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Abstract—We construct the supersymmetric economical 3–3–1 model which contains inflationary sce-
nario and avoids the monopole puzzle. Based on the spontaneous symmetry breaking pattern (with three
steps), the F-term inflation is derived. The slow-roll parameters ε and η are calculated. By imposing as
experimental five-year WMAP data on the spectral index n, we have derived a constraint on the number of
e-folding NQ to be in the range from 25 to 50. The scenario for large-scale structure formation implied
by the model is a mixed scenario for inflation and cosmic string, and the contribution to the CMBR
temperature anisotropy depends on the ratio MX/MPl. From the COBE data, we have obtained the
constraint on the MX to be MX ∈ [1.22 × 1016, 0.98 × 1017] GeV. The upper value MX � 1017 GeV is
a result of the analysis in which the inflationary contribution to the temperature fluctuations measured by
the COBE is 90%. The coupling α varies in the range: 10−7−10−1. This value is not so small, and it is a
common characteristics of the supersymmetric unified models with the inflationary scenario. The spectral
index n is a little bit smaller than 0.98. The SUGRA corrections are slightly different from the previous
consideration. When ξ � 1 and α lies in the above range, the spectral index gets the value consistent
with the experimental five-year WMAP data. Comparing with string theory, one gets ξ < 10−8. Numerical
analysis shows that α ≈ 10−6. To get inflation contribution to the CMBR temperature anisotropy ≈90%,
the mass scale MX ∼ 3.5 × 1014 GeV.

DOI: 10.1134/S1063778810050078

1. INTRODUCTION

This time is a golden age of cosmology and as-
trophysics. Many abstractive notions such as Black
Holes, Dark matter, etc. step by step become more
popular and widely accepted subjects. In the past,
cosmology often relied on philosophical or aesthetic
arguments; now it is maturing to become an exact
science. The 1990s have seen consolidation of theo-
retical cosmology, coupled with dramatical observa-
tional advances, including the emergence of an en-
tirely new field of observational astronomy—the study
of irregularities in the microwave background radia-
tion. A key idea of modern cosmology is cosmological
inflation [1, 2], which is a possible theory of the origin
of all structures in the Universe, including ourselves!

By the way, the rapid development of elementary
particle theory has not only led to great advances
in our understanding of particle interactions at su-
perhigh energies, but also to significant progress in
the theory of superdense matter. The Standard Model
(SM) of strong and electroweak interactions was
obtained within the scope of gauge theories with
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spontaneous symmetry breaking. For the first time,
it became possible to investigate strong and weak
interaction processes using high-order perturbation
theory. A remarkable property of these theories—
asymptotic freedom—also made it possible in prin-
ciple to describe interactions of elementary particles
up to center-of-mass energies E ∼ MPl ∼ 1019 GeV,
that is, up to the Planck energy, where quantum
gravity effects become important.

This result comprised the first evidence for the
importance of unified theories of elementary particles
and the theory of superdense matter for the develop-
ment of the theory of the evolution of the universe. Up
to mid-1960’s, it was still not clear whether the early
universe had been hot or cold. The critical juncture
marking the beginning of the second stage in the de-
velopment of modern cosmology was discovery of the
2.7 K microwave background radiation arriving from
the farthest reaches of the universe. The existence
of the microwave background had been predicted by
the hot-universe theory, which gained immediate and
widespread acceptance after the discovery.

However, there are a lot of difficulties (see, for
example, [3]) in modern cosmology such as flatness,
horizon, primordial monopole problems, etc. It is all
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the more surprising, then, that many of these prob-
lems, together with a number of others that predate
the hot-universe theory, have been resolved in the
context of one fairly simple scenario for the develop-
ment of the universe—the so-called inflationary uni-
verse scenario [1]. Inflation assumes that there was
a period in the very early universe when the potential
and vacuum energy density dominated the energy of
the universe, so that the cosmic scale factor grew
exponentially.

The important ingredient of the inflationary sce-
nario is a scalar field ϕ having effective potential V (ϕ)
with some properties (satisfying many constrains that
are rather unnatural). This scalar field is called infla-
ton. It was found that many unified theories contain
the mentioned inflaton. Up to date, the inflationary
scenario has been considered in the framework of
the models such as: supersymmetric SU(5), extra-
dimensional, superstring, etc. Recently a general sce-
nario for unification of dark matter and inflation into a
single field has been proposed [4].

Nevertheless, in building supersymmetric grand
unified models intended to be consistent with cos-
mology one is confronted with two main problems.
The first problem is that any semisimple grand uni-
fied gauge group, which is broken down to the SM
SU(3)C ⊗ SU(2)L ⊗ U(1)Y , inevitably leads to the
formation of topologically stable monopoles, accord-
ing to the Kibble mechanism [5] (see also [3]). These
monopole, if present today, would dominate the en-
ergy density of the universe, and our universe would
be different from what we observe. Even if the grand
unified gauge group G is not semisimple, it may still
be confronted with the monopole problem. The sec-
ond problem, which is directly related to this first one,
is that inflation usually requires tough fine-tuning
of the parameters. This problem and the previously
mentioned one are resolved in the inflation scenario.

One of the greatest triumphs of physics in the
twentieth century is the SM, which provides a re-
markable successful description of presently known
phenomena. In spite of these successes, it fails to
explain several fundamental issues like generation
number puzzle, neutrino masses and oscillations,
the origin of charge quantization, CP violation, etc.
One of the simplest solutions to these problems is
to enhance the SM symmetry SU(3)C ⊗ SU(2)L ⊗
U(1)Y to SU(3)C ⊗ SU(3)L ⊗ U(1)X (called 3–3–
1 for short) [6–8] gauge group. One of the main
motivations to study this kind of models is an ex-
planation in part of the generation number (nf )
puzzle. In the 3–3–1 models, each generation is
not anomaly free; and the model becomes anomaly
free if one of quark families behaves differently from
other two. Consequently, the number of generations
is multiple of the color number. Combining with the

QCD asymptotic freedom which requires nf < 5, the
number of generations has to be three.

In one of the 3–3–1 models, the right-handed
neutrinos are in bottom of the lepton triplets [8] and
three Higgs triplets are required. It is worth not-
ing that there are two Higgs triplets with neutral
components in the top and bottom. In the earlier
version, these triplets can have vacuum expectation
value (VEV) either on the top or in the bottom, but
not in both. Assuming that all neutral components
in the triplet can have VEVs, we are able to reduce
number of triplets in the model to be two [9, 10] (for
a review, see [11]). Such a scalar sector is minimal,
therefore it has been called the economical 3–3–1
model [12]. In a series of papers, we have developed
and proved that this nonsupersymmetric version is
consistent, realistic, and very rich in physics [10, 12–
14].

On the other hand, a triviality of the unification
among the internal G and external P space–time
symmetries can be avoided by new symmetry called
supersymmetry [15, 16]. One of the intriguing fea-
tures of supersymmetric theories is that the Higgs
spectrum (unfortunately, the only part of the SM still
not discovered) is quite constrained [17].

A supersymmetric version of the minimal version
(without extra lepton) has been constructed in [18]
and its scalar sector was studied in [19]. Lepton
masses in framework of the above-mentioned model
were presented in [20], while potential discovery of
supersymmetric particles was studied in [21]. In [22],
the R-parity violating interaction was applied for
instability of the proton.

The supersymmetric version of the 3–3–1 model
with right-handed neutrinos has already been con-
structed in [23]. The scalar sector was considered
in [24] and neutrino mass was studied in [25].

A supersymmetric version of the economical 3–
3–1 model has been constructed in [26]. Some in-
teresting features such as Higgs bosons with masses
equal to that of the gauge bosons: the W (m2

ρ+
1

=

m2
W ) and the bileptons X and Y (m2

ζ±4
= m2

Y ), have

been pointed out in [27]. Sfermions in this model have
been considered in [28]. In [29] we have shown that
bino-like neutralino can be candidate for dark matter
(DM).

The aim of the present paper is to show that the
recently constructed supersymmetric economical 3–
3–1 model contains the necessary inflation. It is em-
phasized that to have the inflationary scenario, we
have to do spontaneous symmetry breakdown by an
unusual way, namely through three steps instead of
two as in the previous works [26, 27]. In [30], the D-
term inflation has been considered. The alternative F-
term inflation is a subject of the present paper.
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This article is organized as follows. In Section 2
we present fermion and scalar content in the super-
symmetric economical 3–3–1 model. The necessary
parts of Lagrangian are given in Section 3. Section 4
is devoted to the effective potential in the model with
inflation. In Section 5 the F-term inflation is con-
sidered and slow-roll parameters such as ε, η and
spectral index n are calculated and constrained by the
WMAP data. Section 6 is devoted to the standard
F-term inflation with minimal Kähler potential. We
summary our results and make conclusions in Sec-
tion 7.

2. PARTICLE CONTENT
AND SPONTANEOUS SYMMETRY

BREAKDOWN

To proceed further, the necessary features of the
supersymmetric economical 3–3–1 model [10] will be
presented. The superfield content in the present paper
is defined in a standard way as follows:

̂F = ( ˜F ,F ), ̂S = (S, ˜S), ̂V = (λ, V ), (1)

where the components F , S, and V stand for the
fermion, scalar, and vector fields of the economical 3–
3–1 model, while their superpartners are denoted as
˜F , ˜S, and λ, respectively [15, 23].

The superfields for the leptons under the 3–3–1
gauge group transform as

̂LaL =
(

ν̂a, l̂a, ν̂
c
a

)T

L
∼ (1,3,−1/3), (2)

l̂caL ∼ (1,1, 1),

where ν̂c
L = (ν̂R)c and a = 1, 2, 3 is a generation in-

dex.
It is worth mentioning that in the economical ver-

sion the first generation of quarks should be different
from others [13]. The superfields for the left-handed
quarks of the first generation are in triplets:

̂Q1L =
(

û1, d̂1, û
′
)T

L
∼ (3,3, 1/3), (3)

where the right-handed singlet counterparts are given
by

ûc
1L, û′c

L ∼ (3∗,1,−2/3), d̂c
1L ∼ (3∗,1, 1/3). (4)

Conversely, the superfields for the last two genera-
tions transform as antitriplets:

̂QαL =
(

d̂α,−ûα, d̂′α

)T

L
∼ (3,3∗, 0), (5)

α = 2, 3,

where the right-handed counterparts are in singlets:

ûc
αL ∼ (3∗,1,−2/3), (6)

d̂c
αL, d̂′cαL ∼ (3∗,1, 1/3).

The prime superscripts on usual quark types (u′ with
the electric charge qu′ = 2/3 and d′ with qd′ = −1/3)
indicate that those quarks are exotic ones. The men-
tioned fermion content, which belongs to that of the
3–3–1 model with right-handed neutrinos [8, 10], is,
of course, free from anomaly.

The two (a minimal number) superfields χ̂ and ρ̂
are introduced to span the scalar sector of the eco-
nomical 3–3–1 model [12]:

χ̂ =
(

χ̂0
1, χ̂

−, χ̂0
2

)T ∼ (1,3,−1/3), (7)

ρ̂ =
(

ρ̂+
1 , ρ̂0, ρ̂+

2

)T ∼ (1,3, 2/3). (8)

To cancel the chiral anomalies of higgsino sector,
the two extra superfields χ̂′ and ρ̂′ must be added as
follows:

χ̂′ =
(

χ̂′0
1 , χ̂′+, χ̂′0

2

)T ∼ (1,3∗, 1/3), (9)

ρ̂′ =
(

ρ̂′−1 , ρ̂′0, ρ̂′−2
)T ∼ (1,3∗,−2/3). (10)

To have inflationary scenario, we consider the
symmetry-breaking via three steps (see, for exam-
ple, [30]):

SU(3)L ⊗ U(1)X
w,w′
−→ SU(2)L ⊗ U(1)Z (11)

⊗ U(1)Y
w,w′
−→ SU(2)L ⊗ U(1)Y

v,v′,u,u′
−→ U(1)Q,

where the VEVs are defined by
√

2〈χ〉T = (u, 0, w),
√

2〈χ′〉T =
(

u′, 0, w′), (12)
√

2〈ρ〉T = (0, v, 0),
√

2〈ρ′〉T =
(

0, v′, 0
)

. (13)

The VEVs w and w′ are responsible for the first and
the second step of the symmetry breaking, while u, u′

and v, v′ are for the last one. Note that only in super-
symmetric version we can break symmetry through
three steps, as in (11), while in the nonsupersym-
metric economical 3–3–1 version, due to the unique
VEV w, which is a singlet under the SM, the above
procedure is impossible.

The vector superfields ̂Vc, ̂V , and ̂V ′ containing
the usual gauge bosons are, respectively, associated
with the SU(3)C , SU(3)L, and U(1)X group factors.
The color and flavor vector superfields have expan-
sions in the Gell-Mann matrix bases T a = λa/2 (a =
1, 2, . . . , 8) as follows:

̂Vc =
1
2
λa

̂Vca,
̂V c = −1

2
λa∗

̂Vca; (14)

̂V =
1
2
λa

̂Va,
̂V = −1

2
λa∗

̂Va,
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where an overbar “−” indicates complex conjugation.
For the vector superfield associated with U(1)X , we
normalize as follows:

XV̂ ′ = (XT 9)B̂, T 9 ≡ 1√
6

diag(1, 1, 1). (15)

In the following, we are denoting the gluons by ga

and their respective gluino partners by λa
c , with a =

1, . . . , 8. In the electroweak sector, V a and B stand
for the SU(3)L and U(1)X gauge bosons with their
gaugino partners λa

V and λB , respectively.

3. THE MODELS

With the superfields given above, we can now con-
struct the supersymmetric economical 3–3–1 model
containing the Lagrangians: Lsusy + Lsoft, where the
first term is supersymmetric part, whereas the last
term explicitly breaks the supersymmetry.

3.1. Supersymmetric Model without Inflationary
Scenario

The supersymmetric Lagrangian can be decom-
posed into four relevant parts:

Lsusy = Lgauge + Llepton + Lquark + Lscalar. (16)

The first term has the form

Lgauge =
1
4

∫

d2θWcaWca (17)

+
1
4

∫

d2θWaWa +
1
4

∫

d2θW ′W ′

+
1
4

∫

d2θ̄WcaWca +
1
4

∫

d2θ̄WaWa

+
1
4

∫

d2θ̄W ′W ′
,

where the chiral superfields Wc, W , and W ′ are de-
fined by

Wcζ = − 1
8gs

D̄D̄e−2gsV̂cDζe
2gsV̂c , (18)

Wζ = − 1
8g

D̄D̄e−2gV̂ Dζe
2gV̂ ,

W ′
ζ = −1

4
D̄D̄Dζ V̂

′, ζ = 1, 2,

with the gauge couplings gs, g, and g′ respective to
SU(3)C , SU(3)L, and U(1)X . The Dζ and D̄ζ are
the chiral covariant derivatives of SUSY algebra as
presented in [15].

The second and third terms are given by

Llepton (19)

=
∫

d4θ
[

ˆ̄LaLe2(gV̂ − g′
3

V̂ ′)L̂aL + ˆ̄lcaLe2g′V̂ ′
l̂caL

]

and

Lquark =
∫

d4θ
[

ˆ̄Q1Le2(gsV̂c+gV̂ + g′
3

V̂ ′)Q̂1L (20)

+ ˆ̄QαLe2(gsV̂c+g ˆ̄V )Q̂αL + ˆ̄uc
iLe2(gs

ˆ̄Vc− 2g′
3

V̂ ′)ûc
iL

+ ˆ̄dc
iLe2(gs

ˆ̄Vc+
g′
3

V̂ ′)d̂c
iL + ˆ̄u′c

Le2(gs
ˆ̄Vc− 2g′

3
V̂ ′)û′c

L

+ ˆ̄d′cαLe2(gs
ˆ̄Vc+

g′
3

V̂ ′)d̂′cαL

]

.

Finally, the last term can be written as

Lscalar =
∫

d4θ
{

ˆ̄χe2[gV̂ +g′(− 1
3)V̂ ′]χ̂ (21)

+ ˆ̄ρe2[gV̂ +g′( 2
3)V̂ ′]ρ̂ + ˆ̄χ′e2[g ˆ̄V +g′( 1

3)V̂ ′]χ̂′

+ ˆ̄ρ′e2[g ˆ̄V +g′(− 2
3)V̂ ′]ρ̂′

}

+
(∫

d2θW + h.c.
)

with

W =
W2

2
+

W3

3
, (22)

where W2 and W3 were given in [26].
As in [25], it is useful to impose R parity, which is

determined through the conserved L and B charges
(see [31]). Under R-parity transformation, the Higgs
and matter superfields change, respectively [25]:

Ĥ1,2(x, θ, θ̄) Rd−→ Ĥ1,2(x,−θ,−θ̄), (23)

Ŝ(x, θ, θ̄) Rd−→ Ŝ(x,−θ,−θ̄),

Φ̂(x, θ, θ̄) Rd−→ −Φ̂(x,−θ,−θ̄),Φ = Q,uc, dc, L, lc.

Let us separate W into the R-parity conserving (R)
and violating (R/) parts [28]:

W = WR + WR/ , (24)

where

WR =
1
2

(

μχχ̂χ̂′ + μρρ̂ρ̂′
)

(25)

+
1
3

(

γabL̂aLρ̂′ l̂cbL + λ′
abεL̂aLL̂bLρ̂

+ κ′Q̂1Lχ̂′û′c
L + ϑiQ̂1Lρ̂′d̂c

iL + παiQ̂αLρ̂ûc
iL

+ ΠαiQ̂αLχ̂d̂c
iL + κiQ̂1Lχ̂′ûc

iL + ϑ′
αQ̂1Lρ̂′d̂′cαL

+ π′
αQ̂αLρ̂û′c

L + Π′
αβQ̂αLχ̂d̂′cβL

)

and

WR/ =
1
2
μ0aL̂aLχ̂′ (26)

+
1
3

(

λaεL̂aLχ̂ρ̂ + εfαβγQ̂αLQ̂βLQ̂γL

+ ξ1iβj d̂
c
iLd̂′cβLûc

jL + ξ2iβ d̂c
iLd̂′cβLû′c

L

+ ξ3ijkd̂
c
iLd̂c

jLûc
kL + ξ4ij d̂

c
iLd̂c

jLû′c
L
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+ ξ5αβid̂
′c
αLd̂′cβLûc

iL + ξ6αβ d̂′cαLd̂′cβLû′c
L

+ ξaαjL̂aLQ̂αLd̂c
jL + ξ′aαβL̂aLQ̂αLd̂′cβL

)

.

We remind that as follows from (23), the R/ part con-
tains odd number of matter superfields.

3.2. Supersymmetric Model with the Standard
Hybrid Inflation

The inflationary mechanism is currently the most
popular model for the origin of structure, partly
because it turns out to give mathematically simple
predictions, but mainly because so far it offers ex-
cellent agreement with the real Universe, such as
the microwave anisotropies. The aim in the present
work is to extend the above supersymmetric version
to the one that could be consistent with a theory
of the evolution of the early universe—the model
having the cosmological inflationary scenario. More
precisely, we intend to construct a hybrid inflation-
ary scheme based on a realistic supersymmetric
SU(3)C ⊗ SU(3)L ⊗ U(1)X model by adding a sin-
glet superfield Φ which plays the role of the inflation,
namely the inflaton superfield.

We remind that the spontaneous symmetry break-
ing in our model is given in (11). This means that
the existence of a U(1)Z does not belong to the
MSSM and is spontaneously broken down at the
scale MX by pair of Higgs superfields χ, χ′. Note
that χ, χ′ are singlets under the MSSM, so they
satisfy the above-mentioned conditions (for details,
see [30]). The inflaton superfield couples with this pair
of Higgs superfields. Therefore, the additional global
supersymmetric renormalizable superpotential for the
inflation sector is chosen to be [32, 33]

Winf(Φ, χ, χ′) = αΦχχ′ − μ2Φ. (27)

The superpotential given by (27) is the most general
potential consistent with a continuous R symmetry
under which φ → eiγφ,W → eiγW , while the prod-
uct χχ′ is invariant [33, 34].

Without loss of generality we can choose μ2, α as
positive real constants by a suitable redefinition of
complex fields, and the ratio μ/

√
α sets the U(1)Z

symmetry breaking scale MX . Therefore, the most
general superpotential consistent with a continuous
R symmetry is written as

Wtot = WR + Winf(Φ, χ, χ′). (28)

We point out that, at least in the global supersym-
metric case, the R symmetry is the unique choice for
implementing the false vacuum inflationary scenario
in a natural way, i.e, no extra field is needed, apart from
the singlet scalar. It is the only symmetry which can

eliminate all of the undesirable self-coupling of the
inflaton Φ, while allowing the linear term in the super-
potential [33]. With the superpotential given in (27),
we derive the Higgs scalar potential

Vtot =
∑

i

|Fi|2 +
1
2

∑

α

|Dα|2 + Vsoft, (29)

where i runs from 1 to the total number of the chiral
superfields in Wtot, while Vsoft contains all the soft
terms generated by supersymmetry breaking at the
low energy. The F and D terms are given by

Fi =
∂W

∂φi
(30)

and

Di = g
∑

a

φ∗
i T

aφi. (31)

(We hope that the reader does not confuse our nota-
tion Φ with φi and MX (below) with mass of the SM
Higgs boson H .)

Therefore, the general Higgs potential becomes

Vtot = |μχ + αΦ|2|χ′|2 + |μχ + αΦ|2|χ|2 (32)

+ |αχχ′ − μ2|2 + |μρρ|2 + |μρ′ρ
′|2

+
1
2

∑

α

|Dα|2 + Vsoft.

It is easy to see that the fields ρ, ρ′ have settled down
to their minimum, since the first derivatives ∂Vtot/∂ρ,
∂Vtot/∂ρ′ are independent of χ, χ′, Φ. This means that
the fields ρ, ρ′ will stay in their minimum indepen-
dently of what the fields χ, χ′, Φ do. On the other
hand, we are mainly interested in what is happening
above the electroweak scale, and hence we do not take
into account the dimensional Higgs multiplets ρ, ρ′.
Therefore, the Higgs scalar potential is given by

Vinf = |μχ + αΦ|2|χ′|2 (33)

+ |μχ + αΦ|2|χ|2 + |αχχ′ − μ2|2

+
1
2

(

g
∑

a

χ∗T aχ

)2

+
1
2

(

g
∑

a

χ′∗T aχ′
)2

.

Now, let us make the change of variables

μχ + αΦ ≡ βS, (34)

where β is some constant and S is a new field. Then,
the Higgs potential (33) can be rewritten as

Vinf = β2|S|2
(

|χ|2 + |χ′|2
)

+ |αχχ′ − μ2|2 (35)

+
1
2

(

g
∑

a

χ∗T aχ

)2

+
1
2

(

g
∑

a

χ′∗T aχ′
)2

.
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When D term vanishes along D-term direction,
the potential contains only F term, it hence can be
written as

Vinf = β2|S|2
(

|χ|2 + |χ′|2
)

+ |αχχ′ − μ2|2. (36)

From (36), it is clear that Vinf has an unique super-
symmetric minimum corresponding to

〈S〉 = 0,

MX ≡ 〈|χ|〉 = 〈|χ′|〉 =
μ√
α

. (37)

The ratio μ/
√

α sets the U(1)Z symmetry breaking
MX , but Eq. (37) is global minimum, and supersym-
metry is not violated [33]. Hence, inflation can take
place but supersymmetry is not broken.

To finish this section, we emphasize that our con-
struction leads to F-term inflation (see classification
in [30]).

4. EFFECTIVE POTENTIAL FOR INFLATION

The above-proposed model belongs to the theories
with spontaneous symmetry breaking. To make the
predictions in good agreement with observed data,
particularly with the most recently WMAP five-year
analysis, it is necessary to add the radiative correc-
tions (see an example in [35]). For studying radiative
corrections in theories with spontaneous symmetry
breaking, the method of effective potential [36] is
extremely useful. Let us apply the method for our
inflationary scenario.

The main idea of the chaotic inflation scenario was
to study all possible initial conditions in the Universe,
including those which describe the Universe outside
of the state of thermal equilibrium, and the scalar field
outside of the minimum of potential V (φ) [2]. Now, let
us assume chaotic initial conditions, and for this pur-
pose, we denote the critical value for the inflaton field
by |Sc| ≡ μ/

√
α. The initial value for the inflaton field

is much greater than its critical value Sc. For |S| >
|Sc| the potential is very flat in the |S| direction, and
the χ, χ′ fields settle down to the local minimum of
the potential, χ = χ′ = 0, but it does not drive S to its
minimum value. The universe is dominated by a non-

vanishing vacuum energy density, V
1/4
0 = μ, which

can lead to an exponential expanding, inflation starts,
and supersymmetry is broken. The inflaton field S
must have couplings to matter field, which allow the
universe to make the transition to Hot Big Bang
cosmology at the end of inflation. These couplings
will induce quantum corrections to potential V . Thus,
we obtain some quantum correction to effective po-
tential. The good agreement between the Coleman–
Weinberg quartic potential and the WMAP result
has been shown in [37]. By the Coleman–Weinberg

formula in [36], at the one-loop level, the effective
potential along the inflaton direction is given by

ΔV =
1

64π2

∑

i

(−1)F m4
i ln

(

m2
i

Λ2

)

, (38)

where F = −1 for the fermionic fields and F = 1 for
the bosonic fields. The coefficient (−1)F shows that
bosons and fermions give opposite contributions. The
sum runs over each degree of freedom i with mass mi

and Λ is a renormalization scale.
Note that for S > Sc there is no mass splitting

inside the gauge supermultiplets. When S falls below
Sc, we can obtain nonvanishing contribution from the
mass splitting of the χ̂, χ̂′ superfields. During the
inflation only Higgs bosons and their fermionic super-
partners in the χ and χ′ triplets give contribution to
the effective potential. For the simplicity, we assume
the mass degeneracy among them. Therefore, the
particle mass spectrum during F term inflation con-
tains: (i) six complex scalar fields with square mass
β2|S|2 ± αμ2; it means that they split into six pairs of
real and pseudoscalar components; (ii) six fermionic
fields get mass β|S|. Hence, the effective potential
(along the inflationary trajectory S > Sc, χ = χ′ = 0)
at the one loop has a form

Veff(S) = μ4 +
3

16π2

[

2β4 μ4

α2
ln

β2|S|2
Λ2

(39)

+
(

β2|S|2 + αμ2
)2 ln

(

1 +
αμ2

β2|S|2

)

+
(

β2|S|2 − αμ2
)2 ln

(

1 − αμ2

β2|S|2

)]

.

It is to be noted that for S > Sc, the universe is dom-
inated by the false vacuum energy μ4. When S field
drops to Sc, then the GUT phase transition happens.
At the end of inflation, the inflaton field does not need
to coincide with the GUT phase transition. The end
of inflation can be supposed to be on a region of the
potential which satisfies the flatness conditions (see,
for example, [38])

ε � 1, η � 1, (40)

where we have used the conventional notation

ε ≡ M2
Pl

16π

(

V ′

V

)2

, η ≡ M2
Pl

8π
V ′′

V
, (41)

where primes denote a derivative with respect to S.

5. F-TERM INFLATION CONTRIBUTION
TO THE CMB TEMPERATURE ANISOTROPY

Having explored the model, we move on to com-
parison with observational data. For this purpose, the

PHYSICS OF ATOMIC NUCLEI Vol. 73 No. 5 2010



INFLATIONARY SCENARIO 797

parameters were chosen to give a good representa-
tion of the observational data. The exception to this
is the microwave background on large angle scales.
The crucial COBE observations are the earliest to
interpret in the context of inflation, and they are also
more or less definitive because, on large angle scales,
their accuracy is limited not by instrument noise, but
by the statistical uncertainty known as cosmic vari-
ance, arising from our having only a single microwave
sky to look at. The standard approximation technique
for analyzing inflation is the slow-roll approximation.
This section is devoted to the observable parameters
of the models, namely the slow-roll ones: ε and η.
The first condition in (40): ε � 1 indicates that the
density ρ is close to V and is slowly varying. As a
result, the Hubble parameter H is slowly varying,
which implies that one can write a ∝ eHt at least over
a Hubble time or so. The second condition η � 1 is
a consequence of the first condition plus the slow-roll
approximation. The conditional phase may end before
the GUT transition if the flatness conditions (40) are
violated at some point S > Sc.

For the sake of convenience, let us denote a di-
mensionless variable

y ≡ β|S|
αSc

. (42)

Then the expressions for ε and η in (41) can be written
in the form

ε =
(

3MPl

4π2MX

)2 1
16π

{

β

αy

(

β4

α2
− α2

)

(43)

+ βα

[

y
(

y2 − 1
)

ln
(

1 − 1
y2

)

+ y
(

y2 + 1
)

ln
(

1 +
1
y2

)]}2

,

η =
(

MPl

4πMX

)2 3β
2πα

{

−β

αy2

(

β4

α2
− α2

)

+ αβ

[

(3y2 + 1) ln
(

1 +
1
y2

)

+ (3y2 − 1) ln
(

1 − 1
y2

)]}

.

If we impose the condition α = β, which means that
|Φ| ≈ |S| � μχ, then the expressions in (43) become

ε =
(

3α2MPl

4π2MX

)2 1
16π

[

y
(

y2 − 1
)

(44)

× ln
(

1 − 1
y2

)

+ y
(

y2 + 1
)

ln
(

1 +
1
y2

)]2

,

η =
(

αMPl

4πMX

)2 3
2π

[

(3y2 + 1) ln
(

1 +
1
y2

)

+ (3y2 − 1) ln
(

1 − 1
y2

)]

.

The slow-roll parameter η tends to infinity when y
approaches 1, so that inflation ends as y turns to 1.
We will find the value of the scalar coupling α, the
scale MGUT, and the scale of MX which leads to the
successful inflation. If we take the value of MX lying
in 1015−1016 GeV and the value of α lying in 15−19,
the inflation does not happen. However, if we take the
value of α being in 10−2−10−3 with the value of MX

belonging to 1015−1016 GeV, then both ε and η do
not reach to unity. When |S| falls below Sc, the slow-
roll conditions are violated, and inflation stops. The
unwanted monopoles have been inflated away.

Since along the valley the dynamics satisfies the
slow-roll conditions, we also easily evaluate the cos-
mic background radiation quadrupole anisotropy. The
temperature fluctuations in the cosmic microwave
background radiation (CMBR) are proportional to
the density perturbations which were produced in the
very early universe and lead to structure formation

δT

T
=

1
3

δρ

ρ
. (45)

In our case, the F-term hybrid inflationary scenario,
cosmic strings form at the end of inflation. Therefore,
we must calculate the contribution to δρ/ρ and δT/T
from both inflation and cosmic strings. It means that
both inflation and cosmic string are the part of one
scenario, temperature fluctuations in the CMBR are
a result of the quadratic sum of the temperature fluc-
tuations from inflationary perturbation and cosmic
strings. The perturbations from inflation and cosmic
string are uncorrelated and add up independently [30]:

(

δT

T

)

tot
=

√

(

δT

T

)2

inf
+

(

δT

T

)2

cs
. (46)

The inflation contribution to the CMB temperature
anisotropy is

(

δT

T

)

inf
=

1
12
√

5πM3
Pl

V 3/2

V ′

∣

∣

∣

∣

S=SQ

, (47)

where the subscript Q denotes the time observable
scale leaves the horizon. It means that the right-hand
side of (47) must be evaluated at the epoch of horizon
exit. The spectral index of density perturbations can
also be expressed in terms of the slow parameters:

n = 1 − 6ε + 2η. (48)

It can be evaluated at any scale. The number of e-
foldings between two values of the inflaton field Send
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Fig. 1. The spectral index n as a function of the number
of e-foldings N(SQ). Two horizontal lines present the
bound of the spectral index by WMAP Collaboration five-
year data given in (55).

and SQ is given by

N(SQ) � 8π
M2

Pl

SQ
∫

Send

V

V ′dS, (49)

where SQ is called “the value of S at the cosmolog-
ical scale to leave the horizon”. Taking cosmolog-
ically interesting scales to go from H−1

0 ∼ 104 Mpc
to 1 Mpc gives a range [39] ΔNQ = ln 104 ∼ 1 Mpc
and the value of N(SQ) lies in the range 50 to 25,
corresponding to an interrupted Hot Big Bang, and
to a delayed Hot Big Bang preceded by one bout of
thermal inflation.

If S is sufficiently greater than Sc and α = β, then
the effective potential given in (39) reduces to a simple
form

Veff(S) = μ4

[

1 +
3α2

16π2

(

2 ln
α2S2

Λ2
+

3
2

)]

. (50)

This potential occurs as part of hybrid inflation model.
If we assume that the loop correction dominates the
slope, and use (41), the slow-roll parameters are

ε =
9M2

Pl

256π5

α4

S2
, η = −3M2

Pl

32π3

α2

S2
. (51)

Here we assume that inflation ends when |η| = 1. The
value of the inflation field at the end of inflation is given
by

S2
end =

3M2
Plα

2

32π3
. (52)

From Eqs. (49), (50), and (52), the value of S at
the cosmological scale to leave the horizon (SQ), is
given by

S2
Q = [2N(SQ) + 1]

3α2M2
Pl

32π3
, (53)
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Fig. 2. The inflationary contribution to the quadrupole as
a function of MX/MPl.
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Fig. 3. The spectral index n as a function of the number
of e-foldings N(SQ) and ζ, taking α = 10−3. The gray
plane presents the bound of the spectral index by the five-
year WMAP data given in (55).

and the spectral index evaluated at this scale is as
follows:

nN(SQ) = 1 −
(

9α2

4π2
+ 2

)

1
2N(SQ) + 1

. (54)

The spectral index is a function of the coupling
α and the e-folding number N(SQ). If we take the
value of the coupling α smaller than 10−1, then the
contribution of α2/4π2 can be neglected. It means
that the value of the spectral index n is unchanged too
much when the values of α varying from 10−1 to 0.
As a specific example, Fig. 1 represents the spectral
index as a function of N(SQ) with α ∈ [10−1, 10−7].
Precisely speaking: by (54), if α < 0.1, the spectral
index is not sensitive to it.

Comparing with the WMAP Collaboration five-
year data [40]

n = 0.960+0.014
−0.013, (55)
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we obtain that the value of the e-folding number at
the cosmological scale to leave the horizon (SQ) lies
in the range 25 to 50 and α ∈ [10−1, 10−7].

From Eqs. (47) and (50), the inflation contribution
to the CMB temperature anisotropy is given by

(

δT

T

)

inf
=

1
36

√

3[2N(S) + 1]
10π

(

MX

MPl

)2

. (56)

Taking N(S) = 50, we can see the temperature
anisotropy as a function of MX/MPl. In Fig. 2,
we have plotted the inflationary contribution to
quadrupole and have compared with the quadrupole
measured by COBE [41]

(

δT

T

)

COBE
= 6.6 × 10−6. (57)

We obtain that the inflationary contribution to
quadrupole is 10 to 100% if ratio MX/MPl lies in
the range from 10−3 to 9 × 10−3. Taking MPl =
1.22 × 1019 GeV, we get a constraint for MX ∈
[1.22 × 1016, 0.98 × 1017] GeV.

According to the data given by [42], the string
contribution to quadrupole is less than 10%. It means
that inflationary contribution to the mixed scenario
with both inflation and cosmic string is 90%. In
this case, we get the ratio of MX/MPl = 8 × 10−3.
Combining this data and MPl = 1.22 × 1019 GeV, it
follows that the value of MX = 9.76 × 1016 GeV �
1017 GeV.

Let us estimate the μ parameter. Substituting α =
10−2 into Eq. (37) we get

μ =
√

α MX ≈
√

10−2 MX � 1016 GeV. (58)

Thus, the parameter μ is smaller than the mass of
inflaton and is much larger than μχ, which is in the
TeV scale (see [26, 27, 29]). Hence our approximation
α ≈ β is completely good.

It is worth reminding that from (53) the value of
the inflation field at the cosmological scale to leave the
horizon SQ = 1.12 × 1017 GeV corresponds to the e-
folding number N(SQ) = 50 and α = 10−2.

It is interesting to note that chaotic inflation driven
by the φ2 potential is in good agreement with the
most recent five-year WMAP analysis. For the φ4

potential, the predictions for spectral index n and r =
16ε lie outside the WMAP 95% confidence level [35].

Note that alternative D-term inflation, which ex-
ists only for simple gauge group, is not available in the
framework of 3–3–1 models.

To finish this section, we remind the reader that
to satisfy the five-year WMAP data given in (55),
the number of e-foldings N(SQ) must be dropped

much below 50. Hence, one cannot resolve the hori-
zon/flatness problems of Big Bang cosmology. In
addition a value of the coupling α is not sensitive to
the value of spectral index n. On the other hand, in
supersymmetric theories based on supergravity, there
is a well-known problem that η = 1 due to the super-
gravity corrections, thereby violating one of the slow-
roll conditions η � 1. This is the so-called η problem.
To make good one’s shortcomings, we will consider
F-term hybrid standard inflation with minimal Kähler
potential.

6. STANDARD F-TERM INFLATION
WITH MINIMAL KÄHLER POTENTIAL

The standard F-term inflation with Kähler poten-
tial is defined by the superpotential

Wstand(Φ, χ, χ′) = α̂S
(

χ̂χ̂′ − M2
X

)

, (59)

and the Kähler potential, in general case, is deter-
mined from the Lagrangian [15]

L =
∫

d2θd2θ̄K(Φi,Φ∗i). (60)

The supergravity potential including F term has the
form [43]

V = eK/M2
Pl

[

(K−1)jiF
iFj − 3

|W |2
M2

Pl

]

(61)

+
g2

2
Ref−1

ABDADB,

where

F i = W i + Ki W

M2
Pl

(62)

and

Di = Ki(TA)jiφj + ξA. (63)

The scalar potential is given by [44]

VF = eK/M2
Pl

[

∑

α

∣

∣

∣

∣

∂W

∂φα
+

φ∗W

M2
Pl

∣

∣

∣

∣

2

− 3
|W |2
M2

Pl

]

,

(64)

where the sum is over all fields.
Substituting Eq. (59) into Eq. (64) with the

minimal Kähler potential, keeping in mind that K =
∑

α |φα|2, we obtain the scalar potential given in the
following form

V m
F = 2α2S2φ2

[

1 +
S2 + 2φ2

M2
Pl

(65)

+
(S2 + 2φ2)2

2M4
Pl

]

+ α2(φ2 − M2
X)2
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×
(

1 + 2
φ2

M2
Pl

+
S4

2M4
Pl

+ 2
φ4

M4
Pl

)

+ . . .

Here we have assumed that |φ|2 = |φ′|2. Note that the
first line in the right-hand side of Eq. (65) contains the
following terms:

S2

M2
Pl

+
S4

2M4
Pl

, (66)

which were neglected in [45]; they will give a correc-
tion to mass of the Higgs φ. Let us consider how this
factor changes the result. As we know, the slow-roll
parameter is defined as

η = M2
Pl

(

V ′′

V

)

. (67)

The prime refers to derivative with respect to S.
With V given in (65), the supergravity scalar potential
for S > Sc is given by

V0 = α2M4
X +

α2M4
X

2M4
Pl

S4. (68)

There is no mass term for the inflaton field S in (68).
Hence, we have to calculate the second derivative of
V :

V ′′ � α2M4
X

2M4
Pl

S2.

This yields η = (1/2M2
Pl)S

2 � 1. It means that the η
problem is solved.

We would like to say again that for S > Sc, the
energy density is dominated by the vacuum energy
α2M4

X , which therefore leads to an exponentially ex-
panding (inflationary) Universe. The potential given
in (68) does not contain a term which can drive S to
its minimum value. It means that we have to consider
the effective potential. Taking into account one-loop
correction, we can write the potential in the form

V = V0 + Vone-loop (69)

with the radiative correction given by

Vone-loop = Vnonsugra + Vsugra, (70)

where Vnonsugra is the effective potential which is ob-
tained from one-loop correction without the Kähler
potential:

Vnonsugra =
3α4M4

X

32π2
(71)

×
[

(x2 − 1)2 ln
(

1 − 1
x2

)

+ (x2 + 1)2 ln
(

1 +
1
x2

)

+ 2 ln
α2M2

XS2

Λ2

]

,

and Vsugra is the supergravity correction:

Vsugra =
3α4M4

X

32π2
[(x2 − 1)2 (72)

× ln[1 + ζ(x2 − 1)] + (x2 + 1)2

× ln[1 + ζ(x2 + 1)]] + 2ζ(x2 − 1)3

× ln
(

1 − 1
x2

)

+ 2ζ(x2 + 1)3 ln
(

1 +
1
x2

)

,

where x = |S|/M and ζ = M2
X/M2

Pl. We emphasize
that in obtaining the potential given in (71) and (72),
the quartic terms of ζ2 were neglected.

The slow-roll parameters are given by

ε ≡ M2
Pl

16π

(

V ′
0 + V ′

nonsugra + V ′
sugra

V

)2

(73)

=
(

3α2MPl

8π2MX

)2 1
16π

(

ε0 + εnonsugra + εsugra
)2

,

η ≡ M2
Pl

8π
V ′′

0 + V ′′
nonsugra + V ′′

sugra

V
= η0 + ηnonsugra + ηsugra,

where

ε0 =
(

8π2

3α2

)2

2ζ2x3, (74)

εnonsugra = x

[

(x2 − 1) ln
(

1 − 1
x2

)

+ (x2 + 1) ln
(

1 +
1
x2

)]

,

εsugra = x

[

(x2 − 1) ln
(

1 + ζ(x2 − 1)
)

+ (x2 + 1) ln
(

1 + ζ(x2 + 1)
)

+ ζ
(

x4 + 1
)

+ 3ζ(x2 − 1)2 ln
(

1 − 1
x2

)

+ 3ζ(x2 + 1)2 ln
(

1 +
1
x2

)

− 4ζ
]

and the η parameters are given by

η0 =
3
4π

ζ2x2, (75)

ηnonsugra =
(

αMPl

4πMX

)2 3
4π

[

(3x2 − 1)

× ln
(

1 − 1
x2

)

+ (3x2 + 1) ln
(

1 +
1
x2

)]

,

ηsugra =
(

αMPl

4πMX

)2 3
4π

[

(3x2 − 1)

× ln
(

1 + ζ
(

x2 − 1
))

+ (3x2 + 1)
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Fig. 4. The same as in Fig. 3 with α = 10−4.
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Fig. 5. The same as in Fig. 3 with α = 10−5.

× ln
(

1 + ζ
(

x2 + 1
))

+ ζ

(

9x4 + 1 + 3(x2 − 1)2

× ln
(

1 − 1
x2

)

+ 3(x2 + 1)2 ln
(

1 +
1
x2

)

+ 12x2

[

(x2 − 1) ln
(

1 − 1
x2

)

+ (x2 + 1) ln
(

1 +
1
x2

)]

− 16
)]

.

In the approximation of the first order of ζ , the
slow-roll parameters reduce to a simple form such as

ε �
(

3α2MPl

8π2MX

)2 1
16π

{

1
x

(76)

+ ζx

[

3(x4 + 1)
(

1 − 1
x4

)

+ 8
]}2
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Fig. 6. The same as in Fig. 3 with α = 10−6.

�
(

3α2MPl

8π2MX

)2 1
16π

{(

1
x

)2

+ 2ζ
[

3(x4 + 1)
(

1 − 1
x4

)

+ 8
]}

,

η �
(

αMPl

4πMX

)2 3
4π

{

− 1
x2

+ ζ
[

3
(

5x4 − 1
)

+ 8
]

}

.

The spectral index n given in (48) can be written as

n = 1 − 3α2

512π3ζx4
[x2(16 + 9α2) − 54α2ζ (77)

+ 6x8(−40 + 9α2)ζ + 16x4(−5 + 9α2)ζ].

In order to estimate the value of n, we have to evaluate
the field value x at the N(SQ) e-folding number.
Assuming that at the end of inflation, xend = 1, and
using the definition of N(SQ) given in (49), one can
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Fig. 7. The inflation contribution to CMB temperature as
a function of the number of e-folding N(SQ) and MX in
the case α = 10−6. The gray plane presents 90% of the
quadrupole measured by COBE given in (57).

get an approximation

x � 3α2N(SQ)
16π2ζ

. (78)

Substituting (78) into (77), we obtain the value n as
a function of N(SQ), ζ , and α. The predicted value of
spectral index is plotted in Figs. 3–6.

Comparing the results from Figs. 3–6 with the
WMAP data given in (55), the following conclusions
are in order:

(1) The value of e-folding number NQ must be
larger than 45.

(2) The constraints for the value of coupling α
and the parameter ζ are followed and presented in the
table.

On the other hand, requiring that the nonadia-
batic string contribution to the quadrupole to be less
than 10%, we come to conclusion that the value MX
must satisfy [44]

MX < 2.3 × 1015

√

9/y
θ(β)

� 1.2 × 1015 GeV (79)

or

ζ =
M2

X

M2
Pl

< 10−8. (80)

Combining Eq. (80) with the constraint given in
the table, it follows that the Higgs coupling α must

Bounds on the parameter ζ and coupling α followed by the
WMAP data

α 10−3 10−4 10−5 10−6

ζ 25 × 10−6 25 × 10−7 25 × 10−9 3 × 10−11

be smaller than 10−4. Let us consider the inflation
contribution to the CMB temperature anisotropy in
a specific case α = 10−6. Using the formulae given
in (47) with the potential given in (70), we obtain the
inflation contribution to the CMB temperature as a
function of the number of e-folding N(SQ) and MX ,
which is illustrated in Fig. 7.

From Fig. 7, we conclude that if the inflation con-
tribution to quadrupole is 90%, the scale MX must
equal 3.5 × 1014 GeV.

7. SUMMARY AND CONCLUSIONS

In the present paper we have constructed the su-
persymmetric economical 3–3–1 model which can
be consistent with cosmology. Thanks to existence of
two VEVs (w, w′) which are singlets under the SM
gauge group, the derived model contains the hybrid
F-term inflation. Hence, we have made a success of
constructing the model with inflation. The effective
potential was derived and it has a global minimum.
By the standard procedure, the slow-roll parameters
were calculated.

We have displayed the possible range of values for
the inflationary parameter in the model under consid-
eration:

(1) From the analysis of the inflation contribution
to the temperature fluctuations measured by the
COBE, we see that the ratio MX/MPl depends on
N(SQ) and the inflation contribution to quadrupole.
Taking N(SQ) = 50 and comparing with the COBE
data, we obtain the following results: (i) a range of
MX : MX ∈ [1.22 × 1016, 0.98 × 1017] GeV, (ii) the
parameter μ � 1016GeV, (iii) and during inflation
S � 1017 GeV.

(2) Comparing with the five-year WMAP data, we
have shown that the number of e-folding NQ is in
the range of 25−50. It means that the cosmologi-
cally interesting scale, in which H−1

0 ∈ [104, 1] Mpc,
requires a limit [39]: ΔNQ = ln 104 ∼ 1 Mpc. This
result is in good agreement with estimation from pre-
vious works by other authors.

(3) In the usually accepted parameter space, the
coupling α varies in the range: 10−7−2 × 10−1. The
coupling constant is not so small, and this is common
character of the supersymmetric unified models, to
which the model under consideration belongs.

(4) The spectral index n is approximately 0.98
if the e-folding number is taken: N(SQ) = 50. This
value is a little bit unsuitable to the five-year WMAP
data.

The scenario for large-scale structure formation
implied by the model is a mixed scenario for inflation
and cosmic string.
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In the case of the standard hybrid inflation, the
cosmic string contribution is proportional to the
square of MX . So if MX increases, both cosmic
string and inflation contributions increase. Hence,
it is difficult to get the cosmic string contribution
less than 10% and inflation contribution 90% at
the same scale MX , namely, to get cosmic string
contribution to quadrupole less than 10%, the values
MX must satisfy the condition given in (79), i.e.
MX � 1015 GeV. However, in our case, to get the
inflation contribution to quadrupole is 90%, the value
MX � 1017 GeV. On the other hand, to get spectral
index n smaller than 0.98, the e-folding number must
lie in the range 25–50. These values of e-folding
number and the spectral index n is not only suitable
to the WMAP data but also cannot solve the horizon
problem.

In the case of standard model with the minimal
Kähler potential, our results are:

(1) Assuming that the parameter ζ = M2
X/M2

Pl is
very small, we obtain the general expression of the
spectral indexes which is separated into two parts.
One part is gained from the standard hybrid inflation
potential and the other part is derived from the loop
correction of the minimal Kähler potential.

(2) The inflation contribution to quadrupole de-
pends completely on MX . At the value of MX = 3.5×
1014 GeV, we obtain that the inflation contribution
to quadrupole is 90%. This value is suitable for the
cosmic string contribution, which, according to (79),
is less than 10%.

(3) The spectral index derived from the WMAP5
data (n = 0.96), can be justified if the e-folding num-
ber belongs to the range 45–65. With this e-folding
number, the horizon problem can be solved.

(4) From constraint of cosmic string contribution
to quardrupole, we obtain that the Higgs coupling α
must be smaller than 10−4 GeV.

It is worth noting that the inflationary scenario is
not available for the nonsupersymmetric economical
3–3–1 model due to the lack of the Higgs boson with
necessary property. In general, analysis in the present
paper is available for other supersymmetric 3–3–1
models. However, due to their large Higgs content,
the analysis will only be approximate.

In the present paper, a new interesting property of
the supersymmetric economical 3–3–1 model that it
can be extended to describe the early universe was
found. The above-mentioned model has very nice ad-
vantage that its Higgs sector is minimal. Hence its
eigenmasses and eigenstates can be found exactly.

One of the criteria for the inflationary scenario,
besides providing the predictions in good agreement
with observations of the microwave background and

large-scale structure formation, is an explanation of
the origin of the observed baryon asymmetry. For
this aim, we note that the economical 3–3–1 model
contains the lepton number violating interactions
at the tree level through the SM gauge bosons such
as the neutral Z and the charged W± bosons [10].
The above property is the unique character of the
economical version.
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