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� The one-step synthesis of several β-D/L-arabino- and ribonucleosides was performed in good
yields under reflux or microwave-assisted fusion method. A comparison of the two methods showed
that better yields were obtained using the reflux conditions.
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INTRODUCTION

Over the last four decades, the development of new nucleosides and nu-
cleotides for medicinal uses has had a marked impact on clinical chemother-
apy. Numerous nucleoside analogues have been successfully developed for
the treatment of a variety of diseases, for instance, AIDS, hepatitis B and C,
and various cancers.[1] Glycosylation by the Vorbrüggen reaction has been a
key step in the synthesis of a vast array of diverse nucleosides.[2] Among the
commonly used glycosylation methods are the Vorbrüggen reaction, which
is frequently conducted as a two-step operation, but which can also be per-
formed by combining all reagents and heating[3] or using microwave.[4,5]

Other procedures for the synthesis of pyrimidine nucleosides include glyco-
sylation by a modified Hilbert-Johnson reaction, which is the simplest one
with wide application.[6] The acid-catalyzed fusion of 1,2,3,5-tetra-O-acetyl-D-
ribofuranose and related D-ribofuranose derivatives with various nucleobases
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provide β-D-ribonucleosides in variable yield[7] is another procedure that is
often used.

Surface-mediated solid phase reactions are of growing interest because
of (1) they have an environmentally friendly processes when compared to
conventional reaction conditions, and (2) they have advantages such as ease
of set up, mild conditions, rapid reactions times, selectivity, increased prod-
uct yields, and low cost. In an effort to develop new practical and economical
catalysts, we and others have recently investigated the use of natural phos-
phate (NP) alone or doped NP in various chemical transformations.[8] These
types of catalysts represent an important environmentally friendly alterna-
tive to reactions using otherwise toxic and expensive reagents as shown by
the many studies that promote the use of NP[9] as a catalyst. Recently, we
reported[10] several organic transformations catalyzed by NP doped with KI
or I2 as a solid support, which is very inexpensive, readily prepared in the
laboratory, and can be stored for a long time without any significant loss of
catalytic activity. As a part of our continuing effort to explore the catalytic po-
tential of KI/NP, we revealed that KI/NP efficiently promotes glycosylation
reactions resulting in the stereoselective formation of β-ribonucleosides. In
this report, we compare two N-glycosylation reaction methods: 1) a one-pot
synthesis using conventional heating conditions and 2) a microwave-assisted
fusion reaction.

RESULTS AND DISCUSSION

A first set of experiments was carried out using uracil and 1-O-acetyl-
2,3,5-tri-O-benzoyl-L- arabinofuranose as a model. These preliminary re-
actions, carried out in acetonitrile at 80◦C with excess (1 ml) of N ,O-
bistrimethylsilylacetamide (BSA), and KI/NP as catalyst, allowed us to eval-
uate and optimize the most efficient catalytic system (Table 1). We observed
that when the amount of protected L-arabinose is increased from 0.25 equiv.
to 0.75 equiv., the yield of nucleoside also increased (Table 1, entries 1–3).

TABLE 1 Optimization of the N-glycosylation of uracil with
1-O-acetyl-2,3,5-tri-O-benzoyl-β-L-arabinofuranose reaction conditions

Entry Sugar Catalyst Yield (%)

1 0.25 equiv. KI/NP 43
2 0. 5 equiv. KI/NP 50
3 0.75 equiv. KI/NP 80
4 0.75 equiv. KI/Al2O3 30
5 0.75 equiv. KI/SiO2 18
6 0.75 equiv. KI/C 12
7 0.75 equiv. KI/Mont K10 40
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SCHEME 1 General condition for N-glycosylation. Conditions: BSA/KI/NP/CH3CN, reflux, MW,
BH = U, T, 6-AZAU.

Similar experiments carried out in the presence of KI/Al2O3, KI/SiO2, KI/C,
and KI/Montmorillonite K10 revealed that these gave relatively low yields of
the nucleoside (Table 1, entries 4–7). It should be noted that the workup in-
volves only filtration before evaporation of the solvent, and both the solvent
and the catalyst could be easily recovered after completion of the reaction.
To confirm the effectiveness of the catalyst, the N-glycosylation was carried
out using trimethylsilyl iodide (TMSI)/hexamethyldisilazane (HMDS) or
BSA instead of KI/NP/HMDS or BSA, decreased yields were obtained as
shown in Table 2.

Next, in order to extend the applicability of the present reaction, the
glycosylation reactions listed in Table 3 (Scheme 1) were carried out. In every
case, the desired β-nucleoside was obtained in good yield. Such a favorable
combination of stereoselectively (β for D/L-ribonucleosides) and high yields
has not been reported in the N-glycosylation utilizing KI/NP as catalyst.

The proposed mechanism is depicted in Scheme 2 silylated uracil and
excess of BSA react with KI/NP to give TMSI.[11] The latter then reacts with
1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose to afford 2,3,5-tri-O-benzoyl-
α-D-ribofuranosyl iodide (A). Then, the silylated base reacts with iodo sugar
to yield the desired nucleosides with β-orientation at the anomeric carbon
(Scheme 2). It is well known that Lewis acids activate the anomeric center in

TABLE 2 TMSI/BSA or HMDS catalyzed N-glycosylation reaction of uracil with
1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose

Entry Uracil TMSI Silyl agent Yield (%)

1 0.892 mmol 0.8 equiv. (0.1 ml) HMDS 42
2 0.892 mmol 0.8 equiv. (0.1 ml) BSA 48
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SCHEME 2 Glycosylation reaction mechanism using 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose as
starting material with a participating group at C-2.

peracylated furanose and pyranose sugars leading to the formation of a gly-
cosidic linkage having the 1,2-trans configuration.[2,3] The high selectivity in
the glycosylation reactions using Lewis acids (SnCl4, TMSOTf) is attributed
to the neighbouring group effect of the C-2 substituent via formation of an
acyloxonium ion with concomitant stabilisation of the positive charge on C-1.
This also results in effective blockage of one face leading to 1,2-trans glycosy-
lation. Because of its nonparticipating group at C-2, we then decided to use
1-O-acetyl-2,3,5-tri-O-benzyl-β-D-ribofuranose as a starting material directly
in a reaction with silylated uracil. The reaction was carried out under the
same conditions as above. The exclusive formation of the β-anomer serves
as a proof that the intermediate in these reactions is 2,3,5-tri-O-benzoyl-α-D-
ribofuranosyl iodide (A) (Scheme 2) or 2,3,5-tri-O-benzyl-α-D-ribofuranosyl

TABLE 3 KI//NP/BSA catalyzed N-glycosylation reaction of nucleobases with
1-O-acetyl-2,3,5-tri-O-benzoyl D/L-pentofuranose

Nucleoside Sugar Nucleobase Reflux% Fusion%

1 D-ribose Uracil 70 51
2 L-ribose Uracil 55 54
3 D-ribose Thymine 72 50
4 L-ribose Thymine 60 60
5 D-ribose 6-azauracil 52 40
6 L-ribose 6-azauracil 56 43
7 D-arabinose 6-azauracil 60 35
8 L-arabinose 6-azauracil 60 40
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SCHEME 3 Glycosylation reaction mechanism using 1-O-acetyl-2,3,5-tri-O-benzyl-β-D-ribofuranose as
starting material with non-participating group at C-2.

iodide (C) (Schemes 3 and 4). On the other hand, when trimethylsilyl io-
dide (0.8 equiv.) was used as a coupling reagent instead of KI/NP (Table 2,
entries 1 and 2), the yield of nucleoside decreased. All the expected nucleo-
sides were characterized by 1H and 13C NMR and are in agreement with the
literature.[12]

Our model reaction to test the N-glycosylation with microwave acti-
vation was the reaction of 6-azauracil with 1-O-acetyl 2,3,5-tri-O-benzoyl-L-
ribofuranose. Preliminary reactions carried out in acetonitrile (0.5 ml) with
HMDS (0.5 ml) and KI/NP as catalyst under microwave activation in a multi-
mode microwave reactor (microwave frequency −2.45 GHz, maximum of
microwave power 1150 W), for 30 minutes of discontinuous microwave irra-
diation at 20% power allowed us to evaluate and optimize the most efficient
catalytic system. The reaction was initially carried out in an open Erlenmeyer
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SCHEME 4 Glycosylation reaction using 1-O-acetyl-2,3,5-tri-O-benzyl-β-D-ribofuranose as starting mate-
rial.
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flask over 30 minutes. Changing the irradiation time was found to influence
the yield. When the reaction time was shorter or longer than 30 minutes,
lower yields were obtained. Therefore, 30 minutes was the optimal reaction
time for this reaction (Table 3).

CONCLUSIONS

In summary, we describe two simple, efficient, and eco-friendly methods
for the synthesis of D- and L-pyrimidine arabino and ribonucleosides using
inexpensive and readily available catalyst (KI/NP). We showed that the syn-
thesis of pyrimidine nucleosides using Vorbrüggen type reaction conditions
gave better yields with conventional heating than with microwave-assisted
fusion.

EXPERIMENTAL

General Remarks

The nuclear magnetic resonance (NMR) spectra were recorded on a
Bruker spectrometer (AC 300 MHz). Chemical shifts are reported as δ values
(ppm) relative to trimethylsilane (TMS) as a standard and the coupling
constants J values are given in Hz. FAB mass spectra were recorded on
a Varian MAT 311A spectrometer. Thin layer chromatography (TLC) was
performed on 60 F254 precoated plastic plates silica gel (Merck, Darmstadt,
Germany). Column chromatography was performed on silica gel (30–60
µm). All solvents were distilled and dried before using.

General Experimental Procedure

1. Reflux Method
A suspension of uracil (0.892 mmol, 100 mg) in BSA (1 ml), ammo-

nium sulfate (catalytic amount, 5 mg), and acetonitrile (2.5 ml) was heated
at reflux until a clear solution was obtained (30 minutes). To this solu-
tion, was added 1-O-acetyl-2,3,5-tri-O-benzoyl-β-L-ribofuranose (0.670 mmol,
336 mg, 0.75 equiv.) and KI/NP (422 mg, 0.8 equiv. of KI) and the mixture
was heated (80◦C) for 3 hours. The resulting suspension was filtered and the
precipitate was washed with dichloromethane. The filtrate was evaporated,
and the residue was purified by column chromatography resulting in the
desired nucleoside (Table 3).

2. Fusion Method
To a mixture of uracil (0.892 mmol, 100 mg) ammonium sulfate (cat-

alytic amount, 5 mg), 1-O-acetyl-2,3,5-tri-O-benzoyl-β-L-ribofuranose (0.670
mmol, 336 mg, 0.75 equiv.) and KI/NP (422 mg, 0.8 equiv. of KI) were
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added BSA (0.5 ml) and acetonitrile (0.5 ml). The open flask was placed
in a beaker containing neutral alumina, and the mixture was heated in a
microwave multi-mode reactor (170◦C, 160 W) for 30 minutes. The result-
ing black solid was suspended in CH2Cl2 and the insoluble material was
filtered off. The filtrate was evaporated and residue was purified by column
chromatography resulting in the desired nucleoside (Table 3).

1-(2′,3′, 5′-Tri-O-benzoyl-β-L-ribofuranosyl)-6-azauracil (6). Rf: 0.65
CH2Cl2/MeOH (9/1 v/v). 1H NMR(CDCl3) δ(ppm): 4.40 (m, 2H, H5′),
4.90 (m, 1H, H4′), 5.65 (m, 1H, H3′), 5.80 (m, 1H, H2′), 6.38 (d, 1H, H1′β,
J = 5.4Hz), 7.44 (s,1H, H5), 7.40–8.10 (m, 15H, Harom, Bz), 10.40 (s, 1H,
N-H). 13C NMR (CDCl3) δ(ppm), 63.66 (C5′), 71.38 (C4′), 75.09 (C3′),
79.99 (C2′), 88.00 (C1′β), 128.43–132.70 (Ph); 135.36 (C5), 149.26 (C4),
155.93 (C2), 165.05- 168 (PhCO). FAB-MS [M+H] + 558.

1-(2′,3′, 5′-Tri-O-benzoyl-α-L-arabinofuranosyl)-6-azauracil (8). Rf: 0.62
CH2Cl2/MeOH (9/1, v/v). 1H NMR (CDCl3) δ (ppm): 4.55(m, 2H, H5′),
4.85 (m, 1H, H4′), 5.86 (dd, 1H, H3′, J = 4.2 Hz, 3.3 Hz), 6.05 (m, 1H, H2′),
6.50 (d, 1H, H1′α, J = 3.3 Hz), 7.40 -8.00 (m, 15H, Harom, Bz) 7.80 (s,1H,
H5), 10.30 (s, 1H, N-H). 13C NMR(CDCl3) δ(ppm): 63.78 (C5′), 77.49 (C3′),
80.73 (C2′), 83.28 (C4′), 90.19 (C1′α), 128–133.9 (Ph), 147.8 (C5), 155.4
(C2), 155.9 (C4),165.2- 165.7 (PhCO). FAB-MS [M+H] + 558.
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