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Abstract The fast growing market for smart phones cou-
pled with their almost constant on-line presence makes these
devices the new targets of malicious code (virus) writers.
To aggravate the issue, the security level of these devices
is far below the state-of-the art of what is used in personal
computers. It has been recently found that the topologi-
cal spread of multimedia message service (MMS) viruses
is highly restricted by the underlying fragmentation of the
call graph—the term topological here refers to the explicit
use of the call graph topology to find vulnerable phones.
In this paper, we study MMS viruses under another type of
spreading behavior that locates vulnerable phones by gen-
erating a random list of numbers to be contacted, generally
referred to as scanning. We find that hybrid MMS viruses
including some level of scanning are more dangerous to the
mobile community than their standard topological counter-
parts. Interestingly, this paper shows that the topological and
scanning behaviors of MMS viruses can be more damaging
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in high and low market share cases, respectively. The results
also show that given sufficient time, sophisticated viruses
may infect a large fraction of susceptible phones without
being detected. Fortunately, with the improvement of phone
providers’ monitoring ability and the timely installations of
patches on infected phones, one can contain the spread of
MMS viruses. Our findings lead to a better understanding on
how one could prevent the spread of mobile-phone viruses
even in light of new behaviors such as scanning.

Keywords Mobile-phone viruses · Social networks ·
Mobile security

1 Introduction

The history of technological viruses is intrinsically linked
to the history of computational devices. Since the creation
of the Internet, programmers began writing self-replicating
executables with malicious purpose to cause harm to com-
puters, destroy information from computers, and profit from
information stored in such devices. The infamous Creeper1

is the first known instance of a computer virus. From there
on, the field of computer security improved significantly,
but unfortunately so did the ability of programmers to write
increasingly more sophisticated viruses. In recent years,
mobile phones have become the new frontier for these self-
replicating programs [14,16,22]. The availability of these
mobile devices coupled with their constant on-line pres-
ence makes them an ideal breeding ground for technological
viruses [16]. Mobile-phone viruses can steal user’s private
information [9,14], drain handset’s battery [14], track user’s
locations by GPS [26], to name but a few. They can infect

1 http://en.wikipedia.org/wiki/Creeper_virus.
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a large number of mobile phones in stealth mode and later
make these infected phones perform some simple malicious
functions, such as sending short text messages to get the
communication channels jammed [13].

Mobile-phone viruses are able to self-replicate and spread
quickly. Similarly to their biological counterparts, they
can spread based on physical proximity, when they use
Bluetooth communication; and like PC viruses, they can
spread by either targeting individuals in the address books
of the infected phones (topological behavior) or by ran-
domly selecting contacts/phone numbers to be contacted
(scanning behavior) [21]. The pursuit to fully understand
the spread dynamics of mobile-phone viruses and their
damage potential starts with the introduction of spreading
models; many have been proposed in the literature. Mick-
ens and Nobel [18] proposed an epidemiological frame-
work to model the topological properties of mobile net-
works. Su et al. [23] used trace-drive simulations to examine
the propagation dynamics of Bluetooth worms; they found
that Bluetooth worms can quickly infect a large popula-
tion of susceptible devices. Yan et al. [27] used logistic
equation to characterize the propagation dynamics of Blue-
tooth worms. Wang et al. [24] and Funk et al. [12] stud-
ied the important role of human mobility in the spread of
Bluetooth viruses. Based on real mobile-phone data, Wang
et al. [25] studied different spreading patterns of Blue-
tooth and MMS viruses; they predicted that once a mobile
operating system’s market share reaches a phase transi-
tion point, MMS viruses will become a serious threat to
users.

Researchers also investigated the strategies to monitor or
restrain the propagations of mobile-phone viruses. Cheng
et al. [9] studied the approach to detect abnormal mes-
sage sending behavior by collecting and sending commu-
nication data to remote servers. Bose et al. [2] proposed
an approach to distinguish malicious behavior from nor-
mal operations through training a classifier based on sup-
port vector machines. Kim et al. [15] looked into a method-
ology to detect malware by monitoring battery’s lifetime.
Zhu et al. [28] studied counter mechanisms to contain the
propagation of a mobile worm at the earliest stage by patch-
ing an optimal set of selected phones. This counter mecha-
nism continually extracts a social relationship graph between
mobile phones, which is representative of the most likely
propagation path of a mobile worm. Gao et al. [13] stud-
ied a two-layer network for modeling virus propagation in
mobile networks and designed a pre-immunization and adap-
tive patch dissemination strategy to restrain mobile virus
propagation.

The spreading dynamics of mobile-phone viruses have
been amply studied in recent years. However, previous works
normally use a topological approach, ignoring the possibil-
ity that a virus can scan random phone numbers. Indeed, the

ADDRESS BOOK LINKS

SCANS TO RANDOM NUMBERS

Fig. 1 Virus can contact phones based on the call graph (topological
behavior) or generating numbers randomly (scanning behavior). The
light-colored phones in this picture could never be reached using only
topological behavior

mobile-phone world has already seen instances of scanning
behavior such as the Timofonica virus2 and more recently
in a hybrid virus called Beselo.3 At first glance, random
scans seem to be a naive approach but what makes them
dangerous is that a few successful scans may transfer the
infection from one side of the network to another in a very
short amount of time. Figure 1 depicts a scenario with topo-
logical and scanning behaviors in a mobile-phone network.
Note that part of the network (depicted in light color) could
never be reached without the scanning behavior. This sim-
ple example demonstrates the difference between topologi-
cal viruses (which have to respect the existing connections
between users) and scanning viruses (which are able to jump
to anywhere in the network). We can observe that the topol-
ogy formed by users having other users’ numbers in their
address books is not used for the scans (in dashed line). In
this paper, we study the effects of MMS viruses’ topological
behavior combined with a scanning behavior. We find that
for high market share mobile operating systems (hence forth
called OS), viruses with topological behavior are more effec-
tive but for low market share OS, the ones with some level
of scanning behavior cause more harm.

Unlike previous works, this paper investigates the inter-
play between spreading behaviors employed by MMS viruses
and the ability that phone providers have to look for anom-
alies based on messaging volume as a function of time of the
day and day of the week. MMS viruses can spread at different
rates, and this rate can be the difference between their suc-
cess and failure. Hence, we study the spread of viruses under
different spreading rates. We find that the most dangerous
MMS viruses may not have the fastest spreading rates.

2 http://www.kaspersky.com/about/news/virus/2000/TIMOFONICA_
Virus_Questions_and_Answers.
3 http://www.f-secure.com/v-descs/worm_symbos_beselo.shtml.
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Finally, we discuss two strategies that could be used to
mitigate the spread of MMS viruses. First, with an improved
monitoring ability on abnormal MMS volume, MMS viruses
may be detected at an earlier stage of infection. Second, as
expected, we find that the installation of patches on infected
phones can help mitigate MMS viruses’ potential damages—
we discuss a few patching scenarios in this paper.

2 Dataset and methodology

The dataset used in this paper was collected by a mobile-
phone providers for billing and operational purposes during a
12-week period. The privacy of all callers is ensured through
the use of a security key (hash code) for each user instead of
users’ real phone numbers.

2.1 Usage pattern of MMS

We first analyzed the use of MMS as form of communi-
cation. Figure 2 shows the result of such analysis for the
MMS activity of approximately 6 million mobile-phone users
over a period of 12 weeks with an average volume of 4.7
million messages per week. The figure shows a periodic
usage of MMS peaking from sunday to tuesday. This analy-
sis is important because this usage pattern is widely used
by mobile-phone providers to protect their communication
systems; abnormal usage can be stopped when one has a
model of the normal cyclic usage pattern [7,9]. Moreover, in
our simulations, we assume that mobile-phone providers are
able to use the global activity patterns to check for anomalies
that may arise from big fluctuations in users’ MMS activity.
In the inset of Fig. 2, we measured the maximum and average
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Fig. 2 a The maximum and average volume of MMS messages and
b the threshold of MMS viruses being detected by phone providers

MMS volume in different 2-h periods of a week (Fig. 2a).
If the MMS volume generated by the spread of viruses is
larger than the volume difference, �V , between the maxi-
mum and average MMS volume (depicted in the Fig. 2b),
phone providers are able to detect the viruses using sim-
ple anomaly detection approaches. In contrast, MMS viruses
may spread without being detected if the MMS volume cre-
ated by them is smaller than �V , because phone providers
generally regard these slightly higher rates of messages as
part of expected fluctuations in users’ MMS usage [7].

2.2 SI and SIR models

In this paper, we first use the SI model [1] to simulate the
spread of MMS viruses. Under this model, mobile phones can
be in only one of two possible states: susceptible (S) when
they are vulnerable to infection, or infected (I ) when they
are transmitting the infection to other devices. Using the SI
model, we study the initial spreading process in the absence
of recovery or antiviral software. That is, we do not consider
the possibility that the phones could recover from the infec-
tion: a reasonable assumption due to the limited capacity
of some handsets for installing antiviral software [9,14,22],
combined with the users’ current lack of concern about the
threat of mobile-phone viruses [9,14,22]. In Sect. 3.4, we
also use the SIR model [1] to study the spread of MMS
viruses under the scenario where patches can be installed on
infected phones. In the SIR model, an infected mobile phone
changes from infected state to recovered state (R) after the
installation of patches.

In our simulations, we assume that a virus does not need
the user confirmation to be installed in the device, corre-
sponding to the worst possible spreading scenario. Without
confirmation, every phone that receives an infected MMS
becomes infected.

In the SI model, an infected mobile phone can infect a
susceptible phone at a rate μ described by

S + I
μ−→ 2I. (1)

In the SIR model, an infected phone can recover at a rate
γ by installing patches.

I
γ−→ R. (2)

2.3 Topological and scanning behaviors

Two spreading behaviors of MMS viruses are investigated in
this paper: viruses behaving topologically send out malicious
MMS to the phone numbers listed in its address book; viruses
performing scanning send out malicious MMS to randomly
generated phone numbers.
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Fig. 3 The distribution of user’s address book size P(N ) follows a
power law for a wide range of N

In the topological approach, we approximate a user’s
address book with the list of numbers the user communi-
cated with during the 12 weeks of observation. As shown in
Fig. 3, the size of user’s address book N follows a power-
law distribution defined as P(N ) = N−λ with an exponent
λ = 4.5. The measured average address book size 〈N 〉 is
9.17 (Fig. 3).

To understand the spreading dynamics, we assign an ini-
tial virus to a randomly chosen handset, which in turn will
send infected MMSs to its identified contacts. The MMS ser-
vice is not instantaneous, and there is time delay on receiv-
ing a MMS. In our simulation, we choose 2 min as the time
required for a MMS virus to be received by another hand-
set and to install itself [3]. The simulation time step is also
chosen as 2 min.

In the scanning behavior, we need to estimate the effec-
tive scanning probability p. This is necessary because one
can expect that a large number of scans will reach mobile
numbers that are not active (ineffective scan). To get an edu-
cated estimate of this probability, we divided 6 million (an
approximation of the mobile-phone user base) by 100 mil-
lion (the total phone numbers that 8 digits can generate),
obtaining an effective scanning probability p = 0.06.

To quantify the topological/scanning behavioral level in
the spread of MMS viruses, we define the random attack
probability, ρ, that a virus will attack a random phone number
rather than a number listed in the address book. The value of
ρ varies from zero to one, showing viruses’ different attack
strategies: from completely topological to completely scan
based. Lastly, we define the maximum attack number s for
each infected handset, viruses generally limit and control
the number of times they attack to prevent them from being
detected due to abnormal MMS volume caused by the attacks.

2.4 The naive and temporal spread models

In this paper, we study two spreading models: naive and
temporal. The difference between them is on their ability
to utilize temporal patterns of MMS volume to prevent being
detected. Given the information about MMS volume dur-
ing a day, the temporal spread model enable us to under-
stand viruses that try to avoid detection by phone providers.
The model can simulate the interplay between MMS viruses’
spreading strategies and phone providers’ ability to monitor
global MMS volume. On the other hand, the naive model is
studied to understand the worst-case scenario of a viral out-
break, ignoring MMS temporal usage patterns and possible
monitoring by phone providers. We use OS market share val-
ues of m = 0.30 and m = 0.03 to study the viral spread in
different types of call graphs [7,17,19,20]. When the market
share m = 0.3, there is a giant component in the call graph
and in the small m = 0.03 case no giant component exists,
and the call graph is fragmented into small isolated clusters.
In the following sections, we describe that topological and
scanning behavior are more effective in high market share
OS and low market share OS, respectively.

3 Experimental results

3.1 The effect of scanning

To understand the effect of the scanning behavior of mobile
virus, we first use an illustrative example based on a small
neighborhood of the call graph (approx. 600 nodes and 1,000
links). The graph was generated by starting from a randomly
chosen phone and including all mobile-phone contacts up
distance 4 from the initial one. The nodes in Fig. 4 are repre-
sented using two colors that correspond to the two kinds of
OSs used in the simulation, with market shares 0.25 (25 %)
represented by dark nodes and 0.75 (75 %) in lighter color.
Because a virus can only infect the OS, it was designed for,
the largest components [4–6,8,10,11] formed by the same
color connected nodes represent the maximum number of
handsets that a virus can infect. Without random scans, the
dark nodes are fragmented into small islands, and the largest
cluster size represents only 6 % of the total number of dark
nodes (see Fig. 4b). To simulate the continuous attacks of
scanning behavior, we randomly add 800 links between the
nodes in this local network. The dashed lines shown in Fig. 4c
represent links generated from scanning behavior—they con-
nect the originally disconnected small clusters. One can see
that the structure of the call graph changes significantly, the
largest component (35 % of the total number of dark nodes)
is about 6 times bigger than its counterpart without random
links. In this illustrative example, we densely add random
links to make the effect of scanning more prominent. In what
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Fig. 4 Illustrative example of the effect of scanning behavior in mobile viruses (this picture is presented to exemplify the effect of scans and does
not depict the real data used in the simulations)

follows, we show that the addition of scanning also makes
the virus more dangerous under realistic conditions.

3.2 Naive viral spread (worst-case scenario)

In the naive viral spread model, where we disregard the pos-
sibility of monitoring of abnormal MMS activity, a phone
handset sends out viral MMS messages every 2 min from the
time it gets infected. This approach can be easily detected
by phone users or phone providers. However, this model is
interesting as a study of the worst case of a virus spread, given
that it helps us understand how OS market share, maximum-
attack number, and attacking strategy influence the spreading
dynamics of MMS viruses.

After looking at the worst case, we move to a study on
how the OS market share m influences the spread of MMS
viruses. The solid and dashed lines in Fig. 5 represent the
average (solid line), maximum (dashed line), and minimum
(dashed line) infection fraction (I/N ), respectively. Differ-
ent symbols correspond to different maximum-attack num-
bers s. The average (I/N ) is obtained from 10 simulations
where the virus starts at a randomly chosen mobile-phone
user. For a small OS market share m = 0.03, independently
of what attack strategies (ρ value) that the viruses utilize, they
cannot spread if the maximum-attack number (s) is small
(Fig. 5b). In contrast, for a large OS market share m = 0.30,
a MMS virus can infect a large fraction of susceptible hand-
sets even when the maximum-attack number (s) is as small
as 10, showing that large market share OS handsets are much
more vulnerable (Fig. 5a). These results strengthen the results

in Wang et al. [25], revealing again the crucial role of market
share in the spread of mobile-phone viruses. We also explore
the effect of maximum-attack number (s) in the spread of
MMS viruses. As shown in Fig. 5, the increase of s makes
MMS viruses reach more susceptible handsets. This shows
that the maximum-attack number (s) also plays a key role in
the spreading process.

Intuitively, one can see the different characteristics of
topological and scanning behaviors. Topological attacks
always reach active phone numbers but they are sometimes
trapped in isolated clusters of the underlying fragmented call
graph. In contrast, scanning has a much lower probability
to reach active phone numbers, but just a few of them can
link the isolated clusters together. As depicted in Fig. 5a, for
an OS with high market share, when the maximum-attack
number (s) is small, MMS viruses with more topological
attacks can infect more phones. This is because given the
small maximum-attack number, scanning has a limited abil-
ity to reach active phone numbers. For a large maximum
attack number (s = 50), MMS viruses with a random attack
probability ρ ≈ 0.6 can potentially cause the most dam-
age. This situation occurs because with a large s, topolog-
ical attacks can be ineffective by reaching already infected
phone numbers. In Fig. 5b, we find that MMS viruses with a
big random attack probability ρ can infect more susceptible
handsets in an OS with a low market share m = 0.03. This
can be explained by the scanning viruses’ ability to connect
isolated clusters. However, pure scanning may result in the
failure of spread due to its low probability to reach active
phone numbers.
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Fig. 5 Spread behavior using the naive viral spread model

According to Fig. 5, under specific conditions of OS mar-
ket share and maximum-attack number, the combination of
topological and scanning behaviors in mobile virus can cause
the most damage. Generally, we notice that MMS viruses
with a high scanning rate are more dangerous for an OS with
low market share, while MMS viruses with a low scanning
rate are more dangerous for an OS with high market share.
These findings can be addressed by the topological prop-
erties of the underlying call graph. As depicted in Fig. 6,
given that there is already a giant component in the call graph
formed by the handsets using a high market share OS, attacks
with scanning behavior are not able to help significantly
increase the size of the giant component. Furthermore, when
the maximum-attack number (s) is limited (small), scanning
will create too many ineffective attacks that make the virus
fail to spread. For an OS with low market share (m = 0.03),
no giant component exists in the call graph (Fig. 6), making
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Fig. 6 The distribution of cluster sizes in the call graph

the effect of scanning in connecting isolated communities
more prominent. Thus, we find that MMS viruses with high
scanning rate are more effective for an OS with low market
share. The different spreading patterns of MMS viruses in
OSs with high and low market shares can be explained by
the different structural properties of the call graphs formed
in the two situations. Interestingly, in next section, we also
find similar results in the temporal volume-based spread
model.

In this section, our simulations provided an indication of
the values for market share as well as maximum-attack num-
ber in which the mobile-phone base becomes susceptible to
global epidemics. Unfortunately, this is not the entire story
as viruses are being written to be more stealth to detection. In
the next section, we delve into a spread mode that attempts to
be stealth by using the patterns in MMS volume on different
times of the day and different days of the week.

3.3 Temporal volume-based viral spread (stealth mode)

Given that the pattern of people sending MMS can be ana-
lyzed and predicted, and a MMS virus may utilize latent peri-
ods of usage to avoid detection by the phone providers. One
of the common ways virus can do the above is by using an
approach based on the time of the day and day of the week,
as well as limiting the virus’ attack frequency. Therefore,
estimating the real danger posed by these kinds of viruses
becomes an important problem. In the model proposed here,
MMS viruses spread solely during the daytime according
to the temporal MMS volume pattern—during the day the
volume of messages make detection of virus harder. We cal-
culate the probability of the infected phone sending out a
viral message each 2 min [3]. For example:
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1. If 2 % of the weekly MMS volume is generated between
6 and 8 pm on Tuesday and each infected phone sends
out one viral MMS per day on average (T = 1 day), an
infected handset would send out 7 viral MMSs per week.
Thus, the infected handset has a probability of 7×0.02 =
0.14 to send out a viral MMS between 6 and 8 pm on
Tuesday.

2. Between 6 and 8 pm (2 h), there are 62-min time steps,
and thus, we get that the infected handset has a probability
of 0.14/60 = 0.0023 to send out a viral MMS in each
2-min during 6 pm and 8 pm on Tuesday.

In the temporal, volume-based spread model, we set
s = 100 and s = 1,000 for the high market share case
and low market share case, respectively, because these val-
ues have been shown to be the most dangerous in the study
of worst-case scenario. In Fig. 7, we predict the amount

of spreading (I/N ) for MMS viruses using different aver-
age attack periods T . The different symbols in Fig. 7 show
the results under different values of T . Figure 7a–d corre-
sponds to four scenarios, respectively: (a) high market share
m = 0.30, low scanning rate ρ = 0.2. (b) high market share
m = 0.30, high scanning rate ρ = 0.8. (c) low market share
m = 0.03, low scanning rate ρ = 0.2 (d) low market share
m = 0.03, high scanning rate ρ = 0.8. The pictures show
the ratio of infected handsets (I/N ) decreases with the attack
frequency, revealing that the average attack period T controls
the speed of a MMS virus’ spread.

An important question we would like to answer is whether
MMS viruses could infect a large population of susceptible
handsets without being detected by the phone provider. We
can see in Fig. 7 the smaller the average attack period T
the faster the virus spreads but that would make it very eas-
ily detectable. The dashed lines with different colors mark
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Fig. 7 The spreading behavior of MMS viruses under the monitoring of phone providers. The dashed line corresponds to the time that a MMS
virus is detected
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the time when MMS viruses utilizing different attacking fre-
quencies are detected by the phone provider via an abnormal
MMS volume check. At the time of being detected, the over-
all volume of the viral MMS exceeds the threshold volume
�V (Fig. 2). For example, if a MMS virus infects the hand-
sets with an OS market share m = 0.30 and uses a scanning
rate ρ = 0.2, a maximum-attack number s = 100 and an
average attack period T = 12 h, it can infect 15 % of the
overall susceptible handsets (approx. 0.27 million handsets)
in 37 days without being detected (circles in Fig. 7a).

In Fig. 8, we show the ratios of infected handsets when
the virus is detected for different average attack period T .
We find that under phone provider’s monitoring (using the
value �V ), the spread of MMS viruses is well constrained
independently of what attacking strategies that MMS viruses
use. Interestingly, the spreading patterns show different char-
acteristics for high market share case and low market share
case. Similar to what we found in the naive model, a virus
with low scanning rate ρ is more dangerous for a high market
share OS, and a virus with high scanning rate ρ is more dan-
gerous for a low market share OS (see the circles and squares
in Fig. 8). This result can also be explained by the properties
of the underlying call graphs.

3.4 Containing the spread of MMS viruses

Without having phone providers monitoring the system, a
MMS virus can potentially infect a large fraction of sus-
ceptible handsets in just a few hours [25]. However, in our
simulation, MMS viruses can at most infect 0.55 million
handsets without being detected by the phone provider in
123 days (the red dashed line in Fig. 7a). The long latent
period offers ample time for identifying the virus earlier

by other approaches and deploying antiviral software and
patches. This finding reminds us of an important counter-
measure to protect the communication system, improve our
monitoring ability to detect the virus. We perform the exper-
iments on condition of m = 0.30 and ρ = 0.2, which
corresponds to the experiments performed in Fig. 7a. This
scenario is selected because it is the most dangerous case
we find in the temporal volume-based model. We study
the ratios of infected handsets (I/N ) under new detecting
thresholds 0.75�V, 0.5�V and 0.25�V . Figure 9 quanti-
tatively shows that if phone providers successfully decrease
the detecting threshold �V , the viral spread can be better
restrained. However, one has to be careful with decreasing

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Average Attack Period T (hours)

I/
N

Δ V
0.75ΔV
0.50ΔV
0.25ΔV

Fig. 9 The ratio of infected handsets I/N when the virus is detected
in the scenario described in Fig. 7a with improved monitoring ability
of phone providers
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this threshold because it may lead to false positives. One
should allow for some flexibility in the �V so that users can
change their pattern of MMS usage.

We next study the effect of patches installations in miti-
gating the damages. Again we perform the experiments on
scenario with m = 0.30 and ρ = 0.2. In this simulation, an
infected handset changes to removed state (R) by installing a
patch after a certain time period from 1 to 4 weeks (Figs. 10,
11). We find that installing patches can mitigate the damages
caused by the virus. The faster the infected phones receive the
patches, the better the virus is restrained. Hence, the instal-
lation patches on infected phones in time is also a good way
to restrain the spread of MMS viruses. This installation is
time sensitive and should be done at the earlier stages of the
outbreak whenever possible.

4 Discussion and conclusion

We demonstrated that the addition of random scans to the
behavior of mobile viruses can increase the possibility of
an epidemic outbreak in mobile phones. Interestingly, we
discovered that the topological and scanning behaviors of
MMS viruses cause more damage in high and low market
share OS, respectively. We investigated the interplay between
attack strategies of MMS viruses and abnormal MMS vol-
ume monitoring by phone providers. We found that given
enough time, sophisticated viruses can infect a large frac-
tion of susceptible phones without being detected by phone
providers. Fortunately, independent of the attack strategy
used, the epidemics would still be limited by the market share
of handsets and providers’ monitoring ability. When phone
providers improve their monitoring ability and install neces-
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Fig. 10 The spreading behavior of MMS viruses with patches installed
on infected handsets after a certain period
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Fig. 11 The ratio of infected handsets I/N when the virus is detected
in the scenario described in Fig. 7a with patches installed on infected
phones after a certain period

sary patches on infected phones quickly, MMS viruses can
be better restrained. We believe our findings could provide
mobile-phone providers with a guide to put in place proper
countermeasures to avoid the costly impact of major out-
breaks. Added to a good understanding of the network formed
from connections between users, smart anomaly detection
schemes may be able to prevent mobile phones to become
the next platform for virus writers, hence avoiding the situ-
ation typical in computer systems where virus writers seem
to be winning the battle.
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