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Abstract Surface defect inspection is an important part of
quality control in mobile phone cover glass manufacturing.
The traditional method is usually carried out manually by
experienced inspectors and thus lacks sufficient efficiency
and accuracy. In this paper, an automatic defect inspection
system based on the principal components analysis is pro-
posed for five typical cover glass defects: scratch, crack,
deformation, edge broken, and angle cutting. This inspection
system is robust for the defect shapes and obtains high recog-
nition accuracy. The inspection system includes three parts:
pre-processing, PCA-based defect recognition, and defect
edge extraction. After pre-processing, most of noise and out-
liers are eliminated and the pixels of defects in the image are
well enhanced for inspection and recognition. The eigen-
defect matrix is constructed to characterize the variation be-
tween defect images. Additionally, time consumption in con-
structing the eigen-defect matrix is also discussed. The exper-
imental results show that the inspection system has achieved
high accuracy for inspection and recognition.

Keywords Mobile phone cover glass . Defect inspection .

PCA .Machine vision . Edge extraction

1 Introduction

The quality control concept is the most vital aspect of the glass
manufacturing industry. The mobile phone cover glass have
become increasingly important in recent years due to the
quickly development of the mobile network and mobile
phone. In order to monitor the manufacturing process stability
and guarantee the display quality of the mobile phone cover
glass, the inspection of defects on the cover glass becomes a
critical task in manufacturing. Human visual inspection and
electrical functional tests are the most commonly methods for
the cover glass defect detection. However, the manual inspec-
tion is a time-consuming and tiresome task. The manual
activities of inspection could also be subjective and highly
dependent on the experience of human inspectors. The elec-
trical functional test is inherently limited to offline operations
and generally can only be accomplished after the fabrication
of the mobile phone cover glass is complete. In this paper, an
automatic visual system for the mobile phone cover glass
defect inspections is proposed.

With regard to the glass industry, analyses and methodol-
ogies employed to detect the defects in the glass sheets mainly
use image processing techniques because of their higher pre-
cision and speed. A number of techniques that use machine
vision defect detection system have been presented in the past
by some researchers. In this area, Tsai et al. proposed many
valuable approaches for the defect inspection of various prod-
uct surfaces. In [1], by using the singular value decomposition
(SVD) of the image matrix of the LCD panel, the foreground
with defects was reconstructed and segmented from the orig-
inal textured image. In [2], two entropy measures of chromatic
and structural regularities were proposed for the automatic
defect inspection of gold-plated fingers on PCBs. Other algo-
rithms proposed by Tsai et al. could be found in [3–5]. In
addition, Shimizu [6] proposed a method for detecting foreign
materials in the inspection of an LCD with its protective film
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in place, without being affected by scratches or dust on the
surface of the protective film. [7] presented a method for
detection and recognition of bubble and non-bubble of glasses
in low-resolution images whose main contribution was that a
so-called binary feature histogram (BFH) was proposed to
describe the characteristic of the glass defect. Then the
AdaBoost method was adopted for classification. According
to the image filtration based on gradient direction, downward
threshold based on adaptive surface and OTSU algorithm, Peng
et al. presented a distributed online defect inspection system for
float glass fabrication in [8]. This distributed online defect
inspection system could detect glass defects such as bubbles,
lards, and optical distortion fast. In [9], Perng et al. proposed a
two-phase algorithm (a pre-training phase and a testing phase)
for LED defect inspection. In terms of the wavelet analysis and
artificial neural network and fuzzy k-nearst neighbor, [10]
introduced an approach of glass defect identification.

The abovementioned approaches mainly focus on one or
two defect types of glass or LCD, such as bubbles or foreign
materials. They are not suitable for the manufacture of the
mobile phone cover glass; because in the manufacture process
of the cover glass, there are more defect types, such as scratch,
angle cutting, deformation, crack, and edge broken, as shown
in Fig. 1. For a cover glass image, the inspection system
should have two functions, i.e., defect detection and defect

recognition (also known as defect classification). Because the
defects of a same defect type could be of different sizes and
orientation or even locations, the recognition rate would be
very low if the geometry or shapes for recognition are used
only. This case is similar to the face recognition. A typical
approach for face recognition is that the test face would be
compared with all the faces in the training set according to the
face features. Awell-knownmethod for face recognition is the
principal component analysis (PCA). Therefore, each glass
defect image can be treated as a “defect face” and a training set
can be established for feature extraction and recognition by
using the PCA. Meanwhile, the advantage of this approach is
that the inspection process needs not to be divided into two
phases that are the defect detection and defect recognition. By
using the PCA, once the inspection system finds out an
equivalent image from the training set for the test image, it
would be very clear that the cover glass of the test image is
normal or defective. Thus, PCA can merge the defect detec-
tion and defect recognition into one process. This will greatly
simplify the defect inspection process. Thus, in this paper, a
global approach based on the PCA for automatic visual in-
spection of the mobile phone cover glass defects is proposed,
which is independent of the defect type, shape, and size.

2 Introduction to the inspection system

The inspection system is designed as a distributed processing
system which is constructed on server/client model. It com-
poses of several inspection subsystems. Every subsystem
includes a high-performance client computer, a plane array
CMOS camera, and a light source. Every camera corresponds
to a cover glass. All cameras are installed equally spaced at the
same vertical line in crossing direction on product line.
Suppose that the size of a cover glass is p × q, p > q, i.e., p
denotes the length of the long edges of the rectangle. All the
cover glasses move the same distance of p/l (the distance is
depended on the inspection accuracy requirement) from left to
right every interval. Thus, for a cover glass, the camera will
take l images. The field of vision of each camera covers the
area of a cover glass of (p/l) × q. The client computer pro-
cesses images and transmits inspection results to a server. The
server computer acts as the interface between human and
machine. It mainly used to manage defects data offline and
grade glass block based on the defect data that it received.
High-speed network connecting the server and the client
computer of inspection subsystems ensures the reliability of
defects data transmission. The structure is shown in Fig. 2.

After images are obtained by the cameras, they will
be sent to the corresponding client computer for defect
inspection. As shown in Fig. 3, the flow chart of the
image processing illustrates the inspection process of
each inspection subsystem.

(a) Scratch (b) Angle cutting

(c) Deformation (d) Crack

(e) Edge broken.

Fig. 1 Five different defects of the mobile phone cover glass. a Scratch.
b Angle cutting. c Deformation. d Crack. e Edge broken
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For each image, pre-processing is applied in the first, which
includes contrast enhancement, binaryzation, and de-noising.
Pre-processing could not only greatly improve the contrast of
defect and background but also reduce the influence of dust,
electronic noise, etc., then the images after pre-processing can
be recognized by the PCA algorithm and the result of defect
type is output. If the defect contained in the image
cannot be recognized by the PCA algorithm, this image
will be marked and inspected manually. Finally, edge
extraction is applied on the recognized defect image for
defect edge detection. In the next section, the details of the

pre-processing, PCA recognition, and edge extraction al-
gorithms are presented.

3 Defect recognition and recognition scheme

3.1 Pre-processing of the mobile phone cover glass image

Before recognition of the defect type of the obtained images
by the PCA algorithm, pre-processing algorithm needs to be
performed to the images, which includes three parts: contrast
enhancement, binaryzation, and de-noising.

3.1.1 Contrast enhancement and binaryzation

The typical method for contrast enhancement is piecewised
linear transformation, which can highlight the defect area
while the background can be suppressed. To be formally, it
can be expressed as follows:

Gray i; jð Þ ¼
c=að Þ f i; jð Þ 0 < f i; jð Þ < a
d−cð Þ= b−að Þ½ � f i; jð Þ−a½ � þ c a ≤ f i; jð Þ < b
M2−dð Þ= M1−bð Þ½ � f i; jð Þ−b½ � þ d b≤ f i; jð Þ < M1

8<
:

ð1Þ
where f(i,j) is the gray value at the (i,j)th pixel, a, b, c, d, M1

and M2 are the bounds of the piecewise linear transformation
function. Eq. (1) can be represented as Fig. 4.

But for the mobile phone cover glass image, the piecewise
linear transformation function is not suitable. The histogram
for a typical crack defect is shown in Fig. 5.

Theoretically, the pixels of background should be
black, i.e., the corresponding gray values should be zeros,
but according to the histogram, the pixel numbers corre-
sponding to the gray values less than 50 are almost zeros.
For the linear function, the pixels with gray values in [0,
a] are also stretched, which will confuse the background
and foreground to a certain extent. Obviously, the gray
values less than or equal to the peak value of the histo-
gram should be treated as the background. The gray
values corresponding to the crack defect and edges of
cover glass are assembled between the peak point and

Fig. 3 Flow chart of PCA-based defect inspection subsystem

c

M2

0 a  b M1

d 

Fig. 4 Piecewise linear transformation

(a) Hardware structure.

(b) Picture of the subsystem.
Fig. 2 Hardware structure of distributed inspection system. a Hardware
structure. b Picture of the subsystem
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150. In order to suppress the background as well as
highlight the defect, the log function is applied for the
contrast enhancement in this algorithm, which is shown in
the following Eq. (2) and the corresponding graph is
shown in Fig. 6. By Eq. (2), it can be seen that the pixels
whose gray values are lower than the threshold peak+τ (here
τ is a dynamic constant) will be set to 0. The gray values in the
front part of [peak+τ,255] will be greatly stretched so that the
defect area can be brighter. Thus, the background can be
obviously distinguished from the foreground, i.e., the defect
area.

Gray i; jð Þ ¼ 0 f i; jð Þ < peakþ τ
40 � log f i; jð Þ − peakð Þ f i; jð Þ≥ peakþ τ

�
ð2Þ

Figure 7 shows the contrast enhancement result of Fig. 5a.
Obviously, the defect area is highlighted, especially for the
edges of the defect.

Before defect recognition, the binaryzation processing to
the image should be performed after contrast enhancement.
Many methods can be chosen to convert the gray image to the
binary image. Here, the OTSU [8] algorithm is applied. The
binaryzation result is shown in Fig. 8.

3.1.2 De-noising

The image after binaryzation includes background, defect
area, and noise. The noise can be caused by many factors,
e.g., electronic noise and errors in analog-to-digital converter.
Also, blotches and dust will affect the image quality. The noise
may include one or several pixels. Theymay be realized as the
fake defects and cause the inspection system to misoperate, so
they must be eliminated before inspection results output.

The pixels in the binaryzation image only have two values,
i.e., 1 or 0. The pixels with values 0 denote the black back-
ground, and the pixels with values 1 denote the defects or the
noise. Since the sizes of the noise area are not known, the blob
analysis [11, 12] is applied to the binary image. The blob
analysis is a fundamental step for detection of connected
components between pixels in binary images in segmentation
of an image objects and regions, or blobs. Each blob is
assigned a unique label to separate it from other blobs. All
the pixels within a blob of spatially connected 1’s are assigned
the same label. It can be used to establish boundaries of
objects, components of regions, and to count the number of
blobs in an image. In the following, the multi-pass scanning
procedure used for connected component labeling is
presented.

Let BM×N denote the 2D binaryzation image. A pixel
is a background pixel if B(i, j)=0 and an object pixel if

(a) Original image of crack defect. (b) The corresponding histogram.

Fig. 5 Original image of crack
defect and its corresponding
histogram. a Original image of
crack defect. b The corresponding
histogram

255peak0

255

Fig. 6 Log transformation function for the contrast enhancement Fig. 7 Contrast enhancement result of Fig. 5a by using Eq. (2)
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B(i, j)=1. An array L of the same size and shape of B is
used for storing the labels. The problem of connected
component labeling is to fill the array L with (integer)
labels so that the neighboring object pixels have the
same label. The current pixel B(i, j) in the scanning
process and the four neighbor pixels in the NE, N,
NW, and W directions of B(i, j) are denoted as a, b, c,
d, and e, respectively. Also, the same letters are used in
place of their (i, j) coordinates. With these notations,
L(a) denotes the label of the current pixel. B(c) denotes
the pixel value of the neighbor in the north direction of a.
Let l be an integer variable initialized to 0. The multi-pass
algorithm for connected component labeling can be expressed
as follows:

In the first pass through the image, the above algorithm
states that L(a) is assigned to 0 if B(a)=0. It is assigned a new
label l, and l is increased by 1, if its four neighbors in the NE,
N, NW, and W directions are all background pixels.
Otherwise, it is assigned the minimum of the provisional
labels already assigned to a neighbor in the four neighbors.
Also, the labels in the four neighbors should be re-assigned to
the minimum among them. In the later passes, labels for the
current pixel and their four neighbors are modified to be the
minimum labels of the provisional labels among these five
pixels. In this way, after several passes, all pixels in a con-
nected component will receive the smallest provisional label
assigned to the pixels when L no longer changes.

With the label array L, de-noise will be an easy task. The
elements with a same label in L belong to a same noise area (or
defect). The area of the kth noise area (defect), denoted as
C(k), can be calculated by counting the element number of L
with element value equals k. If C(k)<τ, then the pixels belong
to the kth noise area are set to zeros. Here, τ is a threshold for
de-noising. The label array L is not only used for de-noising
but also used for edge extraction, which will be presented in
Section 3.3.

3.2 PCA for cover glass defects inspection

After the abovementioned pre-processing, most of the noise and
outliers are eliminated. The defect pixels in the image are well
enhanced for inspection and recognition. The PCA for recogni-
tion will be introduced. After recognition, the boundary follow-
ing algorithm will be applied for the defect edge extraction.

PCA is a technique for dimensionality reduction in com-
puter vision [13, 14]. The PCA techniques, as known as
Karhunen-Loeve methods, choose a dimensionality reducing
linear projection that maximizes the scatter of all projected
samples. More formally, consider a set ofN images X={x1,x2,

⋯,xN}, xN∈Rn2 taking values in an n2-dimensional image
space, and assume that each image belongs to one of c classes.
Also consider a linear transformation mapping the original n2-
dimensional image space into anm-dimensional feature space,
where m<n2. The new feature vectors yk∈Rm are defined by
the following linear transformation:

yk ¼ WTxk ; k ¼ 1; 2;⋯;N ð3Þ

where W∈Rn2�m is a matrix with orthonormal columns.
If the total scatter matrix S is defined as follows:

S ¼
X
k¼1

N

xk −μð Þ xk −μð ÞT∈R n2�n2 ð4Þ

Fig. 8 Binaryzation result of Fig. 7
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Here, μ∈Rn2 is the mean image of all images, then
after applying the linear transformation WT, the scatter
of the transformed feature vectors {y1,y2,⋯yN} isW

TSW. In
PCA, the projection Wopt is chosen to maximize the
determinant of the total scatter matrix of the projected
samples, i.e.,

Wopt ¼ argmax
W

���WTSW
��� ¼ ω1;ω2;⋯;ωm½ � ð5Þ

where {ωi|i=1,2,⋯,m} is the set of n2-dimensional eigenvec-
tors of S corresponding to the m largest eigenvalues.
Since these eigenvectors have the same dimension as
the original images, they are referred to as eigen-defects
in the algorithm.

Much of the previous work on automated defect recogni-
tion has ignored the issue of just what aspects of the defect
stimulus are important for identification. The main features
used in the previous works are the shapes or structures of
defects. This suggested that an information theory approach of
coding and decoding defect images may give insight into the
information content of defect images, emphasizing the signif-
icant local and global “features.” The relevant information in a
defect image could be extracted, and encoded as efficiently as
possible, and one defect encoding could be compared with a
database of models encoded similarly. A simple approach to
extract the information contained in an image of a defect is to
somehow capture the variation in a collection of defect
images, independent of any judgment of features, and
use this information to encode and compare individual
defect images.

In the inspection system, the principal components of
the distribution of defects or the eigenvectors of the
scatter matrix of the set of defect image set could be
found. These eigenvectors can be thought of as a set of
features which together characterize the variation be-
tween defect images. Thus, a training set is constructed,
which is used for calculating the eigen-defects. Every
image in the training set is labeled with its defect type,
i.e., scratch, crack, deformation, edge broken, or angle
cutting. Each defect image in the training set can be
represented exactly in terms of a linear combination of
the eigen-defects. The number of possible eigen-defects
equals to the number of defect images in the training
set. However, the defects can also be approximated
using only the “best” eigen-defects, i.e., those who have
the largest eigenvalues, and which therefore account for
the most variance within the set of defect images. The
primary reason for using fewer eigen-defects is compu-
tational efficiency. The best M eigen-defects span an M-
dimensional subspace—“defect space”—of all possible
images. The eigen-defects are the basis vectors of the
eigen-defect decomposition.

According to the above analysis, the PCA-based recogni-
tion algorithm for cell phone cover glass defect is described as
follows:

According to Eq. (4), the eigenvalues and eigenvectors of
the n2×n2 scatter matrix S in the step 3 of algorithm 2 could be
computed. Based on the linear algebra theory, for a p×q
matrix, the maximum number of non-zero eigenvalues that
the matrix can have is min(p,q). Since the number of training
images (N) is usually less than the number of pixels (n2), the
most non-zero eigenvalues that can be found are equal to N.

1610 Int J Adv Manuf Technol (2014) 73:1605–1614



So eigenvalues of DTD∈RN×N instead of DDT∈Rn2�n2 in the
step 3 can be calculated. It is clear that the dimensions ofDDT

is much larger than that of DTD. So, the dimensionality will
decrease.

In the algorithm 2, when the image number of the training
set is less than a pre-setting integer number T, every test image
will be added into the training set after recognition. This will
reduce the inspection error. For a same defect type, the defect
shape of one cover glass may differ from another, but they
belong to a same defect type so that the new defect image can
be represented by the linear combination of the eigen-defects.
Thus, this approach is robust for the defect shapes and
structures.

3.3 Edge extraction by boundary following algorithm

The final step of this inspection system is the edge extraction
of the defect. A great diversity of edge detection algorithms
have been devised with differences in their mathematical and
algorithmic properties such as Roberts, Sobel, Prewitt,
Laplacian, and Canny, all of which are based on the difference
of gray levels [15]. In this inspection system, because the label
array L of an image has been constructed in Section 3.1, the
edge extraction will be simplified by using the boundary
following algorithm.

Figure 9 gives a demonstration of the boundary following
process. The numbers labeled in Fig. 9 denote the sequence of
searching orientations. The black points denote the edge
pixels. According to the above pre-processing, recognition,
and edge extraction, the defects of a new cover glass can be
inspected. Also, the size of each defect can be calculated by
simply counting the number of pixels in one defect.

4 Experiment results

To assess the viability of the PCA-based defect inspection
system, experiments with stored defect images are performed.
The first experiment is performed to test the recognition rate of
this system. In this experiment, the total 100 defect images
(there are no normal/defect-free images in these 100 images)
belonging to five defect types (scratch, crack, deformation,
edge broken and angle cutting) are used as the candidate set.
The gray image size is 320×200. Two image sets are con-
structed: a training set and a test set. The computer used in the
experiment is ThinkPad X61 with Duo 2G CPU and 2G
memory. In each experiment, 10 defect images are randomly
selected from the candidate set as the test images.

In the PCA-based recognition algorithm, the construction

of eigen-defect matrix eW in step 1 to step 5 of algorithm 2 is
time consuming. For example, when the defect image number

of the training set is 20, the time for the construction of eW is
0.297 s, but the time for recognition of a defect image is only
0.05 s.When the image number of training set increased to 60,

the time for the construction of eW is 2.8 s and the time for
recognizing an image is 0.53 s.

In order to improve the real-time performance of the sys-
tem, the grouping strategy is adopted, i.e., the image number
in the training set was initialized as 20. They are randomly
selected from the 100 defect images (these 20 defect images

Fig. 9 A demo for algorithm 3
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must be recognized manually and they should be removed
from the candidate set to the training set). Then 10 images of
the candidate set are randomly selected from the remaining 80
images and moved into the test set. By using the 20 images,

the eigen-defect matrix eW can be constructed. Then the 10
images in the test set are projected into the defect space and
recognized by steps 6 to 9 of algorithm 2. After finishing the
recognition of these 10 images, they will be moved into the
training set, and the total 30 images in the training set are used
as the training images for the recognition of next 10 new
images. In the next experiment, 10 images are selected from
the remaining 70 images in the candidate set. The eigen-defect

matrix eW should be reconstructed by the 30 images in the
training set. According to this procedure, 100 defect images in
the candidate set are divided into eight groups. The image
numbers in the training set and test set of each group are {20,
10}, {30, 10}, {40, 10}, {50, 10}, {60, 10}, {70, 10}, {80,
10}, and {90, 10}, respectively. The advantage for grouping is
that for every 10 test images (in each group), an eigen-defect

matrix eW only needs to be constructed once. This will signif-
icantly reduce the average running time for recognition such
that the recognition system is efficiency and satisfying the
real-time requirement of the assembly line.

Here, the recognition accuracy of the inspection system
will be tested. Thus, in this experiment, a defect image could
be considered as being recognized correctly if and only if a
test defect image is recognized as its actual defect type. For
example, if a crack defect image is input and a crack defect
image is output as the equivalent image, then this defect image
is recognized correctly. Otherwise, the recognition of this
defect image is counted as failure (the output equivalent
image’s defect type is not the actual defect type of the input
image). In addition, it’s well known that from the PCA-based
face recognition, the recognition results are relied on the
segmentation of the image. As shown in Fig. 3, the segmen-
tation of this inspection system occurred in the binaryzation
and de-noising. Thus, another experiment is made as shown in
Fig. 10, which removed the steps of binaryzation and de-
noising. The recognition rates obtained by Figs. 3 and 10 are
compared as Fig. 11.

For each experiment, 10 independent trials of the experi-
ment are performed and the average recognition rate is

calculated while the selection of images from the 100 images
is random. The recognition rates of the eight groups are shown
in Fig. 11a. Furthermore, the average running time of each
group of the test images is calculated. The relationship be-
tween the running time for each group (10 test images)
and the image numbers of the training set is depicted in
Fig. 11b.

According to Fig. 11a, the influence of segmentation
(bianryzation and de-noising) is not significant for the PCA
algorithm in this application. This is because that during the
process of the glass manufacturing, the defect inspection of
cover glass is processed in the dust-free workshop after
cleaned by ultrasonic washing. Thus, the images obtained by
the camera have a related clean background. Thence, the cover
glass has no textures. These will be very helpful for the defect
inspection and recognition. In Fig. 11a, the recognition rates
obtained by Figs. 3 and 10 are comparable, but binary images
are more convenient for storage and transmission. From
Fig. 11b, the running time of the system shown in Fig. 3 is
less than the system shown in Fig. 10. Moreover, binaryzation
is a necessary step for blob analysis and edge extraction. Thus,
the system shown in Fig. 3 is applied for defect inspection.

(a) Recognition rate

(b) Average running time for each set of test images

Fig. 11 Recognition rate and running time. aRecognition rate. bAverage
running time for each set of test images

Fig. 10 Flow chart of PCA-based defect inspection subsystem removed
binaryzation and de-noising
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Another experiment is performed for testing the defect
detection rate. Here, the test outcome is defined as positive
if an image is predicted as a defect image, and the test
outcome is defined as negative if an image is predicted as a
normal image without defects (defect-free). It should be
noted that in this experiment, the output equivalent image’s
defect type can be different from the actual defect type of
the input defect image. Because although the recognition
result of the defect type is wrong, the input defect image
still recognized as defective and the corresponding cover
glass cannot be considered as an acceptable product. The
true positive, false positive, true negative, and false
negative can be defined as follows:

True positive (TP) a defect image correctly classified as
defective.
False positive (FP) a normal image incorrectly identified
as defective.
True negative (TN) a normal image correctly identified as
normal.
False negative (FN) a defect image incorrectly identified
as normal.

According the above definitions, the true positive rate
(TPR, namely sensitivity) can be defined as follows:

TPR ¼ TP= TPþ FNð Þ ¼ TP=P:

The false positive rate (FPR) is defined as follows:

FPR ¼ FP= FPþ TNð Þ ¼ FP=N;

where N denotes the actual normal image number and P
denotes the actual defect image number.

In this experiment, 60 images (the 60 images consisted by
the normal images and five types of defect images) are used in
the training set and 100 images are used in the testing set.
There are 50 normal cover glass images and 50 defect images
consisted by the five types of defect images in the 100 test
images. Thus, P=N=50. Finally, 44 defect images are cor-
rectly detected as defective, and only three normal images are
incorrectly recognized as “scratch” images. The experiment
results are as follows:

TP ¼ 44; FN ¼ 6; FP ¼ 3; TN ¼ 47 :Thus ;
TPR ¼ TP=P ¼ 0:88 and FPR ¼ FP=N ¼ 0:06:

It can be seen that a high TPR and a very low FPR are
obtained. This is because that the normal cover glass image is
almost all black and obviously different from the defect im-
ages. The reason for the incorrectly recognition of the three
normal images is that there is some noise caused by the
uneven illumination of the cover glass in the normal images.
After pre-processing, the noise is treated as scratches and leads
to incorrectly recognition.

(a) Image after pre-processing (b) Edge extraction result by Alg.

Fig. 13 Edge extraction result for
a scratch defect. a Image after pre-
processing. b Edge extraction
result by algorithm 3

(a) Test image    (b) Equivalent image

Fig. 12 Recognition result for a
scratch defect. a Test image. b
Equivalent image

Int J Adv Manuf Technol (2014) 73:1605–1614 1613



Figure 12 is a recognition result. Although the test image
and the equivalent image picked from the training set are
different in the scratch shapes and number, both of them
belong to a same defect type. In the experiment, there are
not quite similar scratch images as shown in Fig. 12a in the
training set. There are only a few scratch images that are
similar to the image of Fig. 11b.

After recognition, algorithm 3 is applied for edge detection.
Figure 13 shows the edge detection result.

5 Conclusions

In this paper, the PCA-based defect inspection system is
proposed for the mobile phone cover glass. The inspection
system can not only recognize several defect types simulta-
neously but also recognize the defect type robustly different
from others based on the defect shapes or structures. By
utilizing the eigen-defects of the defect images, an eigen space
for all possible defect images can be spanned. For a new test
defect image, it is projected into the eigen space and compared
with other projections of the known defect images. Also, the
boundary following algorithm is used for the edge extraction
of the recognized defect images. Experiment results show that
this defect inspection system has achieved good performance
for the test defect images.
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