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Abstract
Mobile phone location data is a newly emerging data source of great potential to support

human mobility research. However, recent studies have indicated that many users can be

easily re-identified based on their unique activity patterns. Privacy protection procedures

will usually change the original data and cause a loss of data utility for analysis purposes.

Therefore, the need for detailed data for activity analysis while avoiding potential privacy

risks presents a challenge. The aim of this study is to reveal the re-identification risks from a

Chinese city’s mobile users and to examine the quantitative relationship between re-identifi-

cation risk and data utility for an aggregated mobility analysis. The first step is to apply two

reported attack models, the top N locations and the spatio-temporal points, to evaluate the

re-identification risks in Shenzhen City, a metropolis in China. A spatial generalization

approach to protecting privacy is then proposed and implemented, and spatially aggregated

analysis is used to assess the loss of data utility after privacy protection. The results demon-

strate that the re-identification risks in Shenzhen City are clearly different from those in

regions reported in Western countries, which prove the spatial heterogeneity of re-identifica-

tion risks in mobile phone location data. A uniform mathematical relationship has also been

found between re-identification risk (x) and data (y) utility for both attack models: y = -axb+c,
(a, b, c>0; 0<x<1), where the exponent b increases with the background knowledge of the

attackers. The discovered mathematical relationship provides data publishers with useful

guidance on choosing the right tradeoff between privacy and utility. Overall, this study con-

tributes to a better understanding of re-identification risks and a privacy-utility tradeoff

benchmark for improving privacy protection when sharing detailed trajectory data.
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Introduction
As a routine procedure, mobile phone operators collect users’ location data with certain sam-
pling methods for billing, troubleshooting, or other technical measurement purposes. The abil-
ity to obtain massive numbers of individual trajectories automatically and remotely opens up
unprecedented opportunities to study human mobility with a large sample size at low cost [1].
With mobile phone location data, a number of studies over the past few years have made prog-
ress in formulating universal human mobility patterns [2–4], predicting human mobility [5–6],
estimating origin-destination (OD) flows [7–9], modeling human movement [10], revealing
population dynamics and hot spots [11–12], identifying important activity places [13], and
mining daily activity structures [14]. These studies have suggested that mobile phone location
data have the potential to become a major data source to study human mobility for transporta-
tion, urban planning, epidemiology, and sociology research.

However, the rich spatio-temporal information embedded in such trajectory data may result
in privacy breach. Two recent studies have pointed out that from anonymized mobile phone
location datasets, and with only a little outside information, the uniqueness of individual trajec-
tories can cause identity exposure (re-identification) for a considerable number of mobile users.
The MobiCom 2011 study proposed an attack model based on the topN locations and demon-
strated that at the spatial granularity of the mobile sector or mobile cell level, the top two or
three locations frommobile users’ trajectories yielded unique identifications of 10%–50% of
individuals in the United States [15]. The Scientific Report 2013 study proposed an attack
model based on spatial-temporal points and revealed that four randomly selected spatio-tempo-
ral points could uniquely identify 95% of the mobile users in a European country [16].

The severe re-identification risks revealed by these studies and the increasing number of
studies using mobile phone location data impel the community to engage in a deeper discussion
about the right way to safeguard privacy when working with these kinds of data [17]. On the
one hand, researchers and policy-makers would like to have detailed trajectory data to learn
important information that would benefit society; on the other hand, data publishers must
apply privacy protection procedures on original data to make sure that sharing the data does
not lead to privacy breach. Researchers have proposed some approaches to protecting trajectory
privacy [18–21], such as adding dummy data [22] or suppressing or generalizing sensitive infor-
mation [23–27]. However, existing research on other datasets has suggested that the more pri-
vacy we protect, the more data utility will be lost [28–32]. Generally, it is challenging to find an
optimal tradeoff between these two conflicting goals. In terms of data utility for human mobility
research, some studies have aimed to analyze the mobility patterns of a particular individual,
such as identifying activity locations with a spatial resolution of hundreds of meters [13–14]. In
this case, the changes to individual traces introduced by a privacy protection procedure such as
location perturbation are likely to have a significant impact on the results of the analysis. On the
other hand, many policy-making applications focus only on aggregated mobility patterns such
as OD flows between regions with a spatial resolution of thousands of meters, a fact which likely
enlarges the space for compromise between privacy protection and data utility.

To deepen our understanding of the privacy risks in mobile phone location data and to help
develop useful privacy protection approaches when sharing such data, this study uses an anon-
ymized mobile phone location dataset from a major city in China to address three issues. First,
do the high re-identification risks in mobile phone location datasets from the United States [15]
and a European country [16] also apply to a major city in China that has a different population
size, culture, and lifestyle? To the best of our knowledge, a comparative study across countries
has not yet been published. Second, how do generalization-based approaches, as suggested in
[15] and [16], reduce re-identification risk and affect human mobility analysis, especially at the
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aggregated analysis level of policy-making? Third, this study seeks to explore the possibility of a
quantitative relationship between re-identification risk and data utility for aggregated mobility
analysis. If there is such a relationship, what is the math formula? Answers to these questions
could help to estimate re-identification risks in different regions and to understand the tradeoff
between privacy risk and data utility, thus making it possible to design better privacy protection
approaches and to improve sustainable use of mobile phone location data.

Materials and Methods

Dataset
Because previous studies [15] and [16] conducted their privacy risk measurements based on
call detail records (CDR), which are a common type of mobile phone location dataset, the
same data type was chosen for this study to enable rigorous comparison of results. The local
transportation department provided the CDR dataset and permitted this research and publica-
tion of its results. Each CDR contains the location and time when a user initiates or receives a
call, thus providing an individual trajectory data source. The CDR dataset used in this study
was collected by a major telecom operator in Shenzhen City, a metropolis with the highest pop-
ulation density and fourth highest economic output among Chinese cities (http://english.sz.
gov.cn/). Shenzhen City covers an area of 1952 km2, where there are 3036 base stations owned
by the telecom operator. This CDR dataset includes call records of 4.57 million mobile users in
2011 (nearly 30% of the total population) and covers a span of 34 days, including 25 weekdays
and 9 weekend days. Each entry in the dataset is made up of six attribute fields (S1 Table): (ID)
the user’s ID (encrypted by the operator), (t) time when the call was connected, (lat, long) lati-
tude and longitude of the user’s connected base station, (f) a flag representing whether the call
was initiated or received, and (reg) the regional phone code. This dataset itself uses three meth-
ods to protect privacy: encrypting users’mobile phone numbers; generalizing every user’s pre-
cise location with a base station coverage area; and inhibiting exposure of user trajectories
through sparse location sampling only triggered by call events.

Re-identification Risk Evaluation
This study defines individual privacy risk as the probability of being re-identified. To compare
privacy risks in different geographical regions, the same methods proposed in [15] and [16]
were used to evaluate the privacy risk in this dataset. These methods include two attack models
using the top N locations [15] and spatio-temporal points [16] as quasi-identifiers.

The top N locations refer to the locations observed to be most frequently visited by a mobile
user. This model assumes that attackers have background knowledge of a target’s top N loca-
tions. In reality, the top N locations are usually important places for residents. For instance, the
top two locations likely correspond to a user’s home and work places, and the third top location
is likely to be a kindergarten, school, or shopping mall that a user often visits. In today’s infor-
mation society, it is not difficult for attackers to obtain such outside knowledge. Therefore, the
attack scenario using the top N locations is reasonable and generally applicable. Specifically, a
person’s re-identification risk is quantified by the k-anonymity value (k2N�), of which k repre-
sents the size of an anonymity set that includes users with the same top N locations [24]. The
re-identification risk decreases with the size of the anonymity set k. In the extreme case where
k equals 1 (i.e., there is only one user in the anonymity set), the re-identification risk of this
user reaches 100%. The top N location model also has another two extended forms: the unor-
dered top N locations, and the variable-length top locations. The unordered top N location
model treats top locations identically regardless of their order. The variable-length top location
model calculates the number of “preferred” locations for each user, and the number of top
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locations N varies for each user. For details of these two extended forms, interested readers can
refer to [15]. Besides, the top N location model only works for frequent call users. For mobile
users who made or received very few calls during the observation period, it is difficult to infer
their top N locations accurately. Study [15] defines frequent call users as mobile users who
made or received at least one call per day in average.

The second attack model represents a user U’s trace by TraceU = {lat1-long1-t1, lat2-long2-t2,
lat3-long3-t3,. . .. . . latn-longn-tn}, where the spatio-temporal point (lati-longi-ti) represents the
location of U at time ti and n is the number of observed spatio-temporal points in the trajec-
tory. This model supposes that attackers know p spatio-temporal points of the target and simu-
lates this uncertain background knowledge by randomly selecting p points. This attack
assumption also has wide applicability, especially with the extensive use of mobile social media
such as Twitter that can be used to acquire self-reported whereabouts. The k-anonymity
method is also used to quantify privacy risks. In this case, k represents the size of the anonymity
set composed of users with the same selected spatio-temporal points. Similarly, users in an ano-
nymity set with size k equals to one can be 100% re-identified. This spatio-temporal point
model works for all mobile users.

A uniquely identified population ratio x (x = population with k equal to 1/total population)
has been suggested as a useful indicator to represent the re-identification risk in a population
[16]. This study therefore uses this identified population ratio x to evaluate the impact of pri-
vacy protection on privacy risk reduction and to formulate the relationship between privacy
risk and data utility.

Privacy Protection Procedure
This study proposes a privacy protection method which reduces the spatial precision of a user’s
location, which is a generalization-based approach. As Fig 1a shows, a base station coverage area
can be represented by a Voronoi polygon. Many factors can influence the coverage area, includ-
ing its surrounding topography and buildings and the height and angle of its antennas. If only
the locations of base stations are available, the best approximation is to use Voronoi polygons
[2,5,16]. Then a grid with a given spatial aggregation resolution is created for the study area (Fig
1b). Base stations with centroids located in the same grid block are aggregated (Fig 1c), and the
aggregated base station is treated as a new spatial unit for data publication (Fig 1d). For instance,
as shown in Fig 1, an original CDR record at base station 2 (lat2, long2, t) will be changed to
({(lat1, long1), (lat2, long2), (lat3, long3)}, t). With a larger location range, mobile users will more
likely to co-locate with others, and their trace uniqueness can be expect to decrease.

To measure the impact of spatial aggregation resolution on privacy protection systemati-
cally, the base stations were aggregated into a series of grids ranging from 200 m × 200 m to
2800 m × 2800 m with an increment of 200 m. S1 Fig shows the results of this aggregation.

Fig 1. Privacy protection method for mobile phone location dataset by aggregating base stations. (a) Original base stations. (b) Grid creation. (c)
Base station aggregation. (d) Aggregation results.

doi:10.1371/journal.pone.0140589.g001
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Data Utility Evaluation
Because an OD flow matrix is a basic input for many transportation models and is of prime
importance for studies based on human mobility, generation of an OD flow matrix was chosen
here as a representative kind of aggregated analysis among various data utilities for mobile
phone location data.

To measure data utility loss, the differences between two OD flow matrices derived from the
dataset before and after privacy protection were assessed. Then data utility loss was calculated
as the percentage of the total flow difference over the total flow during a time period T (Eq 1):

utility loss ¼
PN

i¼1

PN
j¼1 jODij � OD0ijjPN
i¼1

PN
j¼1 ODij

ð1Þ

where ODij is the original flux from region i to region j during T, OD0ij is the flux from region i
to region j during T after privacy protection, and N is the number of regions.

As the regional unit in Eq 1, traffic analysis zones (TAZs) were chosen. TAZs are designed
for mobility studies, usually by planning practitioners based on regional socioeconomic charac-
teristics, and many transportation models require TAZ-based OD flow matrices ODTAZ as
inputs. TAZs may have different spatial resolutions according to application requirements. To
compare the impacts on data utility of different spatial resolutions, this study used two sets of
TAZs, one having 1112 TAZs with an average radius of 636 meters, and the other having 491
TAZs with an average radius of 994 meters. The radius of a TAZ is measured by the radius of a
circle with the same area. The two sets of TAZs are provided by City Urban Planning, Land &
Resources Commission of Shenzhen Municipality (http://www.szpl.gov.cn/). To represent the
impact on whole dataset, the time period T is set as the entire time span of the CDR dataset
(i.e., 34 days).

For the OD flow matrix before privacy protection, the first step was to apply the concept of
transient-origin-destination [12] to identify movements between base stations. This method
identifies a movement by searching for two consecutive non-identical locations from a trajec-
tory and sets the two locations as origin and destination respectively according to their tempo-
ral order. This study named these OD flows as All flows-Raw, which represent the mobility
patterns inherent in a CDR dataset. Because call events have been proved to be non-uniformly
distributed over time [33] and a CDR dataset contains only a user’s locations when a call event
happens, the CDR is sparsely sampled, and this sampling method greatly influences the accu-
racy of estimating OD flows. For instance, a person may make a first call at place A in the
morning, then make several trips without any calls, and finally make a second call at place B in
the evening. The OD A!B derived from her/his CDR obviously provides wrong travel infor-
mation for mobility studies. Moreover, in mobile networks, signal transitions between neigh-
boring base stations will produce false short-distance movements [14]. To reduce these two
types of errors in All flows-Raw, travel time of a single trip was used as a constraint to refine the
identified movements. Based on a travel dairy of Shenzhen compiled only six months before
the collection date of the mobile dataset used in this study, 98% of trips have a travel time
between 5 minutes and 100 minutes (as shown in S2 Fig). This study excluded the movements
with time intervals less than 5 minutes or greater than 100 minutes, and named the remaining
OD flows as All flows-Constraint. Then the spatial unit of the OD flow matrix was converted
from base stations to TAZs. The flow ODTAZ

ij from TAZ i to TAZ j is generated by Eq 2:

ODTAZ
ij ¼

XM

k¼1

XM

l¼1

Ak
i

Ak
� A

l
j

Al
� ODBS

kl ð2Þ
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where base station k with area Ak has an overlapping area Ak
i with TAZ i, base station l with

area Al has an overlapping area Al
j with TAZ j, ODBS

kl is the flux from base station k to base
station l, andM is the number of base stations.

After privacy protection, suppose there are S aggregated base stations. The first step is to
create flow ODAgrBS

pq from aggregated base station p to q using Eq 3. Then Eq 4 is used to gen-
erate the TAZ-based OD0TAZ

ij after privacy protection. Finally, Eq 1 is used to calculate the util-
ity loss:

ODAgrBS
pq ¼

XU

u¼1

XV

v¼1

ODBS
uv ð3Þ

where aggregated base station p includes U base stations, aggregated base station q includes V
base stations, and ODBS

uv is the flux from base station u to base station v:

OD0TAZij ¼
XS

p¼1

XS

q¼1

Ap
i

Ap
� A

q
j

Aq
� ODAgrBS

pq ð4Þ

where aggregated base station p with area Ap has an overlapping area Ap
i with TAZ i, and

aggregated base station q with area Aq has an overlapping area Aq
j with TAZ j.

Moreover, the Pareto principle (also known as the 80–20 rule) broadly exists in transporta-
tion systems. This principle states that roughly 20% of road segments (i.e., major roads) carry
80% of the total traffic flow. The Pareto rule suggests that a small proportion of OD pairs con-
tributes most of the flows, and these OD pairs are more important than the remaining ones in
a transportation system. Obviously, there exist some major flows that received impact from pri-
vacy protection procedures should be particularly examined in the results analysis. Because the
definition of major flows can be various and may affect our analysis results, this study adopted
three ways to define major flows. The first one was designed simply according to the Pareto
principle. This study ranked OD pairs by their flux from high to low and selected the top 80%
of flows as major flows, namedMajor flows-Pareto. We found that the top 80% of flows was
contributed by less than 2% of OD pairs (see S3 Fig for details), which is an extreme example of
the Pareto principle. The second definition of major flows followed the network’s backbone
proposed by the study [34]. It filters a network’s backbone from a weighted network by consid-
ering local heterogeneity and local correlations among relevant edges, so that it does not belittle
small-scale interactions. This study names the backbone of networks asMajor flows-Backbone.
The third one defines major flows as the flows that start from or end with hotspots based on
the study [35]. This study defined the hotspots as TAZs whose population are higher than a
threshold. We estimated the population of a TAZ by summing up hourly caller volume in this
TAZ through the study period. The population threshold is derived from the Lorenz curve of
the population distribution [36]. This study names the flows selected by the third definition as
Major flows-Hotspot. For details of the second and third definitions, interested readers can
refer to [34–36]. This study calculated the above three types of major flows respectively based
on All flows-Raw and All flows-Constraint, and labeled them with ‘-Raw’ and–‘Constraint’ in
the results analysis.

Results and Discussion

Re-identification Risk
For the attack model using the top N locations, the size of the anonymity set (k-anonymity
value) was calculated for each frequent call user, and the k-anonymity value was plotted for the
proportion of users with K�k (Fig 2). The three curves representing the top one, two, and
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three locations show that the k-anonymity value in general decreases with increasing number
of top locations, which demonstrates the increased re-identification risk with additional back-
ground knowledge about top locations. As illustrated in Fig 2a and Table 1 (see “For frequent
call users”), almost no users are uniquely identified by their top one location, which means that

Fig 2. Size of anonymity set for the top N locations. (a) Top N locations ordered. (b) Top N locations unordered. (c) Top two locations ordered and
unordered.

doi:10.1371/journal.pone.0140589.g002

Table 1. Percentage of population with k-anonymity value = 1 in Shenzhen City and the United States.

User group Region Top 1 location (%) Top 2 locations (%) Top 3 locations (%)

Frequent call users Shenzhen ~0 17 49

United States * ~0 15 50

All mobile users Shenzhen ~0 6 18

United States* ~0 12 40

* The results in the United States for frequent users are reported in [15]. The results in the United States for all users are not reported in [15], but were

calculated by the authors of this study based on the reported percentage of users with k = 1 among frequent users and the percentage of frequent call

users among all users.

doi:10.1371/journal.pone.0140589.t001
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if only the most frequently visited location is exposed, there is almost nothing to worry about.
However, when the top two and top three locations are revealed, the uniquely identified popu-
lation increases to 17% and 49% respectively. Fig 2b shows the k-anonymity values for the top
one, two, and three locations unordered, and Fig 2c compares the two curves for the ordered
and unordered top two locations. The re-identification risk from the unordered top two loca-
tions is nearly 5% less than that from the ordered top two locations. In other words, the addi-
tional background knowledge about the order of the top two locations increases the re-
identification risk for users by approximately 5%. Fig 2c also shows the cases using the vari-
able-length top locations ordered and unordered. The two curves are close to the curves of the
top two locations. When the k-anonymity value is smaller than 10–20, the curves of the vari-
able-length top locations are located below the curves of the top two locations. As the size of
the anonymity set increases, the two curves of the variable-length top locations move higher
than the curves of the top two locations, and gradually the two curves become identical. These
results indicate that most users with relatively high re-identification risks (higher than 1/20–1/
10) have only two preferred locations, and most users with relatively low re-identification risks
have only one preferred location.

The k-anonymity values for the 1st, 5th, 10th, and the 50th percentiles of frequent call users
were then compared in the results of this study and those for the entire United States as
reported in [15] (Table 2). Shenzhen City had a re-identification risk fairly similar to that of
the overall United States in terms of frequent call users. Without results from other regions in
the world, the authors currently consider this consistency to be coincidental.

The percentage of frequent call users with k-anonymity value = 1 was also compared in the
results of this research and in results from various cities in the United States [15] (Table 3). The
percentage of frequent users with k-anonymity value = 1 in Shenzhen is between that of Sacra-
mento and that of Chicago. Study [15] suggests that re-identification risk might be related to the
differences between urban and rural lifestyles. A more urban lifestyle causes more diversified
activities, thus generating smaller anonymity sets. According to this explanation, the degree of
urban lifestyle in Shenzhen might be between that of Sacramento and that of Chicago.

Table 2. k-anonymity value with topN locations (N = 1, 2, 3) in Shenzhen City and the United States.

User group Region Top 1 location (%ile) Top 2 locations (%ile) Top 3 locations (%ile)

1st 5th 10th 50th 1st 5th 10th 50th 1st 5th 10th 50th

Frequent call users Shenzhen 82 246 376 943 1 1 1 38 1 1 1 1

United States 92 220 331 967 1 1 1 9 1 1 1 1

* The results in the United States for frequent users are reported in [15].

doi:10.1371/journal.pone.0140589.t002

Table 3. Percentage of frequent users with k-anonymity value = 1 in different cities (N = 2).

Cities Shenzhen
(China)

Kansas City*
(U.S.)

Sacramento*
(U.S.)

Chicago*
(U.S.)

Los Angeles*
(U.S.)

San Francisco*
(U.S.)

Percent of frequent users with k-anonymity
value = 1 (%)

17 10 15 25 25 30

Population density (persons per mi2) 20,205 1,168 4,660 11,868 12,451 17,246

* The percentages of the population with k = 1 in various cities in the United States are reported in [15]. The population densities of cities in the United

States were estimated based on the 2010 United States census results. They might vary according to the definition of city boundaries.

doi:10.1371/journal.pone.0140589.t003
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These results and discussions are based on frequent call users. If non-frequent call users are
treated as a population with no re-identification risk and the re-identification risk is calculated
for all mobile users, the uniquely identified population in Shenzhen City is only half that in the
United States for the top two locations and less than half for the top three locations (see “For
all mobile users” in Table 1). Shenzhen City has only 37% frequent call users among its mobile
users, whereas United States has 80% frequent call users. The significant higher ratio of inactiv-
ity mobile users in Shenzhen City could be related with several situations, such as mobile users
in Shenzhen City make much fewer calls than in the United States, many Shenzhen mobile
users use more than one telephone number or some telephone numbers have been left nearly
unused. One or several of the above possible reasons lead to lower trajectory exposure and
lower overall privacy risk for mobile users in Shenzhen City than in the United States.

In the attack model using spatio-temporal points, as shown in Fig 3, the population with
100% re-identification risk increases very fast until the number of spatio-temporal points reaches
four. Nearly 75% of the population can be uniquely identified by four spatio-temporal points.
The re-identification risk then shows a convergent trend with a maximum risk of nearly 80%.

As reported in [16], four spatio-temporal points are enough to identify uniquely 95% of
mobile users in a small European country. Study [16] also suggested that their results should
generalize to higher population densities based on the following considerations. On the one
hand, higher population density tends to increase the anonymity set; on the other hand, more
mobile base stations will locate in areas with high population density, thus increasing the

Fig 3. Population with 100% re-identification risk under different number of spatio-temporal points.

doi:10.1371/journal.pone.0140589.g003
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spatial precision of trajectories, which should offset the influence of high population density.
However, the results of this research suggest significantly lower privacy risks in Shenzhen City,
an area very likely having a much higher population density than the small European country.
According to the results presented here, more mobile base stations as a result of higher popula-
tion density might not fully offset the influence of high population density. However, the distri-
butions of mobile base stations and population density used in study [16] are not available, and
therefore the offsetting effect of base station density against population density cannot be eval-
uated. Moreover, as shown in Table 3, the re-identification risks in various cities in the United
States increase with population density. Therefore, according to the results of this study and of
studies [15–16], besides population density, factors such as degree of urban lifestyle must be
considered to explain the spatial heterogeneity of re-identification risks.

Re-Identification Risk Reduction after Privacy Protection
The spatial generalization approach proposed by this study can effectively reduce the re-identi-
fication risks for the top two and three locations, and the re-identification risk declines more
sharply for the top three locations (Fig 4a). When spatial aggregation scale increases to 2800 m,
the uniquely identified population drops from 17% to 1% for the top two locations and from
49% to 12% for the top three locations.

As for the attack model using spatio-temporal points, to illustrate the effect of the spatial
generalization approach on reducing re-identification risk, four and eight spatio-temporal
points were chosen, because they are two critical points on the curve shown in Fig 3. When the
spatial aggregation scale increased to 2800 m, the uniquely identified population dropped from
75% to 40% when using four spatio-temporal points and from 80% to 64% when using eight
spatio-temporal points. The slower rate of decrease when using eight spatio-temporal points
indicates the increased difficulty of reducing re-identification risk by spatial generalization
when attackers know more target footprints.

Data Utility Loss after Privacy Protection
Using OD flow analysis as a data utility, Fig 5 shows that when spatial generalization scale
increases from 200 m to 2800 m, data utility loss significantly increases while the differences
between various data utility measurements gradually expand. When the spatial generalization
scale increases to larger than 1000 m, the impact of privacy protection on major flows becomes
slightly less than that of all flows. Because of the significant importance of major flows in trans-
portation systems, the authors suggest using the major flow curves as a more important refer-
ence in practice. Besides, the data utility loss in an analysis based on TAZs with larger spatial
units (491 TAZs with an average radius of 994 m) is clearly less than that in an analysis based
on TAZs with smaller spatial units (1112 TAZs with an average radius of 636 m). This pattern
can also be found in Figs 6–13 in the next section.

Relationships between Re-Identification Risk and Data Utility
Using the attack models of top N locations and spatio-temporal points, Figs 6–9 and 10–13 pres-
ent the relationships between re-identification risk and data utility loss respectively based on the
original OD flows (i.e. the ‘-Raw’ series) and the OD flows with 5~100 min time constraints (i.e.
the ‘-Constraint’ series). It was found that all the relationships between re-identification risk x
(the percentage of the population with 100% re-identification risk) and data utility loss y for the
two attack models can be expressed by one formula: y = -axb+c (a,b,c>0;0<x<1). All estimators
for a, b, and c are statistically significant (p<0.001), and the values of R2 are more than 0.99 for
all cases (see S2 Table), which indicate the goodness of fit of the proposed function.
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Fig 4. Privacy risk reduction of two privacymodels. (a) Top N locations. (b) Spatio-temporal points.

doi:10.1371/journal.pone.0140589.g004
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The exponent b determines the shape of the curves. When b is between 0 and 1, such as for
the top two locations (Fig 6a), to diminish the re-identification risk (please look at the x axis
from right to left), the cost in data utility of reducing the re-identification risk is relatively low
at the beginning, but gradually increases. When b is close to 1, such as for the top three loca-
tions (the red curve in Fig 6b for 1112 TAZs), the tradeoff between re-identification risk and
data utility loss is close to linear. When b is larger than 1, such as for four and eight spatio-

Fig 5. Data utility loss on analyzing OD flows with spatial generalization resolution. (a) Utility loss based on All flows-Raw with 491 TAZs. (b) Utility loss
based on All flows-Raw with 1112 TAZs. (c) Utility loss based on All flows-Constraint with 491 TAZs. (d) Utility loss based on All flows-Constraint with 1112
TAZs.

doi:10.1371/journal.pone.0140589.g005
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temporal points (Fig 6c and 6d), the cost in data utility for reducing privacy is relatively high at
the beginning and gradually becomes lower. In general, a smaller b implies a larger marginal
utility of the tradeoff for data utility, thus providing an easier way to protect privacy in the
beginning phase that is more helpful in practice.

As shown in Figs 6–13, either for all flows or for major flows, the exponent b increases from
the top two locations to the top three locations, to four spatio-temporal points, and then to
eight spatio-temporal points. This trend indicates an increase in background knowledge of
attackers in these four models and accordingly the increasing difficulty of protecting privacy.

Fig 6. Relationships between privacy risk and data utility using All flows-Raw. (a) Top two locations. (b) Top three locations. (c) Four spatio-temporal
points. (d) Eight spatio-temporal points.

doi:10.1371/journal.pone.0140589.g006
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The uniform relationship between re-identification risk and data utility for the two attack mod-
els also offers a way to compare the two attack models. For example, the slightly larger b in the
four spatio-temporal points model than in the top three locations model indicates a slight
increase in the background knowledge of attackers as well as an increase in the difficulty of pro-
tecting privacy.

This study designed five different data utility measurements for OD flow analysis, including
the raw OD flows, OD flows with time constraints, and three types of major flows. If the raw

Fig 7. Relationships between privacy risk and data utility using Major flows-Pareto-Raw. (a) Top two locations. (b) Top three locations. (c) Four spatio-
temporal points. (d) Eight spatio-temporal points.

doi:10.1371/journal.pone.0140589.g007
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OD flows form a complete set, the others are four types of subsets with different filtering meth-
ods. In terms of the relationship between re-identification risk and data utility loss, our results
show that subsets of OD flows created by a filtering method have the same relationship with
the complete set of OD flows, and the filtering method does not affect the relationship.

Contributions and Future Work
The contributions of this research include the following two aspects. First, this study strength-
ens the argument that spatial heterogeneity exists in the re-identification risks in call detail

Fig 8. Relationships between privacy risk and data utility using Major flows-Backborn-Raw. (a) Top two locations. (b) Top three locations. (c) Four
spatio-temporal points. (d) Eight spatio-temporal points.

doi:10.1371/journal.pone.0140589.g008
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records. Study [15] has demonstrated the spatial heterogeneity of different American cities
under the attack model using the top N locations. Study [16] did not address this issue, but it
inferred a spatial homogeneity under the attack model using spatial-temporal points. The
results of this research clearly show that the re-identification risks of Shenzhen’s mobile phone
users lie between those of Sacramento and those of Chicago and are significantly lower than

Fig 9. Relationships between privacy risk and data utility using Major flows-Hotspot-Raw. (a) Top two locations. (b) Top three locations. (c) Four
spatio-temporal points. (d) Eight spatio-temporal points.

doi:10.1371/journal.pone.0140589.g009
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those in the reported European country when using spatial-temporal points. This study has
therefore demonstrated that spatial heterogeneity not only occurs in the attack model using the
top N locations, but is also valid in the attack model using spatial-temporal points. This finding
raises awareness that the re-identification risks in call detail records vary across regions, and
therefore that methods and institutions of protecting privacy when sharing detailed individual

Fig 10. Relationships between privacy risk and data utility using All flows-Constraint. (a) Top two locations. (b) Top three locations. (c) Four spatio-
temporal points. (d) Eight spatio-temporal points.

doi:10.1371/journal.pone.0140589.g010
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trajectory data should be considered in a local context. Second, a uniform relationship was
found between re-identification risks (x) and the selected data utility (y) for both the top N
location model and the spatio-temporal point model: y = -axb+c (a,b,c>0;0<x<1)where the
exponent b increases with the background knowledge of the attackers and a larger b implies
more difficulty in reducing re-identification risk in the early phase. This relationship offers a
tradeoff reference for other aggregated analyses based on mobile phone location data. It also

Fig 11. Relationships between privacy risk and data utility using Major flows-Pareto-Constraint. (a) Top two locations. (b) Top three locations. (c) Four
spatio-temporal points. (d) Eight spatio-temporal points.

doi:10.1371/journal.pone.0140589.g011
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provides data publishers with useful guidance on choosing the right tradeoff between privacy
and utility.

This study raises several issues that need to be addressed in future work. (1) Based on the
findings of this research and on previous studies [15–16], the spatial heterogeneity of the re-

Fig 12. Relationships between privacy risk and data utility using Major flows-Backborn-Constraint. (a) Top two locations. (b) Top three locations. (c)
Four spatio-temporal points. (d) Eight spatio-temporal points.

doi:10.1371/journal.pone.0140589.g012
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identification risks in call detail records likely comes from many reasons such as phone usage
habits, population density, and lifestyle. To obtain an in-depth understanding of the factors
influencing re-identification risks, it is necessary to investigate the quantitative relationship
between privacy risk in mobile traces and possible influencing factors. (2) The proposed spatial

Fig 13. Relationships between privacy risk and data utility using Major flows-Hotspot-Constraint. (a) Top two locations. (b) Top three locations. (c)
Four spatio-temporal points. (d) Eight spatio-temporal points.

doi:10.1371/journal.pone.0140589.g013
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generalization method is able to reduce re-identification risks in mobile traces. However, the
data utility of generating an OD flow matrix, which is a typical aggregated mobility analysis,
decreases rapidly when this procedure is applied to the dataset. Therefore, efforts are still
needed to improve privacy protection methods for mobile phone location datasets. (3) Besides
aggregated mobility analysis, the impact of privacy protection on analyses at an individual level
requires further study. (4) If data is available in future, a study comparing with other regions
would be worth pursuing.
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