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Abstract  This study extends the understanding of two-element pure codes. Some charac-
teristics of different length two-element pure codes are studied. It is shown that a language
is a pure code which contains two distinct primitive words u and v with different lengths if
and only if the regular expression # v of the two distinct words u and v is primitive.

1 Introduction

Property-preserving iterated homomorphisms can be applied to generate words or languages.
One can refer to [6] for definitions and notions of property-preserving iterated homomor-
phisms which are also related to O L schemes. Shyr and Thierrin have proposed some proper-
ties of homomorphisms which preserve primitive words in [6]. They argue that if an injective
homomorphism & : X* — X* is such that 2(X) is a pure code, then & preserves primitive
words. Using the definition of pure codes, to check whether a given language is a pure code is
not easy. This motivates the investigation to discover a simple method for checking whether
a given language is a pure code or not.

The notion of pure languages is introduced in [5]. In [3], Fan and Huang investigate some
characteristics of pure codes. A pure code consisting of two distinct primitive words u and v
with the same length can imply that uv is a primitive word. If there are two primitive words
u and v with the same length such that uv is a primitive word, then the language {u, v} is a
pure code. This gives rise to a simple procedure to check whether a same length two-element
language {u, v} is a pure code or not. For example, since ab, ba € Q, we have abba € Q,
which implies the language {ab, ba} is a pure code. In this paper, we extend the research
to find a general method for checking whether a given two-element language {u, v} is a
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pure code. The focus is on studying the characteristics between regular expression and pure
codes with two different length elements.

This paper is organized into four sections. The first section is an overview of the paper.
In the second section, some well-known definitions and properties applied in this paper are
examined. In the third section, a two-element pure code {u, v} consisting two distinct prim-
itive words u and v with different lengths derives that regular expression v is primitive.
That is, all elements of u™v™ are primitive words. Furthermore, for primitive words u and
v with different lengths, the primitivity of a regular expression u™v™, that is, uTv™ € Q,
derives that the language {u, v} is a pure code. This provides a brief procedure to check
whether a different length two-element language {u, v} is a pure code. Because the process
of derivative proof is fairly involved, the detailed proof is postponed until the final section.

2 Definitions and preliminaries

Let X be a finite alphabet and X* be the free monoid generated by X. Any element of X* is
called a word. The length of a word w is the number of letters occurring in w and denoted
by Ig(w). Any subset of X* is called a language. Let X = X* \ {A} where X is the empty
word. If u is a word such that u = xwy where w € X+, x, y € X*, then the word w will
be called a subword of u. A subword w of u is a proper subword of u if u = xwy such
that xy € Xt. Foru € X+, E(u) and E(u) are denoted as the set of all subwords of u and
the set of all proper subwords of u respectively. A word w € X7 is said to be primitive if
w = f" with f € Xt always implies n = 1. Let Q denote the set of all primitive words and
Q" = {fi|f € Q) forevery i > 2. For a word w € X7, there exists a unique primitive
word f and a unique integer i > 1 such that w = f*. Let f = /w and call f the root of
w. For two words u, v € XV, it is denoted by v <, u (v <p u) if v is the prefix (proper
prefix) of u and denoted by v <g u (v <g u) if v is the suffix (proper suffix) of u. A lan-
guage L C XV isacodeif xix2- Xy = y1Y2++* Ym» Xis y;j € L implies that m = n and
xi =vy,i =1,2,...,n. Alanguage L C X7 is called pure if for any x € L*, \/x € L*.
The property of codes and the characteristic of pure languages are combined to derive the
following definition.

Definition 2.1 A language L is a pure code if it is a code such that for any x € L*, \/x € L*.
Next we list some results used in the paper.

Lemma 2.1 ([4]) Letu,v € Q withu # v. Then u™v" € Q forallm > 2,n > 2.

Lemma 2.2 ([4]) Ifuv = vu, u,v € X, then u, v are powers of a common word.

Lemma 2.3 ([1]) [fuv = vz where u, v,z € X* and u # ), then u = (pq)’, v = (pg)’ p,
and z = (gp)" for some p,q € X*,i > 1,j >0, and pq, qp € Q.

Lemma 2.4 ([8]) If ug™ = g* for somem,k > 1,u € X+, and g € Q withu ¢ g™, then
q # g andlg(g) > lg(g" ).

Lemma 2.5 ([8])Let p #q € Q. Then |pTqT NU;>,0V| < 1.

Lemma 2.6 ([8]) Letu € X withu ¢ q* and lg(u) < lg(q). If ug™ = gk for some
m,k>2and g € Q, thenk =2,m =2, u € Q andu = yxxy,q = x(yx)/*! for some
x #y e X", j> 1. Moreover, x and y are not powers of a common word. O
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Lemma 2.7 ([8]) If pq™ = g* for some m, k > 2 and g € Q, then one of the following two
statements holds:

A) p= (xqm)k’leor some x € X™T; ' -
B) p = (x0T Y 2yx(x(y0) /)" 2xy and g = x(yx)/*! for some x #
yeXt, j=0.

Lemma 2.8 ([2]) Letx,y € Xt. Then xy # yx if and only if x(yx)" € Q forallm > 2.

Lemma 2.9 Ifx1xy = xpx3 = x3x4, where x1, X2, X3, x4 € X, then x1, X2, x3 and x4 are
powers of a common word.

Proof Since x1x2 = x2x3 = x3x4, this yields that lg(x3) = 1g(x1) and lg(x4) = 1g(x2);
hence x3 = x1, x4 = x2. This implies that x;x» = xpx; and x2x3 = x3x2. By Lemma 2.2,
X1, X2, X3, X4 are powers of a common word. O

Lemma 2.10 ([6]) Let uv be a primitive word over X, where u # A, and v # A. Then {u, v}
is a code.

Lemma 2.11 ([10]) Letx,y € X*. If xy <p yi for some i > 2, then \/x = VY-

Lemma 212 Letu € Q. Ifu <, (pq)" and u < (qp)’ with pqg € Q for some p,q €
X*,i > 1, then there exist x,y € X with iy, i > 1, j1 > 0and xy, yx € Q such that
one of the following statements holds:

(1) u=(xy)'xand p = (xy)1H1x;

(1) u= (xy) 1 x and pq = (xy)1 241,
(1) p = u* for some k > 2.
(IV) u = (pg)*p for some k > 0.

Proof Letu € Q.Letu <p (pg)' and u < (gp)’ for some p,q € X*,i > 1. Consider the
following cases:

() 1g(u) = lg((pq)k) for some 1 < k <i. Thenu = (pq)k = (qp)k. Since u € Q, this
implies that k = 1, thatis, pg = gp. By Lemma 2.2, p, g are powers of a common word.
Thus pg ¢ Q, a contradiction.

) 1g((pg)*) < 1g(u) < 1g((pg)¥ p) for some 0 < k < i. Then there exist p1, p2, p3, p4 €
X+ suchthatu = (pg)* p1 = pa(qp)* and p = p1ps = p3pa.Letk > 1. We have p3 pag =
pagp3. By Lemma 2.2, p3, paq are powers of a common word. Thus p3pag = pg € O,
a contradiction. Hence k = 0, that is, u = p; = p4. This implies that p = upr = p3u.
By Lemma 2.3, we have p3 = (xy)',u = (xy)/ix, and P2 = (yx)™ for some x, y €
X* i1 > 1, j1 = 0andxy, yx € Q. Let j; = 0. We consider the following subcases: x = A,
y=MXAorx,y € XT.If x = A, then u = A, a contradiction. If y = A, then ¥ = x and
p = x/1t1 = 41+ Statement (III) holds. If x, y € X T, thenu = x and p = (xy)'! x. State-
ment (1) holds. Let j; > 1. Consider the following subcases: x = A,y = A,orx,y € X*.
If x = A, then u = y/' and p = y"'*/1. Hence Statement (III) holds. If y = A, then
u = x"*1 ¢ O, a contradiction. If x, y € X7, then u = (xy)/'x and p = (xy)"1/1x.
Statement (/) holds.

3) Ig(u) = lg((pq)kp) for some 0 < k < i. Then u = (pg)*p and hence Statement (IV)
holds.
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4) 1g(w) < 1g((pg)* pq) for some 0 < k < i. Then there exist g1, g2, g3, g4 € X T such
that u = (pg)* pq1 = qap(gp)* and g = q1g2 = g3qa. Let k > 1. Then pg3qs = qapgs.
By Lemma 2.2, pgs3, g4 are powers of a common word. Thus pg3gs = pq € Q, a contra-
diction. Hence k = 0, that is, u = pq; = q4p. By Lemma 2.3, g4 = (xy)', p = (xy)/'x,
and g1 = (yx)"1 forsome x,y € X*,i; > 1, j1 > 0andxy, yx € Q. Thusu = (xy)“*jlx.
This in conjunction with pg = ug> = g3u and Lemma 2.3 yields that g = (yx)? and
g3 = (xy)2 for some i» > 1. Thus pg = (xy)!'*2+/1x, and hence u = (xy)"*J1x for
some x,y € X*. Next, we show that x,y € XT.If x = A or y = A, then it is clear
that pg = (xy)"1T2T/1 ¢ Q. Both cases contradict pg € Q, and hence Statement (II) holds.

m}

3 The properties of two-element pure codes

Recall that a language L is a pure code if it is a code with the property of pure languages.
In the following, we give the characterization for {u, v} € X", which are pure codes. Some
known results are needed.

Lemma 3.1 ([3]) Let L = {u, v} C Q. If L is a pure code, then uv € Q.

Lemma 3.2 ([3]) Let u # v € Q withlg(u) = 1g(v). Then {u, v} is a pure code if and only
ifuv € Q.

In the following proposition, we examine the characteristics of the two-element pure code
= {u, v}. The elements of the regular expression u v, formed by the two primitive words
u and v, are not always primitive words. For example, given u = (xy)*x and v = y for some
x,y € XT with /x # /¥, the word uv = (xy)? & Q. As a language containing two prim-
itive words is a pure code, one can obtain that the regular expression u™v™" formed by the
different length primitive words u and v is primitive, as is done in the following proposition.

Proposition 3.1 Let u,v € Q with 1g(u) # lg(v). If L = {u, v} is a pure code, then
utvt C Q.

Proof Let L = {u, v} be a pure code for some u, v € Q with lg(x) > 1g(v). Without loss of
generality, we assume that Ig(x) > lg(v). We claim that u " v C Q.ByLemma3.1,uv € Q,
and by Lemma 2.1, u™v" € Q, m,n > 2. Furthermore, by Lemma 2.5, [u™vt \ Q| < 1.
Thus there are only two cases that can be considered either uv” = f" oru™v = f" for some
f € Q where m,n > 2. Note that L is a pure code, which implies that f € L* = {u, v}*.
For uv™ = f", by Lemma 2.7, one of the following conditions holds:

() u = (xv™)"!x for some x € X*. Then uv™ = (xv™)" = f", and hence that f = xv™,
andu = f"~!x.Ttfollows thatlg(v) < lg(f) < lg(u). Thisimplies f ¢ L*,a contradiction.

Q) u = (yxx(yx)/THym=1n=2yx(x(yx)/tH"=2xy and v = x(yx)/t! for some x £
y € XT,j > 0.Since u # v € Q, it implies that /x # /Y. From uv™ =
(yx(x(yx)IThym=hyn = ¢n it follows that u = f" 2yxv” 2xy and f = yxv™ ' If
n > 3, then Ig(v) < lg(f) < lg(u). This 1mphes that f ¢ {u, v}*, a contradiction. If
n =2, thenu = yxv" 2xy,v = x(yx)/!, and f = ux(yx)f = yxv™~!. This yields
that Ig(u) < 1g(f) < lg(uv), which implies that f ¢ u* U v* and uv, vu ¢ E(f). Hence
f ¢ {u, v}*, a contradiction.

Therefore u”v = f". Since Ig(u) > 1g(v) and u # v € Q, by Lemma 2.6, it fol-
lows that m = n = 2,u = x(yx)/*!, and v = yxxy, where j > 1l and x,y € X+
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with /x # /y; hence u?v = (x(yx)/Tlxy)? and f = uxy = x(yx)/v. This yields that
lg(u) < Ig(f) < lg(uv), which implies that f ¢ u* U v* and uv,vu ¢ E(f). Hence
f ¢ {u, v}*, a contradiction. This completes the proof. O

Next, we find a procedure to check whether a different length two-element language is a
pure code. The primitivity of the regular expression u* v determines that the two-element
language L = {u, v} is a pure code. For instance, since u = aba and v = ba € Q, it follows
that u™v™ C Q and hence {aba, ba} is a pure code. Furthermore, u = (ab)za, v = baab.

It follows that u?v = ((ab)2aab)2 ¢ Q. By the following proposition, one can obtain that
{(ab)?a, baab} is not a pure code.

Proposition 3.2 Let u, v € Q with1g(u) # 1g(v). Then utv™ C Q implies that {u, v} is a
pure code.

Proof The complete proof is found in the Section 4. O
From Lemma 3.1 and Propositions 3.1 and 3.2, the final result is as follows.

Theorem 3.1 Letu # v € Q. Then L = {u, v} is a pure code if and only if utvt C Q.

4 Proof of the main result

The process of detailed proof concerning Proposition 3.2 is studied in this section. Since
the proof is involved, some lemmata are considered first. The conclusion is presented in
Propositions 4.2 and 4.3.

Lemma4.1 ([7]) Letuv = fl,u,ve X+, f € Q,i > 1. Then vu = g' for some g € Q.
Lemmad4.2 Letu,v € Qandutv™ C Q. Thenu™vtu™ C Q.

Proof Letu,v € Q and uTv™ C Q. Since ututvt c utvt, we have ututvt c Q. By

Lemma 4.1, it implies that uTvTu™ C Q. O
Lemma4.3 Let u,v € Q and u™v™ C Q. Let uily-/l ~‘-~u"’vAj’ = f", where f € Q,
r,n>2andip, ji > 1foralll =1,2,...,r and v/ - .u*vik ¢ f+ forallk < r.

Iflg(f™) > g v/ - u=1vi=1) for some 1 < m < n, 1 < k < r, then one of the
following statements is true:

(D) 1g(f™) < lgivl - vi=tyivy imply that ™ = ul'v/t - v ~Yuy, where uy € X+
withuy <p u;

Q) Ig(f™) < lguitvdt - .. vi-1yikyity imply that ™ = u'tvlt ...y vy, where v| € X
with vy <p v.

Proof (1) If iy = 1, then the result is clear. Let iy > 2. There exist uj,us € X with
u = ujup andi > O such that f = ultpdt o yietyi-tytyand wpuic i Tydk oLyt gde =
[P iy —i — 1 > 1, then it follows that ujuy <, f™ and upu; <p f"™. For
ulty/t . yiry)r = " by Lemma 4.1, there exists g € Q with Ig(f) = lg(g) such that
vl Lyt iy dry ity dt Loyt = g™ Since iy > 2, by Lemma 2.4, 1g(g) >
lg(u);hencelg(f) > lg(u). Thisimplies thatujus, uou; are prefixes of f. Thusujur = usug.
By Lemma 2.2, u1, u, are powers of a common word; hence u = ujus ¢ Q, a contradiction.
Therefore iy — i — 1 = 0. This in conjunction with f™ = wulv/l ... ylk=1pi-1yiy; and
wpuik =i Lydi oL yirgdr = " yields that f* = uitpdt iy

(2) The proof is similar to (1). ]
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Proposition 4.1 Let u,v € Q and utvt C Q. Let u'tv/1 - . . yiryir = f", where f € Q,
rn = 2and iy, jx = 1 forallk = 1,2,...,r. Then 1g(f) > lg(u’m‘”_l) and 1g(f) >
lg(U]'"‘”_l), where iyqy = max{il, 2,..., ir} and jmax = max{jl, j2: ey ]r}

Proof By Lemma 2.1 and Lemma 2.4, the result is clear. O

Lgmma 4.4_ L;t u,v € Q with lgw) > lgw) and u™vt™ C Q. Assume that
u'tv/t - utrvlr = f" where f € Q, r,n >2and iy, jx > 1 forallk = 1,2,...,r and
u'holt - utkvde ¢ fF forallk < r If1g(f) < lg(u'minv), where iy, = min{iy, iz, ..., i},
then it implies that iy < inin + 1 and the following two statements are true:

(1) there exists t € X+ with t <p v such that f = ulming :

(2) for some k = 2,3,....,r, ulkpdi oLyt gdr gt oL i1 -1 = gl’{l’ gr € O, there
exists z € X with z <, u such that gi = u'minz.

Proof Letu, v € Q withlg(u) > lg(v) and u™v™ C Q. Let
ultylt . yirylr = f1 4-1)

where f € Q,r,n > 2 and iy, jr > 1 forall k = 1,2, ..., r. Without loss of generality,
by Lemma 4.1, let i; = iy, thatis, i1 < iy forallk = 1,2, ..., r. Furthermore, for some
k=2,3,...,r, by Lemma 4.1 again, there exists gx € Q such that

utkpdk o ooytrydrytiydt Lyt dk=1 — gl’:' (4_2)

Then there exist f1, f» € X+ with f = f f> such that gx = f> f1. It is clear that 1g(gy) =
lg(f2/1) = lg(f1f2) = 1g(f). Since 1g(f) < lg(u"v), we have lg(gr) < lg(u''v). This
in conjunction with i; < iy yields that 1g(gx) < lg(u’kv) From Eq. (4-1), by Lemma 4.3,
either [ = ut=1y, for some u; <puor f = u'ty; for some vy <p v. In the meanwhile,
from Eq. (4-2), by Lemma 4.3, either gy = u’*~ L5 for some u3 <p uorgg = uk vy for
some v3 <p v. Then there are the following four cases:

(1) f = u"'uy and g = w*'us. Since 1g(f) = lg(gr) and uy, uz are prefixes of u,
we have iy = i1 and u; = u3. This in conjunction with f = fi f> and gx = f» f1 yields
that f1f> = f»f1. By Lemma 2.2, f], f> are powers of a common word. This implies that
f = fif2 ¢ O, acontradiction.

) f = u""'uy and gp = u'*v3. Since iy > iy, wehave (i; — 1) 1g(u) +1g(uy) < i1 1g(u) <
ix lg(u) + 1g(v3); hence lg(f) < lg(gk). This contradicts that 1g(f) = 1g(gk).

(3) f = u'vy and g = w*lus. If iy = iy, then 1g(f) = i1 lg(u) + lg(v1) = ix lg(u) +
lg(vy) > (ix — 1) 1g(u) + Ig(u3) = 1g(gx). This contradicts that 1g( ) = 1g(gx). Moreover,
ifig > iy + 2, then 1g(f) = iy 1g(w) +1g(v1) < Gk — 2) 1g(u) +1g(v1) < (@ — D lgu) <
(ix — D1g(u) 4+ 1g(uz) = lg(gk). This also contradicts that 1g(f) = 1g(gx). Therefore
i =i1+1, thatis, iy = iy, +1.Lett = vy, z = u3. Thenwehave f = ulming, gk = ulmin 7.,

(4) f =u'"vy and g = u'*v3. This proof is similar to case (1). u]
To examine Proposition 3.2, we will prove that the language {u, v} is a pure code by the math-
ematical induction on 7 in the word u/' v/t - .- uirvJr for all iy, jy > 1 wherek =1,2,...,r.

The following lemma is the case when r = 2. The complete proof of Proposition 3.2 is
illustrated in Propositions 4.2 and 4.3.
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Lemma 4.5 Letu, v € Qwithlg(u) #lg(v) andutvt C Q. Then (utvH*\(utvH)P c Q.

Proof Let u,v € Q with lg(u) # lg(v) and vt C Q. Without loss of generality, we
let Ig(u) > lg(v). To show (utvH)?\ (tvt)® c Q. The case u''v/iu'tv?2 e Q for
all i1, j1, j» = 1 and j; # ja, is considered firstly. This implies that u/'vTuitvt C Q U
(uTvT)P Next, the case u’l v/1u2v2 € Qforalliy, is, ji, jo» = landij # is,is considered
as well. The detail proof is studied as follow.

(D) uwituitv2 € Q foralliy, ji, j» > 1and j; # jp. Suppose that

ullp/tyitpl2 = fm (4-3)

where f € Q and m > 2. Without loss of generality, by Lemma 4.1, let j; > j,. Since
uv € Q, by Lemma 2.10, {u, v} is a code. It implies that f ¢ {u, v}*. This in conjunction
with uTvt C Q yields that

wlolt = fif and w2 = fo ! (4-4)

where fi, f» € Xt with f = fi frandi > 0.Ifi = 0, then u’lv/! = f1, u'tv2 = fo "1,
This implies that 1g(f1) = lg(ui‘ vy > lg(ui‘ v2) = lg(fgfm_l) a contradiction. Hence
i > 1. Consider Eq. (4-3), by Proposition 4.1, Ig(f) > Ig@’1~1). If Igu'~!) < lg(f) <
lg(u'"), then there exists u; € X such that f = u/1~ Yy, . Since utv2 = Hfmmi=l we
have f>f1 <p ut=1y ;. Thus fifo = fofi. By Lemma 2.2, f1, f> are powers of a com-
mon word. This implies that f ¢ (, a contradiction. If lg(uil < lg(f) < lg(ui‘ v), then,
from Eq. 4-4), fif2 <p u''v and f> fi <p ulv; hence fifo = f>f1, a contradiction.
Hence 1g(f) > lg(u''v). Moreover, by Lemma 4.3 and Eq. (4-3), we have the following two
subcases:

(1-1) lg(f) < lg@@v/'y). Then f = ultv/tuh1~ Yy for some u; € Xt with u; <p u
and upv”? = ™1, where up € X* with u = uju,. By Proposition 4.1, we have lg(f) >
lg(vf‘ > lg(vﬂ) This in conJunctlon with upv2 = =1 and Ig(f) > lg(u”_l) yields
that m = 2, i.e., f = urv/2; hence urv2 = u'tv/ly =1y I u't = upv* forsome 1 < k <
Jj2, then v/2~ —k — piy2=1y, . Since j1 > j2, we have lg(v/2~ ky < lg(v/tu2~ 1y1), a contra-
diction. If u’! = uyv¥v3 for some 0 < k < Jj2 and v3 <p v, then vitut—ly = ygu27k-1
where v4 € X+ with v = v3v4. Thus v3v4 = v4v3. By Lemma 2.2, v3, v4 are powers of a
common word. That is, v ¢ Q, a contradiction.

(1-2) lg(f) < lg@/ v/ y'1v2), Then f = wlv/tu’tv for some vy € Xt with vy <p Vv
and vov27! = = fm- I where v» € Xt with v = vjvp. Recall that j1 > . lg(f) =
lg(u"v“u”vl) > Ig(v?) > Ig(vav2~ 1) = Ig(f™~ 1). This contradicts to m > 2.
) ultviyt2p2 € Q foralliy, i, j1, j» > 1 and i1 # i>. The proof of this case is similar to
case (1).

By above discussion, we have (uTv )2\ (utvH®@ c Q. m]

Proposition 4.2 Let u, v € Q with 1g(u) > lg(v). Then utv™ C Q implies that {u, v} is a
pure code.

Proof Letu,v € Q withlg(u) > 1g(v). Since uv € Q, by Lemma 2.10, {u, v} is a code. For
convenience, let L = {u, v}. Now, we prove that L is a pure language. That is, /w € L*
for every word w € L*. If w = A € L*, then \/w = A € L*. Hence we consider w € L.
Letw = u¥ € LT forsome k > 1.Ifw € Q, then it implies that w = u because
ue Q;hence yw = w =u € LT. If w ¢ Q, then it is clear that u = Jw € LT.
Note that for w = vk € LT for some k > 1, it is similar to w = u¥. Furthermore, let
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w = wovloyitylt .. yiryir for ig, jo > 0and ir, jx > 1 where k = 1,2,...,r. We con-
sider the following subcases: Case(/) iop = jo = 0. It follows that w = whpdt ..yl
Case(I1)ip = 0 and jo # 0. Then w = voy’1v/i ... yiryjr. By Lemma 4.1, we have
wy = ullv)l - ylryir T Case(I11)ig # 0 and jo = 0. Then w = w0ty ... yiryir,
From the above three subcases, we prove that L is a pure language by the mathematical
induction on r in the word w = u!1v/! - - - uirvJr for all iy, Je=>1,wherek=1,2,...,r.If
w = u'lv/! € Q, then /w € LT. By Lemma 4.5, the result is true when r = 2. Suppose
that the result is true for 2 < r < n. We want to show that if w = u/lv/1 ... yln+iyin+l
then w € L. If w = utv/t ... un+1p/n+1 € Q, then it is clear that o/w € LT. Thus

let w = u'lv/t .. u+1yin+1 ¢ Q. By Lemma 4.1, without loss of generality, assume that
int1 <igforallk=1,2,...,nand
ulnt ity iyt iy dn = fm (4-5)

for some f € Q andm > 2. If f € {u, v}, then it is clear that {u, v} is a pure language.
Hence f ¢ {u, v}" is considered. Note that f satisfies Lemma 4.3. From Eq. (4-5) and by
Lemma 2.1, since u/»+1v/in+1 € Q, two cases u'lvJ! - - - uinvin € Q or ultvd' ... ylnyin ¢ Q
need to be considered.

(1) w1t ...yl e Q. There exist fi, f € Xt with f = fi f» such that u/m+1 pintl =
fifl, uitydt . yinyin = fzfm_i_l, where 0 < i < m.Ifi > 1, by Lemma 4.3, either
fi = u+1~lyuy for some u; <p u or fi = u+1v; for some vy <p v. Both cases imply
that lg(fi) < lg(ui"+1v), that is, i 1g(f) < lg(ui"+1v). By Lemma 4.4 and i,4+1 < iy
forall k = 1,2,...n, it follows that Ig(f) > lg(ui"“) and lg(f) > lg(vj"“); hence
21g(f) > lg(ui"+‘) + lg(v/'1+1). This in conjunction with i 1g(f) < lg(ui"+1v) yields that
i = 1; that is, 1g(f) < lg(ui"+1v). From Eq. (4-5), by Lemma 4.1, there exist g1, g» € Q
with 1g(g1) = 1g(g2) = 1g(f) such that

ulty/l .o yintiyntl — g’l’”

and

u12 .U]2 - u1n+1 v}n+1ull v]l — gg'l

This in conjunction with 1g(f) < lg(ui"+' V), ip+1 < iy forallk =1,2,...n, and Lemma
4.4 yields that iy = ip = ipy1 + 1 and g1 = g = uin+1z for some z <p u. Then
Uyt .o yintydntt = gypoligitu 2y’ - yinriyinit = M where t € Xt with zt = u.
Since g1 € Q, we have rv/! = gi. Thus uir+izrv/t = yimrrtlyit = glz. This contradicts
uTvt C Q. Therefore, i = 0. Then yirtlvintl = f, yhp/t .. ylnyin = f fm=1 By
Lemma 4.3, there are the following subcases:

(1-1) f = uh+tonrtgity)t . oyik=yy with uy <, u for some uy € X* and k > 1. Then
fo = ulrvlt oyl el = yopdkoyinydn and w = uyu, for some up € Xt It
follows that up v/ - - - uinpdn = (yir+iyinttyitydt ooyl ym=1 _f lg(uz) = lg(uy), then
uy = up; hence u = ujuy ¢ Q, a contradiction. Hence lg(u1) # 1g(uz). We only consider
the subcase Ig(u1) < lg(uz). The proof of the subcase Ig(u1) > lg(uz) is similarly. As
lg(u1) < 1g(up), there exist uzy, uzy € X7 such that ur = usquan, us; = uj and

up vl gy = u2u1n+l_1v]n+]ull_lulfm_zl (4-6)
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This yields that uz; <p ua; hence uy = uxpuz3 = uzjus; for some uz; € X*+. By Lemma
2.3, we have us; = (pq)’, un = (pq)? p, urz = (gp)’ for some p,qg € X*,i >1,j >0
and pq, gp € Q. Then u = usjuxpur; = (pg)*+/ p. Note that p, g € X because p = A
org = A imply thatu ¢ Q, a contradiction. Furthermore, we consider Eq. (4—-6) again. Since
m>2and f = ulntLydndtyiigdt oo yie=ly | Cthere are the following two subcases:

(1-1-1) v <g uy. There exists uj; € X™* such that u; = ujv. Since u; = up; = (pq)i, this
implies that v <g (pq)'. In the Meanwhile, from Eq. (4-6), it follows that

vty = u23ul”“71v]"+1u”flulfmfz. 4-7)

Thus v <, (gp)’. Therefor, we have v <y (pg)’ and v <, (gp)’. By Lemma 2.12,
there are the following four cases for some x,y € Xt with i{,i5 > 1, j| = 0
and xy, yx € Q.(Nv = (xy)jfx and ¢ = (xy)ii+jfx. This in conjunction with
il yinydn = (qp)’ i1 =Lydnt1yitydt o=l £m=2 yields that (xy)jl/x < (yx)iiﬂ'{
xp(gp)~L. If ji = 1, then xy = yx. By Lemma 2.2, x,y are powers of a com-
mon word. Thus xy ¢ Q, a contradiction. Hence, ji = 0 and x/lu’2 ... uny/n =
(yx)i;x(qp)i_]ui"+1_lv/"+1ui1v/1 oo =Ty fm=2 Tt is true that the integer jj is enough
lange such that yx <p x/1. By Lemma 2.11, we have /x = /Y- Thus xy ¢ Q, a contradic-
tion. (I1)v = (xy)'1*/ix and gp = (xy)'1+2+/i x. This subcase is similar to (1).(I11)qg =
vi1T/1+1 This in conjunction with u = (pg)%*/ p yields that uv1Hi+! = (pg)2+itl ¢ Q,
a contradiction. (I V)v = (gp)'11/i*!q. This also in conjunction with u = (pq)%*/ p yields
that uv = (pq)2 i +i1+/i+2 ¢ O a contradiction.

(1-1-2) u; <s v. For Eq. (4-7), there exist v{, v, v3, v4 € X such that v = vjvy =
v3v4, V] = up3 and vq4 = uy, thatis, v = (qp)ivz = 3 (pq)i. We consider the following four
subcases: (I)Ig(v3) < lg(q). There exist g1, g € X such that v3 = g1 and ¢ = g1¢>. This
implies that g2p(gp)' ~'va = pqig2(pg)'~". 1f i > 1, then we have g2pgq1 = pqiga. By
Lemma?2.2, pq1, g> are powers of acommon word. Thus pg ¢ Q, acontradlctlon Therefore
i = l;hencev = gpvo = q1pq. ByLemma2 3,wehaveqip = (xy)i1, g = (xy)flx pvy =
(yx)i; for some x, y € X*,i " >1, jl >0and xy, yx € Q. For pvp = (yx)’l this in con-
Junctlon with ga pvy = pg = Pq192 and Lemma 2.3 yields that pg; = (xy)’ qQ = (xy)/2x
for j5 > 0. Then g p = (xy)’l = pq1.-ByLemma 2.2, p, q are powers of a common word.
Since xy € Q, we have p = (xy)X and ¢; = (xy)* with k| + kp = i’. From pv; = (yx)’ ,
we have p <, (yx)ii. This implies that xy = yx. By Lemma 2.2, x, y are powers of a
common word. Thus xy & Q, a contradiction. (/1) 1g(v3) = Ig(g). Then v = q(pq)i. This
in conjunction with u = (pq)**/ p yields that uv = (pg)**/*! ¢ (. a contradiction.
(111)1g(v3) < lg(gp). There exist p1, p» € X such that v3 = gp; and p = p; p>. This
implies that py(gp1p2)'~'va = (p1p2g)’. If i > 1, then we have pagpi = pipaq. By
Lemma 2.2, p, pag are powers of a common word. Thus pg ¢ Q, a contradiction. There-
fore,i = 1;hence v = gpvy = gp1 pq. Note thatlg(vy) = lg(gp). There exist p3, ps € X+
such that vy = pag and p = p3ps. Then v = gp1p2pag = qp1p3paq; hence py = p3.

Since p = pip2 = p3ps, by Lemma 2.3, we have p; = (xy)’ i , P2 = (xy)flx pa= (yx)’

for some x,y € X*, if =1, ji = 0and xy, yx € Q. Then p = (xy)i 1+/ix. Since
vy unyhn = pguint— 1v1"+' =1y £m=2 it implies that psq <p u = = (pg)%+ip;

hence yx = xy. By Lemma 2.2, x, y are powers of a common word. Thus xy ¢ Q, a
contradiction. (IV)1g(v3) = Ig(gp). Then v3 = gp. Since v = (gp)va = gp(pq)’ and
lg(v2) = lg(v3), it implies that pg = gp. By Lemma 2.2, p, g are powers of a common
word. Thus pg & Q, a contradiction. (1-2) f = uln+p/r+iyity/t ... yiky; for some vy <pV
and k£ > 1. The proof of this subcase is similar to (1-1).
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(2) ultvdt ... yinyin ¢ Q. There exists a primitive word ¢ € (uTvT™)* and k > 2 such
that gk = uitvJl .. yinyJn; hence w = ulntiphntigh = fm, By Lemma 2.7, there are the
following two cases:

(2-1) uln+1yintt = (xlqk)’"*lx for some x € X*. Since ¢ € (u*v™)* and {u, v} is a code,
this implies that u"'v/! <, g. If ¢ = u''v/!, then

uln et =y iyt iy dt iy k=2 (g ym =2 (4-8)

Since m, k > 2 and i,4+1 < i1, we consider the following two subcases:

2-1-Dxu't = uln+19%0 for some ko > 0. Then from Eq. (4-8), we have pJn+1—ko—j1 —
q

u'tv/t (u't vf‘)k_z(qu)m_zx. If u’t € v+, then since u, v € Q, it implies that u = v, a con-

tradiction. Thus 1/l = v¥1y; and vyv/ntt —ko—ii—ki=1 — i (1At )k_z(qu)’”_zx, where

vy, v € Xt with v = vjvp and k; > 1. This implies that vjvy = vov;. By Lemma 2.2,
v1, vy are powers of a common word. Thus v = vivy ¢ Q, a contradiction.

(2-1-2)xu’t = u+1ykoy; for some kg > 0 and v, <p v. We have vyudntl—ko—1 —
vityitydi (uilv-"‘)k’z(qu)’”’zx, where v; € X' with v = wvjvp. This implies that
v1vy = vov1. By Lemma 2.2, vy, vy are powers of a common word. Thus v = vjv2 ¢ Q, a
contradiction.

By above discussion, u'lv/l = g is impossible. Hence u'lv/! <, g. Again, since g €
(uTvT) and {u, v} is a code, there exists 1 < [ < n such that g = u''v/! - - - y¥lv/! Then

ylintlynet — ey fyiry iz ,ullvjlqkfl(qu)mf%c'

Since m, k > 2 and i, < i, there are the following two subcases: xu'l = yin+iypko for
some kg > 0, and xu'! = u'n+! v¥0y; for some ko = 0,v; <, v. The proofs of these subcases
are similar to the situation when ¢ = u'!'v/!.

(2-2) uinttydntt = (yx (x(yx) "2y x (x (yx)/TH 2 xy and ¢ = x(yx)/ ! for some
x#£ye Xt j>0.Thenw = (yx(x(yx)/THEk=lym = fm-hence f = yx(x(yx)/tH 1,
Let m > 3. We have u/ntipintt = fm=2yx(x(yx)/ T =2xy. This implies that 1g(f) <
lg(uin+1v/n+1). By Lemma 4.3, f = ul+1— Ly, with u; <p u for some u; € X+ or
f = uin+ly; with v <p v for some v € Xt If f = uin+1= 1y then it implies that
lg(yx) < lg(u’+). This in conjunction with i,y < i and wlv/l ... uinvin = gk =
(x(yx)j+1)k yields that 1g(xy) < lg(uil). This implies that xy, yx are prefixes of ulntt;
hence that xy = yx. By Lemma 2.2, x, y are powers of a common word. Thus f = VAR
hence ¢ ¢ Q, a contradiction. If f = wu'"*'vy, then we have u'"+'vy <, u'+ly/nl =
(yx (x(yx)? TH,=1ym=2yx (x (yx)71)k=2xy. Since k > 2, m > 3,1g(yx) < lg(uit1vy).
This in conjunction _with g1 < i1 and wolt .o oyinyin = qk = (gc(yx)j+1)k yields
that 1g(xy) < Ig(u''vy). This implies that xy, yx are prefixes of u'"t'vy; hence that
xy = yx. By Lemma 2.2, x, y are powers of a common word. Thus /x = ,/y; hence

g ¢ 0O, a contradiction. Let m = 2. We have uy/»+1ypitl = yx(x(x(yx)/+l)k ny If
lg(yx) < Ig(ui+1), then yx < <p u'n+1 . Now consider u'1 v/ - u’”vf" = (x(yx)/"'l)k Since
x(yx)’Jrl =qgec@@vhHT, there exists 1 <[ < n such thatx(yx)”’1 =yl .. yliylt,

This in conjunction with Ig(xy) = lg(yx) and i, < ij, we getxy < u'n+1 . Thus Xy = yx.
By lemma 2.2, x, y are powers of a common word. This implies that \/x = ,/y, a contra-
diction. Hence 1g(yx) > lg(ui+). From u/m1pint! = yx(x(x(yx)j+1)k_2xy, we consider
the following two cases:

(2-2-1) yx = ul»t1vk0 for some kg > 1. If k = 2, then u/ntlv/nt! = yxxy. Since
yx = u’"“vk" we have xy = v/t17%0_ This in conjunction with lg(xy) = lg(yx)

@ Springer



A note on pure codes 357

and lg(u) > Ig(v) yields that j,11 — ko > 2. That is, xy ¢ Q. By Lemma 4.1, we
have yx ¢ Q. This implies that u’+1vk0 ¢ Q. This contradicts to utvt < Q. If
k > 3, then (x(yx)j+1)k_2xy = y/nt1=%0 We consider the following two subcases:
(D(x(yx)ITHe=2 = ki xy = phri=%k0=k where 1 < ki < jup1 — ko. Since
lg(xy) = Ig(yx) and 1g(u) > lg(v), we get j,+1 — ko — k1 > 2. Thatis, xy ¢ Q. By
Lemma 4.1, we have yx ¢ Q. This implies that u’+1vX0 ¢ Q. It contradicts to v C Q.
(II)()c(yx)j'*'l)k_2 = vk, Xy = vpvdnri—ko—ki—1 here 1 < k; < Jn+1 — ko and
vi,v2 € XT with v = vjvy. Since vav1 <p xy <p (x(yx)/TH "2 = vkiy;, we have
vov] = v1v2. By Lemma 2.2, vy, vy are powers of a common word. Then v = vjvy ¢ Q, a
contradiction.

(2-2-2) yx = uln+19k0y; for some kg > 0 and v, <p v. The proof of this subcase is similar
to (2-2-1). o

Proposition 4.3 Let u, v € Q withlg(u) < Ig(v). Then utv™ C Q implies that {u, v} is a
pure code.

Proof By Lemma 4.1, The proof is similar to Proposition 4.2. O
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