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ECONOMICAL ADJUNCTION OF SQUARE ROOTS TO GROUPS
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Abstract: How do we have to extend a group so that in the resulting group all elements of the original
group be squares? We give a rather precise answer to this question (the best possible upper bound
differs from our estimate by at most a factor of two) and pose several open questions.
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Introduction

A series of articles studies the solvability of equations over groups (see, e.g., [1–14] and the references
therein). It is shown there that under certain conditions the equation w(x) = 1 with coefficients in
a group G is solvable over G; thus, we can find a group H that includes G as a subgroup and an element
h ∈ H satisfying w(h) = 1. In this article we address the quantitative question: How large must this
group H be? Even for simple equations whose solvability is known for a long time this question turns
out rather difficult, and we restrict exposition to the simplest nontrivial equations x2 = g.

Certainly, the answer depends strongly on the original group G. For instance, if the order of G is
odd then for every g ∈ G we can take as H the group G itself; if G is a cyclic group then for each g ∈ G
it suffices to take as H a group of twice the order of G, and so forth. It is most interesting, of course, to
estimate the order of H in the worst case. We have managed to obtain an estimate that differs from the
best in at most a factor of two in the following sense:

Main Theorem. Each finite group G embeds into a group of order 2|G|2 in which all elements
of G are squares. There exist infinitely many pairwise nonisomorphic finite groups Gi such that for some
gi ∈ Gi the group including Gi as a subgroup and containing an element whose square equals gi is of
order at least |Gi|2.

Apart from the problem of solving one equation x2 = g, we can consider the problem of solving
simultaneously all equations of this form. It is clear from the main theorem that in this case a group of
order 2|G|2 always suffices, while a group of order less than |G|2 is not sufficient in general.

Much is known about the behavior of the set of solutions to equations in finite groups (see, e.g.,
[15–18] and the references therein). Unfortunately, we were unable to use these nontrivial results.

The first claim of the theorem is not new and can be established easily (see Section 1). In Section 2
we prove the second claim. In Section 3 we state several open questions on economical adjunction of
solutions to equations to groups.

Our notation is standard in general. Note only that if k ∈ Z, while x and y are elements of some
group, then xy, xky, and x−y stand for y−1xy, y−1xky, and y−1x−1y respectively. If X is a subset of
some group then |X|, 〈X〉, and 〈〈X〉〉 stand respectively for the cardinality of X, the subgroup generated
by X, and the normal subgroup generated by X. Denote by Z the set of integers. Denote by Zn the
group or ring Z/nZ of residues modulo n. Denote the multiplicative group of Zn by Z

∗
n. Denote the

automorphism group of G by AutG. Denote by Dp the dihedral group of order 2p. Denote the stabilizer
of a point a under the action of G by StG(a). We refer as a reflection to an element of Dp lying outside
its subgroup Zp.
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Moscow. Translated from Sibirskĭı Matematicheskĭı Zhurnal, Vol. 53, No. 2, pp. 250–257, March–April, 2012.

Original article submitted January 20, 2011.

0037-4466/12/5302–0201

c©

201



1. Wreath Products and a Proof of the First Claim of the Theorem

The first claim of the theorem is well known [13]: the wreath product

G � Z2 =

{(
g1 0
0 g2

)
| g1, g2 ∈ G

}
∪
{(

0 g1
g2 0

)
| g1, g2 ∈ G

}

of a group G and the cyclic group of order 2 is a group of order 2|G|2 and contains square roots of all
elements of G assuming that G is embedded into the wreath product G � Z2 diagonally:

g �→
(
g 0
0 g

)
.

Indeed,

(
0 g
1 0

)2

=

(
g 0
0 g

)
. This is the simplest particular case of Levin’s theorem, whose full state-

ment we present in Section 3.

2. Dihedral Groups and a Proof of the Second Claim of the Theorem

The second claim of the main theorem is immediate from the following claim.

Theorem 1. Take a prime p ∈ 4Z + 3 and a group G̃ including a dihedral subgroup G = Dp. If

a reflection g ∈ G is a square of some element x ∈ G̃ then |G̃| ≥ |G|2.
We need several easy lemmas.

Lemma 1. Given two subgroups H1 and H2 of some group H, we have |H| ≥ |H1||H2|
|H1∩H2| = |H1H2|.

Proof. This easy lemma is left to the reader.

Lemma 2. Suppose that Dp = G ⊆ 〈G, x〉 = G̃ and x2 = g, where g ∈ G is a reflection. Then either

G � G̃ or G ∩Gx = 〈g〉.
Proof. It is obvious that g ∈ G ∩ Gx. There exist only two subgroups of Dp containing g. If

G ∩Gx = 〈g〉 then the claim is proved. If G ∩Gx = G then G = Gx; but G � G̃ since 〈G, x〉 = G̃.

Lemma 3. Suppose that Dp = G � G̃, where p ∈ 3 + 4Z is a prime. Then no reflection g ∈ G is

a square in G̃.

Proof. The subgroup Zp ⊂ Dp = G � G̃ is the commutant of G, and so Zp is a characteristic

subgroup of G and a normal subgroup of G̃. The group G̃ acts on Zp by conjugation. Furthermore, the
reflection g acts as −1 ∈ Z

∗
p = AutZp, but −1 is not a square in Z

∗
p if p ∈ 3+4Z, which proves the lemma.

We proceed to prove Theorem 1. We may assume that G̃ = 〈G, x〉. Denote by K the set of all

subgroups of G̃ conjugate to G. Then G̃ acts transitively on K by conjugation.

Lemma 4. |G̃| ≥ |K| · |G|.
Proof. |G̃| = |K| · | St

G̃
(G)| ≥ |K| · |G| since G ⊆ St

G̃
(G).

Consider the complete undirected graph Γ with the vertex set K. Refer to an edge (Gh1 , Gh2) as
green whenever |Gh1∩Gh2 | = 2, as yellow whenever |Gh1∩Gh2 | = p, and as red whenever |Gh1∩Gh2 | = 1.
It is clear that all edges are colored. If there is at least one red edge then the claim follows directly from
Lemma 1. Thus, we assume henceforth that there are no red edges.

Lemma 5. The vertices K and the yellow edges constitute a graph Y whose each connected com-
ponent is a complete graph. All connected components contain the same number of vertices.

Proof. The first claim of the lemma is immediate since Dp includes only one order p subgroup.

Since G̃ acts transitively on K and preserves the colors of the edges, it follows that all connected com-
ponents contain the same number of vertices.
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Lemma 6. The number of green edges incident to a vertex of G is positive and divisible by p.

Proof. Each green edge incident to G corresponds to one of the p reflections g ∈ G. Therefore, the
edges incident to G split into p classes. All of them contain the same number of edges since all reflections
in G are conjugate, and consequently each of these classes goes into a given class under an automorphism
of the graph. This means that the number of green edges incident to G is divisible by p.

One green edge in the graph certainly exists: this is the edge (G,Gx), where x2 = g ∈ G is a reflection.

Indeed, Gx ∩ G � g, but Gx �= G (otherwise G would be a normal subgroup of G̃ = 〈G, x〉, which is
precluded by Lemma 3). Hence, Gx ∩G = 〈g〉2, and the proof of the lemma is complete.

Continue proving the theorem. Suppose that at least 2p green edges are incident to G. Then the

graph has at least 2p + 1 vertices: |K| > 2p, and the claim follows since |G̃| ≥ |K| · |G| > 2p|G| = |G|2
by Lemma 4.

In view of Lemma 6, it remains to consider the case where every vertex of the graph is incident to
exactly p green edges.

Denote by u the number of vertices in each connected component of Y (see Lemma 5), and by v, the
number of these connected components. Then

p = (the number of green edges incident to G) = (v − 1)u

since every vertex not joined to G by a yellow edge is joined to G by a green edge.
Since p is a prime, p = (v − 1)u means that either v = 2 and u = p or v = p+ 1 and u = 1.

In the first case |K| = 2p and the claim follows since |G̃| ≥ 2p|G| = |G|2 by Lemma 4.
In the second case |K| = p + 1 and the graph Γ amounts to a complete graph whose all edges are

green. The group G̃ acts on this graph; moreover, the action of G on the set of vertices different from G
is isomorphic to the action of G by conjugation on the set of its order 2 subgroups (this isomorphism
assigns the subgroup Gh ∩G to each group Gh). In particular, conjugation by the reflection g amounts
to a permutation of the vertices of the graph which leaves exactly two points fixed (G and the group Gh

with G∩Gh = 〈g〉), and consequently we can express it as the product of p−1
2 independent transpositions.

This permutation is odd since p ∈ 3 + 4Z, which contradicts the fact that g is a square in G̃. The proof
of the theorem is complete.

§ 3. Roots of Higher Degrees and Other Open Questions

The following question arises: What is actually the sharp estimate?

Question 1. Is the set of finite groups G such that for some g ∈ G every group including G as
a subgroup and containing an element whose square equals g is of order at least 2|G|2 infinite?

The following statement shows that for dihedral groups our theorem cannot be strengthened, while
to answer Question 1 we should study groups close to simple.

Proposition 1. Suppose that a finite group G and g in G satisfy at least one of the conditions:
(a) G is distinct from its commutator subgroup;
(b) G is distinct from the normal closure of g;

(c) G includes a nontrivial normal subgroup of odd order.1)

Then G embeds into a group H of order at most |G|2 in which g is a square.

Proof. The following lemma shows that if condition (a) or (b) is fulfilled then we can take as H
not the full wreath product G � Z2 (see Section 1), but its proper subgroup. If condition (c) is fulfilled
then we can take as H a proper quotient group of this wreath product, as Lemma 8 shows (see below).

1)The Feit–Thompson theorem on the solvability of groups of odd order [19] implies that property (c) is
equivalent to the presence in G of a nontrivial normal abelian subgroup of odd order.
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Lemma 7. In the wreath product G �Z2 the subgroup H generated by G embedded diagonally and

the square root

(
0 g
1 0

)
of an element g ∈ G is of the form

H =

{(
g1 0
0 g2

)
| g1g−1

2 ∈ [〈〈g〉〉, G]

}
∪
{(

0 g1
g2 0

)
| g1g−1

2 ∈ g [〈〈g〉〉, G]

}
,

where [〈〈g〉〉, G] is the mutual commutator subgroup of the normal closure of g in G and the group G.

Proof. The epimorphism ϕ : G → G/ [〈〈g〉〉, G] induces a homomorphism

Φ : G � Z2 → (G/ [〈〈g〉〉, G]) � Z2.

The set on the right-hand side of the equality to be proved is Φ−1(Φ(H)). Thus, it suffices to show
that H includes the kernel of Φ. But kerΦ is generated (as a subgroup) by the elements(

[gx, y] 0
0 1

)
and

(
1 0
0 [gx, y]

)
, where x, y ∈ G,

which lie in H as the equalities show:(
x−1 0
0 x−1

)(
0 g
1 0

)(
x 0
0 x

)
=

(
0 gx

1 0

)
,

[(
0 gx

1 0

)
,

(
y 0
0 y

)]
=

(
0 1

g−x 0

)(
0 gxy

1 0

)
=

(
1 0
0 [gx, y]

)
,

(
1 0
0 [gx, y]

)(
[gx, y] 0

0 [gx, y]

)−1

=

(
[gx, y] 0

0 1

)−1

.

Lemma 8. If N is a normal abelian subgroup of G then

K =

{(
x 0
0 x−1

)
| x ∈ N

}

is a normal subgroup of G �Z2. If the order of N is odd then K trivially intersects G (embedded into the
wreath product diagonally).

Conversely, each nontrivial normal subgroup of the wreath product which intersects G trivially
includes a nontrivial normal abelian subgroup of this form.

Proof. It is obvious that K is a normal subgroup. It is clear that

K ∩G = {x ∈ N | x2 = 1}.
Thus, K trivially intersects G when the order of N is odd.

It is known that every nontrivial normal subgroup X of the wreath product intersects the base
nontrivially (see [20] for instance). Take

1 �= u =

(
x 0
0 y

)
∈ X.

Then [
u,

(
y 0
0 y

)]
=

(
[x, y] 0
0 1

)
= v ∈ X �

(
0 1
1 0

)−1

v

(
0 1
1 0

)
=

(
1 0
0 [x, y]

)
= w,

and, consequently,

vw =

(
[x, y] 0
0 [x, y]

)
∈ X ∩G = {1}, i.e., [x, y] = 1.
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In this case

X �
(
0 1
1 0

)−1

u

(
0 1
1 0

)
=

(
y 0
0 x

)
= t;

hence,

ut =

(
xy 0
0 xy

)
∈ X ∩G = {1}, i.e., xy = 1.

Therefore, the intersection of the subgroup X with the base of the wreath product is

K =

{(
x 0
0 x−1

)
| x ∈ N

}
,

where N is a subset of G. Certainly, this implies that N must be a normal abelian subgroup. The proof
of the lemma is complete.

These lemmas establish Proposition 1 and, moreover, show that if a group G violates all condi-
tions (a)–(c) (for instance, if G is a nonabelian simple group) then the wreath product G �Z2 lacks proper

subgroups and proper quotient groups including G and containing the square root

(
0 g
1 0

)
of g.

Proceed now to roots of higher degrees and solutions to other equations. The starting point of our
study is Levin’s theorem whose full statement is as follows:

Levin Theorem [13]. The wreath product G � Zn of a group G and an order n cyclic group (being
of order n|G|n) contains solutions to all positive equations of degree n over G.

By a positive equation of degree n over G we understand an equation of the form

g1xg2x . . . gnx = 1, where g1, . . . , gn ∈ G.

In this regard, the question arises: Does Levin’s theorem yield an unimprovable estimate?

Question 2. Is the set of finite groups G such that every group including G as a subgroup containing
a solution to every positive equation of degree n over G is of order at least n|G|n infinite?

We can put forth a bolder conjecture.

Question 3. Is the set of finite groups G such that every group H including G as a subgroup every
element of which is an nth power in H is of order at least n|G|n infinite?

What can we say about economical adjunction of solutions to other (nonpositive) equations? For
instance, the Gerstenhaber–Rothaus theorem [8] in combination with Malcev’s theorem about residual
finiteness of finitely generated linear groups [21] yields the statement:

Proposition 2 [8, 20]. Each finite group G embeds into a finite group H containing solutions to all
nondegenerate equations of length n over G.

By a nondegenerate equation of length n over a group G we understand an equation of the form

g1x
ε1g2x

ε2 . . . gnx
εn = 1, where gi ∈ G, εi ∈ {±1}, and

∑
εi �= 0.

The proof of the Gerstenhaber–Rothaus theorem is beautiful but not constructive. Thus, it is difficult
to write not only unimprovable, but even any explicit estimate on the order of H.

Question 4. Can we estimate |H| in terms of |G| and n in claim 2?

For n = 1 the answers to Questions 2–4 are obviously affirmative. A nondegenerate equation of
length 2 is of the form g1x

εg2x
ε = 1, where ε ∈ {±1}, and a linear change of variables reduces it to

x2 = g; thus, the main result of this article yields the answer to “twice weakened” versions of these
questions for n = 2. We do not know what happens for other values of n.
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