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The recent development of telecommunication networks is producing an unprecedented wealth of information
and, as a consequence, an increasing interest in analyzing such data both from telecoms and from other
stakeholders’ points of view. In particular, mobile phone datasets offer access to insights into urban dynamics
and human activities at an unprecedented scale and level of detail, representing a huge opportunity for
research and real-world applications. This article surveys the new ideas and techniques related to the use of
telecommunication data for urban sensing. We outline the data that can be collected from telecommunication
networks as well as their strengths and weaknesses with a particular focus on urban sensing. We survey
existing filtering and processing techniques to extract insights from this data and summarize them to provide
recommendations on which datasets and techniques to use for specific urban sensing applications. Finally,
we discuss a number of challenges and open research areas currently being faced in this field. We strongly
believe the material and recommendations presented here will become increasingly important as mobile
phone network datasets are becoming more accessible to the research community.
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1. INTRODUCTION

Over the past decade, the development of digital networks has produced an unprece-
dented wealth of information reflecting various aspects of urban life. These digital
traces are valuable sources of data in capturing the pulse of the city in an astonishing
degree of temporal and spatial detail and could be used to make urban systems more
efficient.
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The International Telecommunication Union estimates that at the end of 2011, there
were 6 billion mobile subscriptions, with a global penetration of 87%, and 79% in the
developing world [ITU 2011]. Every mobile phone leaves digital traces while interact-
ing with its infrastructure. Thus, each phone can be seen as a mobile sensor that allows
one to detect the geographic position of the subscriber holder almost in real time. Tele-
com operators are aware of the potential of such data and they have recently started to
experiment with new business models in which they would generate revenues not only
from their final customers (mobile phone users) but also from upstream customers
such as traffic analysis, social networking, and advertising companies. As a result,
they have started sharing aggregated mobile data with various research communities
[Technology Review 2010]. Thanks to that, massive datasets about cell phone users
have been exploited in a variety of urban-related applications, including understand-
ing mobility patterns [González et al. 2008; Isaacman et al. 2010], the use of urban
spaces [Reades et al. 2007], travel demand during special events [Calabrese et al.
2010], social network structure [Onnela et al. 2007], and geographical dispersal of mo-
bile communications [Lambiotte et al. 2008]. More recently, research challenges have
also been proposed by Orange,1 Telefonica,2 and Telecom Italia,3 where operators have
released telecommunication data to the wide research community, which are now ac-
cessible and studied by hundreds of research laboratories around the world. Clearly,
using mobile phone data for urban sensing could have a great impact in developing
countries, where specific sensors (such as traffic sensors) are rarely put in place. A
recent primer from the UN Global Pulse organization summarizes the latest research
examples addressing developing countries.4

While several research works have been conducted on using different types of mobile
phone network data for specific purposes, each work has been done on a specific fla-
vor of the data (different accuracy, granularity, aggregation level), and so it is difficult
to understand whether a particular technique could indeed be applied to a different
dataset and what results that would provide. At the same time, if a researcher or
practitioner is interested in building a specific urban sensing application, it is difficult
for him or her to figure out which particular mobile phone network dataset would be
the most suitable and which techniques should be applied to the data to achieve the
specific goal. This article surveys the new ideas and techniques related to the use of
telecommunication data for urban sensing, with the specific goal to help researchers
and practitioners navigate the variety of mobile phone network datasets and associated
processing techniques that have been presented in the literature to build urban sens-
ing applications. More specifically, Section 2 shows what telecom data can tell about
urban dynamics. Section 3 outlines the mechanisms at the basis of mobile phone data
generation. Section 4 surveys the filtering and processing techniques proposed so far
to extract insights from this data and summarizes them to provide recommendations
on which datasets and techniques to use for specific applications. Finally, Section 5
provides an overview of the challenges currently being faced in this field, and Section 6
concludes.

2. MOBILE PHONE NETWORK DATA FOR URBAN ANALYSIS

It is well known that 50% of the globe’s population lives in urban areas, which cover
only 0.4% of the earth’s surface [Fund 2007], and 70% are projected to do so by 2050.
From one side, such urbanization opens great opportunities for improving people’s

1http://www.d4d.orange.com.
2http://dynamicinsights.telefonica.com/674/the-details.
3http://www.telecomitalia.com/tit/en/bigdatachallenge.html.
4http://www.unglobalpulse.org/Mobile_Phone_Network_Data-for-Dev.
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Fig. 1. Schema reflecting the role of pervasive technologies datasets in an urban scenario.

lifestyles; from the other side, there is the need to prevent a potential economic, health,
and environmental disaster [Manyika et al. 2011]. Pervasive technologies datasets are
a way to understand how people use the city’s infrastructure from the point of view
of mobility (e.g., transportation mode), consumption (e.g., energy, water, waste), and
environmental impact (e.g., noise, pollution). In fact, this kind of information offers
new insights about the city (see, for example, the Villevivante project5), which are of
great interest both from an economic and from a political perspective. In particular,
urban planning can benefit from the analysis of personal location data. Decisions that
can be improved by analyzing such data include the mitigation of traffic congestion
and planning for high-density development. Urban transit and development planners
will increasingly have access to a large amount of information about peak and off-peak
traffic hotspots, volumes, and patterns of transit use with which they can potentially
cut congestion and the emission of pollutants. By drilling down into this wealth of data,
urban planners will be more informed when they make decisions on anything from the
placing and sequencing of traffic lights to the likely need for parking spaces. As an
example, Singapore’s public transportation is already using 10-year demand forecasts
partly based on personal location data to plan transit needs6 and is continuing to invest
in this direction through the Future Urban Mobility initiative.7 Figure 1 shows how
pervasive technologies datasets fit in this scenario. The human behavior of people in a
city reflects how citizens use the built environment, the natural environment, and the
services offered by a city. Pervasive technologies are able to capture human behaviors
and produce related datasets that contain very useful information for planning and
management.

One important pioneering work in the field of community dynamics sensing using
cell phone data has been conducted within the Reality Mining project.8 Reality mining
deals with the collection and analysis of machine-sensed environmental data pertaining
to human social behavior, with the goal of identifying predictable patterns of behavior.
Mobile phones (and similarly innocuous devices) are used for data collection, opening
social network analysis to new methods of empirical stochastic modeling [More and

5http://villevivante.ch.
6http://www.onemotoring.com.sg/publish/onemotoring/en/on_the_roads/traffic_management.html.
7http://smart.mit.edu/research/future-urban-mobility/future-urban-mobility.html.
8http://realitycommons.media.mit.edu/.
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Lingam 2013]. The Reality Mining project collected data by asking volunteers to carry
cell phones programmed to measure and store sensor data. In this survey, instead, we
focus on data opportunistically collected by the telecom operators by product of their
own operations, without the requirements of people to carry specific devices or agree
to install or enable specific features on their phones. Of course, privacy is a real issue
in using this kind of technology. In fact, every country has its own regulations that
telecommunication operators have to comply with. The main worry arising from the
use of mobile phone network data is the fact that phone users’ movements are mon-
itored, particularly in cases where such personal location data are made available to
applications whose beneficiaries are third parties. As an example, the European Direc-
tive 2002/58/EC regulates the treatment of personal data and protection of intimacy in
the electronic communications sector.9 Article 14 of this directive includes a description
of location data, stating that “Location data may refer [. . .] to the identification of the
cell in the network in which the mobile terminal is located at a given moment or to
the time at which the localization information has been registered.” Article 9 of this
directive also supplies regulations covering location data, as follows: “In the event that
location data can be processed [. . .] such data may only be processed if they are made
anonymous, or with the prior consent of the users or clients, to the extent and for the
time necessary to provide a value-added service.” Thus, in order to be compliant with
regulations, all the data used for the research in this field (see the list of references) has
been released by telecom operators so that it was impossible to associate the location
data with actual cell phone numbers.

In the field of urban analysis, mobile phone network data has been used in several
research efforts:

(1) Estimating population distribution. With this regard, the use of mobile phone
network data is twofold: (1) estimate where people live and (2) estimate how popu-
lation density changes over time, that is, identify regions densely populated during
particular days of the week and hours of the day. In particular, from one side, the
focus is on identifying locations that are meaningful to users. Ahas et al. [2010] and
Isaacman et al. [2011] introduce a model for determining the geographical location
of home and workplaces, while Nurmi and Bhattacharya [2008] describe and eval-
uate a nonparametric Bayesian approach for identifying places from sparse GPS
traces (given the generic approach of the methodology, it can be easily applied to
mobile phone network data). From the other side, the focus is on analyzing how the
density of people changes over time. For example, Sohn et al. [2006], Sevtsuk and
Ratti [2010], and de Jonge et al. [2012] explore how coarse-grained GSM data from
mobile phones can be used to recognize high-level properties of user mobility and
daily step count. The work in Krisp [2010] shows how calculating and visualizing
mobile phone density can assist fire and rescue services. Moreover, in Soto et al.
[2011], the information derived from the aggregated use of cell phone records is
used to identify the socioeconomic levels of a population.

(2) Estimating types of activities in different parts in the city. During the week,
the call activity of a residential region, a commercial region, or a business is differ-
ent. It may be possible to derive a classification from the call activity profile of a
region, thus allowing one to classify regions as “residential,” “commercial,” or “busi-
ness.” For example, Girardin et al. [2009] provide a case study where aggregate and
anonymous cell phone network activity data and georeferenced photos from Flickr

9Directive 2002/58/EC of the European Parliament and of the Council of July 12, 2002, concerning the
processing of personal data and the protection of privacy in the electronic communications sector (Directive on
Privacy and Electronic Communications). http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:
32002L0058:en:HTML.
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allow one to track the evolution of the attractiveness of different areas of interest in
New York. Reades et al. [2007] monitor the dynamics of Rome and obtain clusters
of geographical areas measuring cell phone tower activity. Other works try to focus
on the specific land use of a city. For example, Soto and Frias-Martinez [2011] use
time series analysis to automatically identify land uses from aggregated call detail
record databases. The work is focused on the following types: industrial parks and
office areas, commercial and business areas, nightlife areas, leisure and transport
hubs, and residential areas.

(3) Estimating mobility patterns. Using the cell phone ID, timestamp, and location
data of an event (call, SMS, Internet usage), it is possible to estimate commuters’
mobility in predefined regions. Several groups of researchers did extensive work
in this field. To name a few, the Barabasi Lab10 has an open project on “Individual
Mobility Patterns.” For example, González et al. [2008] show how the widespread
coverage of mobile phone wireless networks in urban areas makes it possible to
track both groups and individuals. Song et al. [2010] investigated to what degree
human behavior is predictable with results indicating that the development of
accurate predictive models is a scientifically grounded possibility, with potential
impact on our well-being and public health. Moreover, they analyzed several aspects
of mobility patterns ranging from human trajectories [Song et al. 2010] to migration
[Simini et al. 2012] and road usage patterns [Wang et al. 2012]. Several other
important works in this area have been conducted by the MIT Senseable city lab.11

Their works aim to investigate and anticipate how digital technologies are changing
the way people live and their implications at the urban scale. In particular, in their
first works, the authors used the real-time data collected from mobile phones to
monitor the vehicular traffic status and the movements of pedestrians in Rome,
Italy [Calabrese et al. 2011]. Finally, Becker et al. [2013] characterized human
mobility in several U.S. cities to offer insight on a variety of important social issues
such as evaluating the effect of human travel on the environment.

(4) Analyzing local events. The increasing availability of mobile phone usage
datasets in recent years has led to a number of studies also related to local events
and the interplay with mobility. In particular, several works tried to infer the hu-
man patterns of mobility during emergencies and special events [Bagrow et al.
2011; Calabrese et al. 2010; Ferrari et al. 2012; Lu et al. 2012; Traag et al. 2011].

(5) Analyzing the geography of social networks. The impact of geography on
social interactions has been exploited from a statistical perspective [Lambiotte
et al. 2008] to derive a geography of mobile communications based on the relative
frequency of communications as well as their average duration [Blondel et al. 2010]
and to study the social radius of influence at both the communication and mobility
scales [Calabrese et al. 2011].

Mobile phone network data has been used not only in research works but also in
running products based on both aggregated and individual data. A first group of ap-
plications deals with the issue of using mobile phone network data to derive urban
traffic patterns. Traditional companies (such as Inrix12 and Delcan13) use traffic col-
lection methods based on locating GPS-enabled vehicles and mobile devices. The use
of mobile phone network data in order to leverage traffic information enables one to
handle more data nodes (given the huge number of mobile phone subscribers), and

10http://www.barabasilab.com.
11http://senseable.mit.edu.
12http://www.inrix.com.
13http://delcantechnologies.com.
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therefore offers higher resolution than traditional traffic collection methods that are
based on a relatively small group of GPS-enabled vehicles. Thus, an increasing num-
ber of telecom operators are making partnerships with external companies that can
provide real-time services using traffic information; see, for instance, the partnership
between Vodafone and TomTom.14 For example, Cellint15 provides a worldwide service
using mobile signaling data to locate the cars on the road. Such data is then analyzed
to provide immediate incident detection (such as road sensors), as well as travel time
and local speed over short segments (e.g., 200 meters in urban areas and 500 meters in
other areas) for all the roads within a covered area. Intellimec is a similar company16

that provides real-time traffic and incident information in Canada. Another company
that leverages mobile phone network data to provide traffic information is Airsage,17

which aggregates signaling data from cellular networks to provide real-time speed and
travel times for major roads. The company currently provides real-time location and
traffic data in almost every city in the United States. Airsage also tries to provide in-
sight into the behavior of consumers at specific locations and at different times during
the day. A similar approach has been taken by Telefonica with the Smart Steps prod-
uct,18 which uses anonymized and aggregated mobile network data to provide insights
representative of the total population in each area and time.

Other applications focus on using mobile phone network data to provide services
based on a more “social” aspect. For example, Sense Networks19 is commercializing
Macrosense, a machine-learning technology model that aggregates historical and real-
time mobile phone location data to, for instance, identify the best street corners from
which to hail a taxi. Sense Networks’ first application for consumers was CitySense, a
tool designed to answer the question “Where is everyone going right now?” CitySense
showed the overall activity level of the city, hotspots and places with unexpectedly high
activity, all in real time. The tool also uses Yelp and Google to show what venues are
operating at those locations. CabSense, another Sense Network application realized in
early 2010, offers users an aggregated map generated by analyzing tens of millions of
data points that rank street corners by the number of taxicabs picking up passengers
every hour or every day of the week.

These examples show how mobile phone network data has the potential to do the
following: (1) offer the possibility to study micro- and macro-behaviors and (2) truly
reflect human behavior given the fact that data is becoming more and more available
thanks to the increasing adoption of mobile technologies. The big issue shared by all
these works is to validate the extracted insights. To this regard, comparative datasets
are useful to:

(1) Validate findings extracted from analysis of the mobile phone network data;
(2) Define scaling factors to extend results to the overall population;
(3) Augment information about urban space, which is useful to extract higher-level

patterns.

Table I outlines the main comparative datasets commonly used to validate the results
obtained from mobile phone network data and highlights their pros and cons.

In particular:

14http://enterprise.vodafone.com/insight_news/case-study/tomtom.jsp.
15http://www.cellint.com.
16http://www.intellimec.com.
17http://www.airsage.com.
18http://dynamicinsights.telefonica.com/488/smart-steps.
19http://www.sensenetworks.com.
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Table I. Pros and Cons of the Main Comparative Datasets

Type Pros Cons
Census and surveys Very refined spatial

resolution
Often outdated

Land use Different categories Different spatial units
Points of interest Very refined categories Different sources of data may provide different

categories for the same points of interest

Census and Surveys. Census and surveys provide datasets related to very different
areas: demographics, health, education, government and security, communication and
transport, and so forth (see, for example, the 2010 U.S. Census20). Such datasets can
be used to (1) validate home and working areas; (2) validate city patterns such as
hotspots, commuting, and traffic flows; and (3) validate land use. The main advantage
of this kind of data is the very refined spatial resolution that is often the census block.
The main disadvantages are that they are updated usually only every 5 to 10 years.
Moreover, only some questions are asked, thus providing only a partial view of human
behavior.

Land Use. Global land use datasets offer access to a number of datasets that char-
acterize an area based on its planned use (e.g., the NASA Global Land Use Datasets21).
Different categories have been defined such as country codes, population density, culti-
vation intensity, and so forth. The main disadvantages are the possibly different spatial
units in which they are aggregated.

Points of Interest. Points of interest are a list of businesses and important places
to visit in a city. Usually every point of interest is characterized by a category and a
location. There are many possible different sources—Yellow Pages, Yelp, Google Places,
and so forth—that might provide different information. As an example, the “A60,” a
famous rooftop bar in Manhattan, can be categorized as “Bar” by one source and as
“Nightlife” by another source. In most comparisons, categories are aggregated in super-
categories (e.g., bars and restaurants are aggregated in the super-category “Food”).

There are some challenges and limitations in comparing different datasets. The main
one is that different collection periods and different spatial units introduce difficulties
in comparing datasets. For example, census data is aggregated at the block, track, or
country level, while mobile phone network data is aggregated at the cell tower level.

Finally, another limitation in the use of mobile phone data to estimate urban dy-
namics is the potential biases in differential ownership of phones among different
demographic groups. A recent study, however [Wesolowski et al. 2013], has shown that
for the purpose of estimating human mobility, mobile phone data from a large tele-
com operator in Kenya seemed robust to biases in phone ownership across different
geographical and socioeconomic groups. While this study does not automatically gen-
eralize to any mobile phone network dataset, it shows that for large enough samples,
the biases have a low impact on the extracted mobility patterns.

In the next section, we will discuss how telecommunication networks generate the
mobile phone datasets and their features.

3. MOBILE PHONE NETWORK DATA GENERATION

When a mobile phone is switched on, it regularly notifies of its position in terms of the
actual cell where it is currently located. The notification of the mobile phone position
can be triggered by events (call, SMS, or Internet usage) or by updates of the network

20http://2010.census.gov.
21http://data.giss.nasa.gov/landuse/.
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Table II. Example of a CDR Log: Anonymized Originating and Terminating User ID, Originating and Terminating
Cell ID, Timestamp, and Call Duration

Originating_id Originating_cell_id Terminating_id Terminating_cell_id Timestamp Duration
24393943 10121 17007171 10121 24031517 29
24393943 5621 17007171 2721 25141136 38
24393943 17221 17007171 2521 25534630 188
24393943 31041 17007171 5111 32440483 111
24393943 10121 17007171 9411 33152308 145
24393943 6321 17007171 20921 33431903 132
24393943 7041 17007171 10021 33435718 17
24393943 7021 17007171 14321 34160370 53

Table III. Cell Location Information

Cell id Lat Lon
10121 44.658885 10.925102
17221 44.701606 10.628872

(for a more detailed description of the technologies and standards used to derive the
position of mobile phones, see Wang et al. [2008]).

Event-Driven Mobile Phone Network Data. Today, there are two primary
sources of these data: communication and Internet usage. Most telephone networks
generate call detail records (CDRs), which are data records produced by a telephone
exchange documenting the details of a phone call or SMS passed through the device. A
CDR is composed of data fields that describe the telecommunication transaction, such
as the user ID of the subscriber originating the transaction, the user ID receiving the
transaction, the transaction duration (for calls), the transaction type (voice or SMS),
and so on. Each telecommunication operator decides which information is emitted and
how it is formatted. As an example, there could be the timestamp of the end of the call
instead of the duration. Table II shows an example of a CDR log, while Table III shows
the mapping between cell IDs and locations.

The second source of data is Internet usage. In telecommunications, an IP detail
record (IPDR) provides information about Internet Protocol (IP)-based service usage
and other activities. The content of the IPDR is determined by the service provider, the
Network/Service Element vendor, or any other community of users with authority for
specifying the particulars of IP-based services in a given context. Examples of IPDR
data fields are user ID, type of website, time of event, number of bytes transmitted,
and so forth. It is important to note that the margin of error in this case varies widely
according to whether the device to which the IP address is attached is mobile, and to
the density and topology of the underlying IP network.

Both communication and Internet usage can be associated to the cell phone towers
used during the interaction.

Network-Driven Mobile Phone Network Data. A cellular network is a radio
network of individual cells, known as base stations. Each base station covers a small
geographical area that is part of a uniquely identified location area. By integrating the
coverage of each of these base stations, a cellular network provides a radio coverage
over a much wider area. A group of base stations is named a location area (LA), or
a routing area. An LA is a set of base stations that are grouped together to optimize
signaling (see Figure 2(a)).

Typically, tens or even hundreds of base stations share a single base station controller
(BSC). The BSC handles allocation of radio channels, receives measurements from the
mobile phones, and controls handovers from base station to base station.

ACM Computing Surveys, Vol. 47, No. 2, Article 25, Publication date: November 2014.



Urban Sensing Using Mobile Phone Network Data: A Survey of Research 25:9

Fig. 2. (a) Location area and base stations. (b) Periodic update. (c) Handover. (d) Mobility location update.

In such a context, different types of location updates can happen:

(1) Periodic update, which is generated on a periodic basis and provides information
on which cell tower the phone is connected to (see Figure 2(b)).

(2) Handover, which is generated when a phone involved in a call moves between two
cell areas (see Figure 2(c)).

(3) Mobility location update, which is generated when the phone moves between
two location areas (see Figure 2(d)).

Location updates also happen when the phone changes the type of connectivity it uses
to access the telecommunication infrastructure (e.g., from 2G to 3G). The frequency
of these updates strongly depends on how the operator has deployed the different
connectivity technologies.

Another important aspect is how the user’s location can be detected. Location in-
formation can be extracted as part of the interaction data between the mobile phone
and the telecommunication infrastructure. In most cases, it is represented by the cell
tower position or the cell sector to which the mobile phone is connected. Table II shows
an example of a CDR’s location information, represented by the cell id field. Table III
maps each cell id to the corresponding latitude and longitude coordinates.

In particular, triangulated location can be estimated as having access to data col-
lected at lower levels in the network. The format of such data is given by standard doc-
umentation provided by network operators (see the 3gpp standard documentation22).
The principal techniques are the following:

(1) Timing Advance (TA), which is a value that corresponds to the length of time
a signal takes to reach the cell tower from a mobile phone. Since the users are
at various distances from the cell tower and radiowaves travel at the finite speed
of light, the precise arrival time can be used by the cell tower to determine the
distance to the mobile phone (see Figure 3(a)).

(2) Received Signal Strength (RSS), which is a measurement of the power present
in the signal received by cell towers surrounding the phone. Because the power

22http://www.3gpp.org/.
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Fig. 3. Estimating the mobile phone location information: (a) Time Advance and (b) Received Signal
Strength techniques.

Table IV. Example of Cell Tower Location Information Obtained Using Propagation Models

User Hash Longitude Latitude Uncertainty Timestamp
4ba232e4d96f47dc94f7441e87c164fb 16 81 56 1246759931
4ba232e4d96f47dc94f7441e87c164fb 06 09 252 1246759922
4ba232e4d96f47dc94f7441e87c164fb 99 95 208 1246760034

levels at the start of the signal transmission are well known and the power drop
in signal in open spaces is well defined, RSS can be used to estimate the distance
between a mobile phone and the surrounding cell towers (see Figure 3(b)).

It is important to note that with these methodologies, the accuracy of the mobile
phone position is around 500m in urban areas. An accuracy of 150m in urban areas
can be obtained using propagation models and irradiation diagrams; such techniques
estimate the mobile phone position by finding the point that minimizes the mean
square error between measured and estimated mean power received by all base sta-
tions. Table IV shows an example of the cell tower location information obtained using
propagation models and irradiation diagrams; the main difference is represented by
the uncertainty field that gives an estimation of the accuracy (for instance, in meters)
of the mobile phone position.

Service providers in each country have different rules and restrictions as to what kind
of data can be exchanged through their network. Individual data is rarely available
in real time even for service providers. Moreover, the use of individual data can lead
to privacy concerns (as explained in Section 2). The same data can be aggregated
at different spatial and temporal scales. For example, mobile phone network data
can be aggregated at the cell tower level by considering the number of calls, Erlang
(total communication time; see Freeman [2005]), the number of SMS, the number of
handovers, the number of location updates, and so forth.

Aggregated data can be more easily accessible in real time or with low delay. More-
over, regarding the data volume, aggregated data can be easily manageable, while
individual data might be difficult to manage. A possible solution in this regard would
be to analyze only a subset of users, but this would raise the problem of selecting a
good and representative sample.

4. TECHNIQUES FOR MOBILE PHONE NETWORK DATA ANALYSIS

In this section, we will show several techniques for mobile phone network data analysis
that have been used in research works (some of them are briefly introduced in de Jonge
et al. [2012]). First, we will describe some filtering techniques necessary to reduce noise
in the data. Then, we will describe a list of features that can be extracted from mobile
phone network data as well as the necessary processing techniques.
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4.1. Filtering Techniques

In order to mine mobile phone network data to derive human patterns in cities, several
techniques are needed to reduce both the spatial uncertainty and the noisiness of the
raw data. The main issues in this regard are (1) assigning the user to a specific location
and (2) identifying when the user stops in a location or is simply passing through it.

—Assigning the user to a specific location. State-of-the-art works in the area
suggest two main solutions:

(1) Assign the user to the centroid of the cell area. As shown in Section 3, each CDR
produced by a mobile phone is associated to a cell whose location is known by the
mobile phone operator. González et al. [2008] first divide the area under investi-
gation with a Voronoi tessellation technique based on the cell tower locations, and
then they assign the user position to the centroid of the corresponding Voronoi
cell. A different approach is shown in Girardin et al. [2009], where the opera-
tor provided the best serving cell map, which associates to each location in a
grid the cell tower that best covers that location. The computation is made on
simulated coverage and takes into account both the cell sector and propagation
models.

(2) Assign the user a probability to be in a given location. This second solution in-
troduces uncertainty in assigning a user to a location. For example, Traag et al.
[2011] use a propagation model to assign a user a probability of being at a spe-
cific location, given the fact that he or she is connected to a particular cell tower.
The main advantage is that this solution takes into consideration the fact that
multiple towers might be covering the same location.

—Stop detection. Another important issue is determining which places are important
to the user, that is, in which places the user stops for a reasonable time period. Given
the rawness of mobile phone network data, the same event can be registered as
consecutive events associated to different close-by locations. The solutions proposed
so far to improve accuracy in the raw mobile phone network data can be divided into
two groups:

(1) Solutions that leverage consecutive location data, where consecutive mea-
surements that are close enough can be collapsed in a unique single measurement.
For example, Calabrese et al. [2010] fixed both a spatial Sth and a temporal Tth
threshold in order to detect stops; that is, two consecutive stops stopi and stop j can
be collapsed in the same stop if distance(dstopi , dstopi ) < Sth and (tstopi − tstopj ) > Tth.
A similar approach was also used in Jiang et al. [2013].

(2) Solutions that leverage historical location data, where historical location
data is used to help understand which places are important for the user. For
example, Isaacman et al. [2011] use clustering techniques (in particular the Har-
tigan’s algorithm) on a dataset spanning over 78 days with the aim of identifying
which places are important to the users, such as home and work location.

4.2. Processing Techniques

In this section, we summarize different techniques proposed in the literature to pro-
cess mobile phone network data and extract insights into urban dynamics. These
techniques have been categorized based on the aggregation level provided by the
datasets.

4.2.1. Individual Data Processing. Mobile phone data at the individual level has been
used in several applications:

(1) Home and work location estimation. Using CDR with location information,
some works [Calabrese et al. 2011; Isaacman et al. 2011] have focused on estimating
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the home and work location of the users. The technique used to achieve this goal
involves selecting, for each user, a dataset consisting of several days of mobile phone
network data. Necessary information in the raw data is (1) the number of times a
cell tower was contacted by the user and (2) the length (in terms of time) of stay in
a location. Home location is then determined as the most frequented place during
evenings (where an evening is characterized by a time internal to be specified) and
work location as the most frequented place during weekday mornings/afternoons
and excluding the home location and places with a high number of evening events.
Data has been validated using U.S. Census population estimates at the census
track level. Please note that when applying the technique to different countries,
the time intervals to be used to identify evening and morning periods might have to
be adjusted based on the working habits of the country, as discussed, for instance,
in Berlingerio et al. [2013].

(2) Mobility estimation and applications. By connecting the sequence of visited
locations for each user and using that as an estimation of mobility, several re-
searchers have proposed applications for mobility study. González et al. [2008]
proposed a technique to infer daily trips using the distance between any two dif-
ferent visited locations. Distance between the two most distant visited locations
has been used in Isaacman et al. [2011] as a measure of daily range of mobility. By
grouping users’ mobility by origin and destination of trips, Origin–Destination ma-
trices can be inferred and used to analyze the attractiveness of an area (measured
as the number of different places people come from); see, for example, Calabrese
et al. [2011]. Couronne et al. [2011] cluster users on the basis of how often they
move using spatiotemporal analysis. Schneider et al. [2013] associated daily mobil-
ity networks extracted from the sequence of trips in a day, called motifs, with trip
chains extracted from travel diary surveys and tried to associate a trip purpose by
examining semantic-enriched land users surrounding destinations of individuals’
motifs [Jiang et al. 2013].

Berlingerio et al. [2013] have further exploited frequent travel patterns found in
the mobile phone data in order to come up with recommendations for improving
public transportation systems by recommending the introduction of new routes in
areas that experience high travel demand that is, however, not matched by the
current transit network.

Finally, using mobility patterns extracted from CDRs, researchers have defined
a model that describes how diseases could spread across the country [Lima et al.
2013]. This has led to testing the effect of information campaigns in containing the
disease spread.

(3) Integrating social and mobility information. A first group of works tries to
understand the interplay of mobility patterns and social ties [Cho et al. 2011;
Crandall et al. 2010; Pan et al. 2013; Wang et al. 2011]. As shown in Section 2,
mobile phone network data has also been mined to integrate the calling and location
pattern in order to help in inferring face-to-face meetings. Calabrese et al. [2011]
and Wu et al. [2008] discovered that people calling while connected to the same
cell tower (colocation) are a good proxy for face-to-face meetings. In particular, they
discovered that people tend to interact much more just before and after this event,
and the number of inferred face-to-face meetings decreases with the users’ home
distance. From the call interactions, the authors are able to predict when and where
people will be meeting.

4.2.2. Aggregated Data Processing. As shown in Section 3 compared to individual data,
aggregated data is much more easy to manage and can be possibly available in real
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time. In the following we will show the techniques that have been applied to mobile
phone network data in the state-of-the-art works.

(1) Land use inference. Starting from aggregated cell tower statistics, it is possible
to understand activities in the city from telecommunication usage patterns. This
can augment existing built environment data collection and analysis methods (cen-
sus, business registrations, etc.) at low cost and with very low latencies. Several
categories of activities can be considered. Classical time series analysis is initially
performed (e.g., the Principal Component Analysis technique has been used in
Reades et al. [2007] or the Dynamic Time Warping technique in Yuan and Raubal
[2012]) and clustering of time series can classify places based on usage (like the
Fuzzy C-Means technique proposed in Soto and Frias-Martinez [2011]).

(2) Space partitioning. Mobile phone users’ location at call time can be used to in-
fer the location of callers, thus allowing one to model the effect of geography on
human interactions. Using network analysis, Lambiotte et al. [2008] found that hu-
man interactions decrease as distance increases following a gravity-like behavior.
Exceptions emerge and are mainly due to geographical features (e.g., rivers; see,
for example, Ratti et al. [2010]), administrative borders, and cultural differences.
Using aggregated CDR with location information, one can measure the level of hu-
man interactions between places. This has led to several works focused on how to
best cluster areas based on these interactions. At the city scale, interaction events
can be aggregated to create a network of places where nodes are locations (e.g.,
cell towers) and edges between nodes exist if interactions happen between people
connected to the two cell towers. The weighted graph can be partitioned in commu-
nities using standard network analysis techniques (e.g., modularity optimization).
Through that, researches can detect which areas in the city are most connected
and where interaction borders exist; see Blondel et al. [2010]. An important aspect
to take into account while performing this study is the mobile phone penetration
and share of the operator in each area under analysis. Indeed, if such share is
not uniformly distributed over the entire area under analysis, the resulting inter-
actions network might be distorted. This was one of the problems addressed in
Calabrese et al. [2011] when dealing with regional partitioning at the level of the
entire United States. Starting from CDR data with location information aggregated
at the county level, the authors had to take some actions: (1) normalization in order
to deal with operator share not being equal for every area and (2) filtering of coun-
ties with a too low number of customers or share (to preserve representativeness
of the sample). More recently, new methods have also been proposed to estimate
the significance of the association between geographical divisions of the population
originating in ethical, language, religious, or political differences [Bucicovschi et al.
2013]. A study has been conducted on the Ivory Coast to take into account the 60
local major languages spoken.

(3) Event detection. Looking at time series of call-tower-to-tower communications,
researchers have proposed a visual analytic tool to characterize events [van den
Elzen et al. 2013]. This tool identifies clusters of cell towers having similar call be-
havior to detect events. The characterization can be further refined by introducing
individual data to identify whether mobile phone users are unusually found in the
specific location where the mobile traffic anomaly was detected [Traag et al. 2011].
A threshold to detect these outliers has to be imposed and tuned based on partial
ground truth on historical events.

Based on what has been discussed, Table V summarizes our recommendations on
which datasets and processing techniques should be used to develop specific urban
sensing applications.
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Table V. Urban Sensing Applications and Associated Datasets and Processing Techniques

Application Preferred Dataset Processing Techniques Observations
Estimating population
density

Individual CDR with
cell tower location
information

Home location
determination

Test different temporal
thresholds for home
location determination

Estimating types of
activities in different
parts of the city (e.g.,
land use)

Aggregated cell tower
statistics

Time series clustering
(e.g., Fuzzy K-means)

Can be improved with the
help of external data, e.g.,
POIs

Estimating mobility
patterns (Origin–
Destination matrices)

Individual CDR with
cell tower location
information

Home and work
location
determination,
mobility estimation

Evaluate feasibility to
map match on transport
network

Estimating mobility
patterns (traffic
monitoring)

Individual event-
driven triangulated
location

Mobility estimation,
mode inference

Evaluate availability of
data in real time

Detecting events Individual or
aggregated CDR with
cell tower location
information

Mobility estimation,
event identification

Test detection thresholds
on partial ground truth

Analyzing the
geography of social
networks (regional
partitioning)

Aggregated CDR with
cell tower location
information

Modularity
partitioning

Test different definitions
of weights on edges

Analyzing the
geography of social
networks
(communication–
mobility
interplay)

Individual CDR with
cell tower location
information

Mobility estimation,
social network
analysis

Use reciprocate calls to
identify social ties. Use
location at call time to
identify colocation

5. OPEN CHALLENGES

In this article, we have shown how mobile phone network data can be used to gain
insights into urban dynamics. In dealing with this type of data, some challenges still
remain:

(1) Limitations of event-driven data. In order to analyze certain types of urban
patterns, it is important to have very frequent location data. As explained in
Section 3, event-driven data are generated only when the user takes some ac-
tion, for example, sends an SMS, makes a call, and so forth. Thus, the location of
the user might not be updated very frequently. Some approaches proposed so far to
solve this problem are as follows:
—Sampling only highly active users. This solution might be effective since high

communication (e.g., calling someone or sending an SMS) has been found to be
correlated to high mobility [Couronne et al. 2011]. The main problem in this
regard is how to choose users that represent a good sample of citizens’ behavior.

—Sampling Internet usage data. Given the high penetration of smartphones
[Manyika et al. 2011], another option is to use the Internet usage data to de-
rive location data. The main pros is that such kind of data generally presents
a lower interevent time [Calabrese et al. 2010]; however, smartphone users’ be-
havior does not always represent a general sample of citizens’ behavior.

—Network-driven data. Given the low frequency of users’ localization updates, a
better type of data could be network-driven data. In particular, periodic sampling
is independent of events but is not too good for short-term mobility. Another

ACM Computing Surveys, Vol. 47, No. 2, Article 25, Publication date: November 2014.



Urban Sensing Using Mobile Phone Network Data: A Survey of Research 25:15

alternative could be to use mobility-based sampling that is good for analyzing
mobility between large areas such as location areas.

(2) Limitations in spatial accuracy. It might be important to have very precise
location data for certain types of applications, such as to determine the accurate
location, the route undertaken by the user, or the transportation modes. As shown
in Section 3, mobile phone network data does not provide accurate localization.
Some solutions proposed so far are as follows:
—Look at history for recurring locations. This can help in smoothing irregularities

in the location data, allowing one to assign the nearest recurring location to a
noisy position (because of the low accuracy in the localization); see Isaacman
et al. [2011].

—Look at handover during calls. Handoff patterns are relatively stable across dif-
ferent routes, speeds, directions, phone models, and weather conditions [Becker
et al. 2011], thus allowing one to derive the trajectories of mobile devices also
using CDR data with a low frequency of localization updates.

(3) Managing uncertainties. Looking at the previous open challenges, it is clear
that the uncertainties in the user’s status in time and space can be relatively
large. This is due to both the low frequency of users’ localization updates and the
spatial resolution of mobile phone network data. Thus, it is important to provide
reliable and uncertain-aware results. One proposed solution is estimating uncer-
tainties in users’ position. For example, Couronne et al. [2011] try to estimate
the bias of user behavior in mobile phone data, taking into account the impreci-
sion of data, with a trigonometric approach to describe both mobility values and
uncertainty.

(4) Finding comparative datasets. Traditional city data (e.g., census and surveys)
are collected using different methods, sampling times, and collection years. This
makes it difficult to compare results obtained analyzing mobile phone network data
with these traditional datasets. Proposed alternatives are as follows:
—Self-reported data. Self-reported data can provide additional value compared to

traditional data since they might be more spatially accurate, not outdated, and
with a frequent sampling time to make comparisons. An example of self-reported
data is that which can be obtained from Flickr,23 which is used, for example, in
Girardin et al. [2008] to mine tourists’ patterns in Rome.

—Social networking data. Similar to the previous one, social networking data pro-
vides specific information regarding the places visited by the users. There are
a plethora of location-based social networks such as Foursquare24 that provide
public access to their own data and have been recently used to support urban
analysis; see, for instance, Noulas et al. [2013].

(5) Dealing with privacy and anonymity. The sharing of mobility data raises seri-
ous privacy concerns. Mobility data can reveal the mobility behavior of the people:
where they are going, where they live, where they work, their religion prefer-
ences, and so forth. All this information refers to the private personal sphere of a
person and so may potentially reveal many facets of his or her private life. As a
consequence, this kind of data has to be considered personal information to be pro-
tected against undesirable and unlawful disclosure. A recent study by de Montjoye
et al. [2013] showed that knowing four spatiotemporal points is enough to uniquely
identify 95% of the individuals. Thus, sophisticated techniques should be designed
to protect the privacy of individuals. Many privacy-enhancing technologies for

23http://www.flickr.com.
24http://foursquare.com.
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mobility data have been proposed by the scientific community; see Giannotti and
Pedreschi [2008] for a review on privacy in mobility data. In particular, two pro-
posed solutions [Krumm 2009] so far are as follows:
—Location obfuscation, which consists of nonreversible ways to slightly alter the

location such that it does not reflect the real location of the user but still contains
enough information to provide a satisfactory service. See Wightman et al. [2011]
for more information regarding the evaluation of several location obfuscation
techniques.

—k-Anonymity for trajectories, which ensures that each individual trajectory can
only be released if there are at least k − 1 distinct individuals whose associated
trajectories are indistinguishable from the former (see Gedik and Liu [2008] for
more detailed information).

Very recently, Mir et al. [2013] also proposed a method, validated against billions
of location samples from a real telecommunication network, to generate synthetic
CDRs to capture the mobility patterns of real metropolitan populations while pre-
serving privacy.

This is just the tip of the iceberg. The concerns that people have over the col-
lection of this data will naturally extend to any analytic capabilities applied to
the data, even the ones that try to preserve users’ privacy. Users of data mining
should start thinking about how their use of this technology will be impacted by
legal issues related to privacy. A critical evaluation of data mining and privacy
was released in a report saying that data mining “may be the most fundamental
challenge that privacy advocates will face in the next decade. . .” [Cavoukian 1998].
The report looks at data mining and privacy in the context of the international “fair
information practice” principles.

These collisions between data mining and privacy are just beginning. Over the
next few years, we should expect to see an increased level of scrutiny of data min-
ing in terms of its impact on privacy. The sheer amount of data that is collected
about individuals, coupled with powerful new technologies such as data mining,
will generate a great deal of concern by consumers. Unless this concern is ef-
fectively addressed, we expect to see legal challenges to the use of data mining
technologies.

(6) Mobility/communication interplay. Studying the interplay between telecom-
munications and physical location is still a challenge. In some cases, it has been
suggested that telecommunications may be a substitute for physical interaction
[Albertson 1977]. In other cases, conflicting hypotheses have been made, includ-
ing those of a complementary [Mok et al. 2010], neutral [Choo et al. 2010], or
reinforcing effects [Sasakia and Nishiib 2010]. Regarding mobile phone network
data, Calabrese et al. [2011] investigate the relationship between people’s calls
and their physical location. Wang et al. [2011] mine the similarities between
people’s movements (as collected by the mobile phone network) and social net-
works. Still, a lot of work has to be done in this area to fully characterize the real
interplay.

(7) Real-time data acquisition and processing. Many urban sensing applications
(e.g., traffic monitoring, event management) are useful if results are presented in
real time or near real time. The problem is that usually mobile phone network
data is first acquired and then pushed to databases, and thus it is not usually
available in real time (see Section 3). Since the quantity of mobile phone network
data produced every day is massive, there is a need for ad hoc algorithms and
platforms to process such data in real time. Some proposed solutions are based on
streaming platforms able to deal with different types of data in real time; see, for
example, Kaiser and Pozdnoukhov [2013].
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6. CONCLUSIONS

This article discusses the current state of the art and open challenges in the emerging
field of mobile phone network data for urban sensing. Telecom operators are nowadays
generating terabytes of records of potential use for urban sensing. Research is still
particularly needed in (1) inferring behavioral patterns, (2) building analytics and sys-
tems to process massive datasets and automatically extract patterns, and (3) building
control systems able to make use of inferred patterns to optimize city services. Privacy
is also a very sensitive issue that had to be addressed. Mobile phone network data will
ultimately provide both micro- and macroscopic views of cities and help understand
citizens’ behaviors and patterns.
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