) (5.401, 5.774) (5.787, 6.138) (5.859, 6.238) (5.345, 5.731)

Inverse Gaussian 5.018 5.128 5.535 5.974 6.104 5.544
(4.784, 5.264) (4.917, 5.348) (5.365, 5.710) (5.727, 6.230) (5.819, 6.403) (5.371, 5.718)
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Table 6. MC simulation results for the mean and variance of the
ratio of the MLE for the Ac case

Sample size (n)

10 50 100 500 1000

Q̄M1 −0.0521 −0.0866 −0.0903 −0.0970 −0.0975
VARQ,M1 0.1283 0.2782 0.3106 0.3815 0.3890
Q̄M2 0.0379 0.0674 0.0743 0.0785 0.0792
VARQ,M2 0.0882 0.1429 0.1744 0.1861 0.1902

estimation precision, based on asymptotic results, for
different sample sizes and for different parameter val-
ues. The PCS and estimation precision under model
mis-specification depend on the parameters of the true
distribution and sample size. In the analysis of criti-
cal acceleration data based on 14 samples in Section
4, AMM1 = −0.0984 (AMM2 = 0.0802) and AVARM1 =
0.4008 (AVARM2 = 0.1986) under the assumption that the
true distribution was a Weibull (inverse Gaussian) distri-
bution. We performed Monte Carlo (MC) simulations to
examine the asymptotical properties of the RML based
on N = 10 000 replications. Based on the assumption that
the true distribution was a Weibull (inverse Gaussian)
distribution, we treated the MLEs θ̂1 (θ̂2) as the true
parameters for θ1 (θ2). The mean and variance from
the simulations were calculated by Q̄ = ∑N

i=1 Qi/N, and
VARQ = ∑N

i=1(Qi − Q̄)2/N − 1, respectively. Note from
Table 6 that the mean and variance calculated from the
MC simulations approach the theoretical asymptotic mean
and asymptotic variance derived in Section 3 as the sample
size increases. We computed the PCS based on both the
MC simulations and the asymptotic results derived in Sec-
tion 3. The parameter values for the Weibull and inverse
Gaussian distributions were also based on the MLEs (θ̂1,
θ̂2) in Section 3 in the 10 000 simulation replications. The
PCS was computed as the percentage of times the correct
distribution function was chosen by checking whether Q
was positive or negative. These results are reported in Table
7. It is quite clear from Table 7 that the PCS increases as
the sample size increases, as expected. Even for moderate
sample sizes (n = 20), the asymptotic results match up rea-
sonably well with the simulation results for both of these
scenarios.

Table 7. The probability of correct selection based on MC
simulations and the asymptotic results (AS) for the Ac case

Sample size (n)

10 20 40 60 80 100

MCM1 0.6617 0.7623 0.8700 0.9296 0.9566 0.9735
ASM1 0.6885 0.7566 0.8373 0.8858 0.9178 0.9400
MCM2 0.6781 0.7773 0.8800 0.9266 0.9562 0.9718
ASM2 0.7153 0.7894 0.8724 0.9182 0.9462 0.9640

Table 8. PCS based on MC simulations and asymptotic results
when the true distribution was a Weibull distribution for a fixed
λ = 0.1. The elements of the first row in each cell represent the MC
results and the numbers in parentheses represent the asymptotic
results

Sample size (n)

β 20 40 60 80 100

2.5 0.7670 0.8788 0.9337 0.9591 0.9760
(0.6668) (0.7290) (0.7724) (0.8057) (0.8325)

3 0.7686 0.8797 0.9282 0.9614 0.9751
(0.7077) (0.7803) (0.8282) (0.8629) (0.8892)

3.5 0.7608 0.8759 0.9289 0.9564 0.9751
(0.7289) (0.8056) (0.8544) (0.8885) (0.9135)

4 0.7708 0.8704 0.9262 0.9565 0.9712
(0.7415) (0.8202) (0.8691) (0.9025) (0.9263)

4.5 0.7685 0.8732 0.9265 0.9578 0.9705
(0.7496) (0.8295) (0.8782) (0.9109) (0.9339)

5 0.7660 0.8706 0.9251 0.9554 0.9722
(0.7552) (0.8358) (0.8843) (0.9165) (0.9388)

5.5 0.7682 0.8739 0.9219 0.9539 0.9686
(0.7592) (0.8402) (0.8886) (0.9204) (0.9422)

6 0.7718 0.8781 0.9251 0.9544 0.9690
(0.7622) (0.8435) (0.8917) (0.9232) (0.9447)

6.5 0.7618 0.8726 0.9248 0.9540 0.9702
(0.7644) (0.8459) (0.8940) (0.9253) (0.9465)

Table 9. PCS based on MC simulations and asymptotic results
when the true distribution was an inverse Gaussian. The elements
of the first row in each cell represent the MC results and the
numbers in parentheses represent the asymptotic results

Sample size (n)

μ κ 20 40 60 80 100

1.0 50 0.7785 0.8764 0.9260 0.9579 0.9725
(0.7854) (0.8682) (0.9145) (0.9431) (0.9614)

100 0.7691 0.8763 0.9235 0.9534 0.9712
(0.7832) (0.8660) (0.9125) (0.9414) (0.9600)

150 0.7708 0.8716 0.9249 0.9566 0.9711
(0.7825) (0.8652) (0.9118) (0.9408) (0.9596)

5.0 50 0.7817 0.8823 0.9283 0.9577 0.9739
(0.7998) (0.8828) (0.9274) (0.9537) (0.9700)

100 0.7714 0.8766 0.9259 0.9571 0.9752
(0.7910) (0.8740) (0.9197) (0.9474) (0.9649)

150 0.7685 0.8797 0.9216 0.9569 0.9741
(0.7878) (0.8707) (0.9168) (0.9450) (0.9630)

10.0 50 0.7986 0.8898 0.9410 0.9624 0.9803
(0.8146) (0.8972) (0.9395) (0.9633) (0.9773)

100 0.7830 0.8829 0.9322 0.9601 0.9748
(0.7998) (0.8828) (0.9273) (0.9537) (0.9699)

150 0.7769 0.8796 0.9345 0.9588 0.9745
(0.7942) (0.8772) (0.9225) (0.9497) (0.9668)
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Fig. 4. Simulation results for ABias and AMSE (a) when an inverse Gaussian distribution was fitted to the Weibull data and (b) when
a Weibull distribution was fitted to the inverse Gaussian data (— ABias, · · · AMSE for n = 10, − · − AMSE for n = 20).
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Table 10. Asymptotic biases and their asymptotic variances when the inverse Gaussian distribution (M2) was fitted to true Weibull
data (λ = 0.1, β = 5.0) and when the Weibull distribution (M1) was fitted to a true inverse Gaussian distribution (μ = 5.0, κ = 100.0)

AVAR(Bias)

p True distribution yp ABias n = 10 20 50 100 200

Quantile
0.05 M1 5.5209 0.2877 0.1120 0.0269 0.0044 0.0011 0.0003

M2 3.3934 −0.5609 0.0029 0.0014 0.0006 0.0003 0.0001
0.10 M1 6.3758 −0.0037 0.0900 0.0216 0.0035 0.0009 0.0002

M2 3.6741 −0.3548 0.0023 0.0011 0.0004 0.0002 0.0001
0.50 M1 9.2932 −0.4160 0.0051 0.0012 0.0002 * *

M2 4.8784 0.1484 0.0001 0.0001 * * *
0.95 M1 12.4538 1.1139 0.3323 0.0798 0.0131 0.0032 0.0008

M2 7.0210 −0.0810 0.0027 0.0013 0.0005 0.0003 0.0001
MTTF M1 9.1817 * * * * * *

M2 5.0000 −0.0243 0.0031 0.0031 0.0031 0.0031 0.0031

*Indicates that the absolute value is less than 0.0001.

From Equations (18) and (19), it is clear that the PCS is
sensitive to the parameter β under the Weibull distribution.
For a fixed λ = 0.1, we performed a sensitivity analysis of
PCS against β. We observe from Table 8 that the PCS is
negligibly affected by the parameter β and only affected
by the sample size n. We also performed sensitivity anal-
ysis of the PCS against λ with respect to a fixed β, and
observed that the PCS was not affected by the parameter λ

either (results not shown). To investigate the effect of these
parameters on the PCS under the inverse Gaussian dis-
tribution, we performed sensitivity analysis of the PCS for
various values of μ and κ. We observe from Table 9 that the
parameter κ has little effect on the PCS, but we also observe
that the PCS increases as the parameter μ increases. The
observations are based on both MC simulation results with
10 000 replications and the large-sample properties of the
MLEs under model mis-specification between the Weibull
and inverse Gaussian distributions.

To investigate the effect of model mis-specification on
the accuracy and precision of quantiles and MTTF, we
performed MC simulations with 10 000 replications. The
inverse Gaussian distribution was fitted to the Weibull data
with parameters λ = 0.1 and β = 5.0. The ABias for MTTF
was zero as expected (Table 10) and its AVARs were almost
zero regardless of the sample size, which means that the
effect of model mis-specification on the accuracy and pre-
cision of the product’s MTTF is negligible even for mod-
erate sample sizes. Figure 4(a) shows that the Abiases and
AMSEs are at a minimum at p = 0.10 and p = 0.80 and
at a maximum around p = 0.4. It is interesting to note
that the AVARs are almost zero around the median. Next,
the Weibull distribution was fitted to true inverse Gaussian
data with parameters μ = 5.0 and κ = 100.0. The ABiases
for p on two tails are negative (Table 10), which means
that the estimated quantiles would be overestimated if the
inverse Gaussian distribution was treated as a Weibull dis-

tribution. We also observe (see Fig 4(b)), that the Abiases
and the AMSEs are at a minimum at p = 0.30 and p = 0.93
and at a maximum around p = 0.7. In both scenarios, the
ABiases for quantiles and MTTF are constant regardless
of the sample size, because these asymptotic biases depend
only on the model parameters.

6. Concluding remarks

Motivated by the shock test data of SMP display modules,
we investigated how to discriminate between the Weibull
and inverse Gaussian distributions and discussed the effects
of model mis-specification. These two distributions assume
weakest link failure and cumulative shock failure, respec-
tively. We used the MLE method to estimate the parameters
of the two distributions and obtained the asymptotic dis-
tributions of the ratio of the MLE functions. Using the
asymptotic results, we then computed the PCS to select the
best model and then used the PCS to derive the minimum
sample size required to discriminate between Weibull and
inverse Gaussian distributions for a user-specified protec-
tion level. The analytical results showed that shock test data
for SMP display modules was better fitted by the inverse
Gaussian distribution than the Weibull distribution, lend-
ing support to a cumulative shock failure mechanism. We
also addressed the effect of model mis-specification based
on the product’s quantiles and MTTF analytically using
MC simulations. The simulation results revealed that mis-
specification of the underlying distribution (Weibull for in-
verse Gaussian or vice versa) had a negligible effect on the
accuracy and precision of the product’s MTTF, even for
moderate sample sizes.

In future research, the formulas given here can be used
to study the coverage of true values of Weibull and inverse
Gaussian large-sample confidence intervals when there is
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model mis-specification. This would be of great interest to
a practitioner interested in the range of values thought to
contain the quantile or probability of interest, rather than
point estimates. Furthermore, we did not cover censored
data in this study, but the ability to discriminate between
Weibull and inverse Gaussian distributions for censored
data is worthy of future research.
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Appendices

Appendix A: Expressions for A(θi : θ j ) and B(θi : θ j )

In this section, we provide the formulas used to compute
the AVCV matrix of QMLEs when there is model mis-
specification. The elements in A(θ1 : θ2) with respect to
M1 can be expressed as follows:

EM1

(
∂2L(θ2)

∂μ2

)
= 2nκ

μ3
− 3nκ

μ4λβ
�

(
1
β

)
,

EM1

(
∂2L(θ2)
∂μ∂κ

)
= n

μ3λβ
�

(
1
β

)
− n

μ2
,

EM1

(
∂2L(θ2)

∂κ2

)
= − n

2κ2
.



1092 Kim and Bae

The elements in B(θ1 : θ2) can be expressed as follows:

EM1

(
∂L(θ2)

∂μ

∂L(θ2)
∂μ

)
= EM1

⎡
⎣

(
κ

μ3

n∑
i=1

xi − nκ

μ2

)2
⎤
⎦ ,
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∂κ

)
= EM1

[(
κ
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n∑
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)(
n

2κ
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μ

− 1
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2
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x−1
i

)]
,
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(
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∂κ

∂L(θ2)
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n

2κ
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μ

− 1
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2
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x−1
i

)2]
.

At this time, the elements in A(θ2 : θ1) with respect to M2
have the following form:

EM2

(
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∂λ2

)
= −nβ
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+ β(β − 1)λβ−2
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i

)
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}
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The elements in B(θ2 : θ1) have the following expressions:

EM2

(
∂L(θ1)

∂λ

∂L(θ1)
∂λ

)
= EM2

⎡
⎣(

nβ
λ

+ βλβ−1
n∑

i=1

xβ

i

)2
⎤
⎦ ,

EM2

(
∂L(θ1)

∂λ

∂L(θ1)
∂β

)
= EM2

[(
nβ
λ

+ βλβ−1
n∑

i=1

xβ

i

)

×
(

n
β

+ n ln λ +
n∑

i=1

{
ln xi

− βλβ xβ−1
i

})]
,

EM2

(
∂L(θ1)

∂β

∂L(θ1)
∂β

)
= EM2

[(
n
β

+ n ln λ +
n∑

i=1

{
ln xi

− βλβ xβ−1
i

})2]
.

Appendix B: Approximation of EM1 ( Q)

By plugging (μ∗, κ∗) into Equation (18), for ln κ∗ =
− ln λ0 − ln ϒ(β0), and κ∗/μ∗ = β0� (1/β0)−1

ϒ(β0)−1:
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where (β0/2)�(1/β0)−1ϒ(β0)−1 − (1/2)�(1 − 1/β0)
ϒ(β0)−1 = −1/2, and
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because EM1

(
(λx)β

) = 1. Accordingly,
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