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Abstract The traditional approach for specifying adaptive behavior in embedded
applications requires developers to engage in error-prone programming tasks. This
results in long design cycles and in the inherent inability to explore and evalu-
ate a wide variety of alternative adaptation behaviors, critical for systems exposed
to dynamic operational and situational environments. In this paper, we introduce a
domain-specific language (DSL) for specifying and implementing run-time adaptable
application behavior. We illustrate our approach using a real-life stereo navigation
application as a case study, highlighting the impact and benefits of dynamically adapt-
ing algorithm parameters. The experiments reveal our approach effective, as such
run-time adaptations are easily specified in a higher level by the DSL, and thus at a
lower programming effort than when using a general-purpose language such as C.
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1 Introduction

Embedded applications operate in resource-constrained environments subject to con-
stantly changing operational situations. These characteristics are challenging for devel-
oping such applications, since the volatility often causes a decrease in performance
and an increase in computational cost. Furthermore, embedded applications embody
requirements such as reliability, maintainability, availability, security, run-time per-
formance, and energy efficiency, which convey further development challenges [27].

Nowadays, it is becoming highly desirable to design software applications that are
adaptable at run-time, thus increasing application operational and situational aware-
ness. Adaptations can take various forms, namely: (i) at the algorithmic level, where
one can make use of different processing algorithms or changing algorithm parame-
ters (e.g., [14,36]); (ii) at a system level, by simply changing the period at which some
computations are performed, or by relying on alternate resources that provide equiv-
alent information (e.g., [41]). Adaptability can therefore be used and even required
to keep applications running, despite the changes in operational situation (e.g., loss
of sensor connection) or the presence of specific requirements (e.g., execution
deadline).

Developing and maintaining adaptive applications, however, is a very challenging
and error-prone process, as implementing dynamic behavior in an application often
requires low-level cumbersome programming tasks, or complex architectural applica-
tion restructuring. Moreover, frequently, functional application logic and adaptation
behavior get mixed, which is potentially risky due to the high degree of complexity
introduced by the intertwining of the application and adaptation behaviors [30]. Fur-
thermore, mixing two logics is also a troublesome development process and an overall
bad practice. To address this challenge, we introduce a software architecture that
allows applications to adapt at run-time, by having their adaptable behavior defined
in an external, high-level and platform-independent domain-specific language (DSL).
The DSL allows the specification of adaptation strategies, defined in terms of rules
that produce the required application adaptability, thus avoiding these aspects from
becoming intertwined within the application logic. Our approach has been in contin-
uous development, improving the DSL specification, support infrastructure, and its
real-world applicability [36,37].

To highlight the benefits of the proposed approach, we describe and evaluate its
use in the context of a case study based on an industry-developed application for
stereo navigation (StereoNav) [32]. StereoNav consists of an embedded sub-system
responsible for vehicle localization in cases where the vehicle’s main satellite navi-
gation system has failed or is temporarily unavailable, and the vehicle has to localize
itself through other methods during a period of time. The StereoNav application is
complex, executes in an embedded environment, and includes a processing algorithm
composed of several parameterizable operations, therefore it becomes an ideal case
study for the use of our DSL-based approach to specify the adaptation behavior. By
adjusting the parameters that influence computational cost (e.g., execution time), we
ensure a dynamic, real-time compliance with requirements defined by the industry
developer (e.g., quality-of-service (QoS)).
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The remainder of this paper is structured as follows. Section 2 describes the
approach and its characteristics. Section 3 overviews the implementation toolchain
for the approach. Section 4 presents the case study and the experimental evaluation
conducted. Section 5 provides an overview of related work. Finally, Sect. 6 concludes
the paper and suggests future work.

2 A DSL-based approach for adaptation specification

General-purpose languages (GPLs), such as object-oriented languages like Java or
C++, are used to program nearly any application or system, addressing potentially any
problem that needs to be tackled. However, as more complicated problems arise, their
complexity spawns the need for more concrete, domain-tailored programming solu-
tions that solve the problem more efficiently. To this end, generally, DSLs allow the
concise description of a domain logic reducing the semantic distance between the prob-
lem and the programmed solution [7,39]. Deursen et al. [12] defined a DSL formally
as: “a programming or executable specification language that offers, through appro-
priate notations and abstractions, expressive power focused on, and usually restricted
to, a particular problem domain”.

The use of DSLs is justified by numerous advantages, namely, to enhance produc-
tivity, reliability and maintainability, since they are more concise and thus written more
quickly and therefore easier to maintain; and also to allow easier reasoning and valida-
tion since they provide the notation to express the semantics of a domain. In addition,
there are other relevant general benefits to the use of DSLs [38]: (i) concrete expression
of domain knowledge as DSLs are tailored towards a narrow, specific domain and thus
are designed to provide the exact formalisms suitable for that domain; (ii) possible
direct involvement of domain experts, often non-programmers; (iii) modest implemen-
tation cost as DSLs are typically implemented by a translator that transforms the DSL
code into other compatible code; (iv) reliability and correctness that is easily verified.
As disadvantages, the generation of a new language for every domain can have poten-
tial high startup costs due to design, implementation and documentation. Also, initial
tool limitation, lesser trained programmers and additional required mechanisms for
integration of slow language ramp-up. There is also the difficulty of balancing between
domain-specificity and GPL programming constructs. However, on the long run, DSLs
pay off.

Considering both advantages and disadvantages mentioned, the bottom line is that
DSLs offer substantial gains in expressiveness and ease of use compared with GPLs
in their domain of application, since they provide a notation close to an application
domain, and is based only on the concepts and features of that domain [29]. As such,
a DSL is a means of describing and generating members of a program family within
a given problem domain, without the need for extensive knowledge about general
programming, and thus raises the level of abstraction beyond coding and consequently
makes development faster and easier [35]. Moreover, DSLs allow independence from
the implementation platform, thus the need for specific knowledge of each platform
is greatly avoided, as well as the intervention of an expert in the technology [35].
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Fig. 1 Overview of an adaptation policy structure for a software adaptable behavior

2.1 DSL-based approach

Our approach defines an adaptation logic that is external to the application, and takes
the form of an adaptation policy entity composed of strategies that can target specific
adaptation concerns (see Fig. 1). Our implementation for the adaptation policy entity
is accomplished with a DSL, tailored specifically for defining adaptation strategies in
an independent, scalable, flexible and task-specific way; namely for: (i) activating and
deactivating specific sections of code to enable/disable computational steps, (ii) chang-
ing function parameters to reconfigure algorithms, (iii) modifying the frequency of
function execution.

The proposed DSL embodies the adaptation-related concerns as it defines a set
of high-level abstractions for looping and for periodic tasks, algorithm parameter
changes, testing of conditions, and rule declarations. Within the adaptation domain,
the proposed DSL is thus more succinct and its notation more intuitive than using
code written in a GPL, such as C. Also, a proper specification of adaptation behavior
provides a more powerful mechanism to define different configurations and their trig-
gering conditions, as opposed to using external libraries or APIs. Being high level and
with domain abstractions also allows a wide applicability to most general applications.
Consequently, the behavior that is specified through the DSL allows rapid prototyp-
ing of adaptable processes, flexible behavior management, and a clear evaluation of
possible conflicting adaptations. In addition, we believe that the use of our DSL-based
approach provides:

– An easy and non-intrusive way to express adaptability behavior due to the DSL
constructs. Abstractions, such as the ones related to periodicity and execution
rates, concentrate in simple DSL constructs complex behavior and avoid the cum-
bersome code needed in the final implementation using the target programming
language (e.g., C or Java).

– An easy way for exploring different adaptability rules during the development of
the solution (Sect. 4 shows experiments when developing rules incrementally).
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This is an important aspect as it may reduce the development time considerably
considering that in a traditional approach, modifying rules usually require changes
to the application code.

– An easy way to verify adaptability behavior as the DSL may also be used to insert
code for monitoring and debugging (Sect. 4.7 shows an example). The separation
of concerns and the rule-based approach provided by our DSL makes easier the
verification process. For example, we show in Sect. 3.2 how to use automata to
verify possible rule conflicts during static analysis. In fact due to the extraction
of finite automata from the rules expressed using the DSL, users may consider
to insert code that follows the automata states and compares those states to the
rules applied during runtime. This brings an additional verification process during
execution.

– Additional support when mapping adaptation-related computations to the target
architecture. The separation of concerns provided by our approach allows mapping
tools to decide about the use for different target architecture cores, responsible to
execute the adaptive behavior (i.e., mapping it to the same core of the application
or to a different core). This is especially important in the presence of complex,
computational intensive, adaptive behavior as using a specific core makes the
execution of the adaptation-related computations concurrent (Sect. 4.7 shows an
example using an architecture with two cores).

– A specification of adaptability requirements that can provide a more formal nota-
tion when eliciting non-functional requirements. Also, analysis specific to the DSL
which can report errors and warnings that otherwise may not be possible to identify.

– Code reusability and consequently portability across platforms. This is a key advan-
tage in the context of applications that need to be maintained across different
platforms and may require architecture-specific strategies.

Due to the independency characteristics of the DSL, integrating the adaptation
code into the application can be accomplished through several different mechanisms,
such as libraries and APIs, middleware layers, compilers, or interpreters. In spite of
the multiple solutions for integrating DSL code into the application code, one of the
benefits of a DSL towards interfacing, is the freedom to develop and use any supporting
infrastructure that best fits the developers needs. This freedom prevails whether the
interfacing and integration are intended to be static or dynamic, less or more intrusive,
at compile time or run-time, and using whichever weaving techniques. Nevertheless,
regardless of the mechanism, for better logical partitioning and conceptual separation,
the original application code should not require major modifications to work with our
approach. In the end, adaptation specifications are abstracted from the details that
defined how the DSL code is integrated into the software application and underlying
system.

2.2 DSL specification

In our DSL, an adaptation policy is specified as strategies composed of the follow-
ing components: declarations, operations, rules, and an additional auxiliary code
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Fig. 2 DSL code for adapting image resolution according to the vehicle current speed. Additional comments
added to help with the comprehension of the example

section. Declarations are reserved for static information that is required for the spec-
ification of the adaptation process (e.g., variables to be used, algorithm parameters,
function imports). Operations specify mainly where the adaptation rules are trig-
gered (e.g., operational points for evaluation and action). The rules section specifies
the actions for adaptability; and in the code section, external functions can be defined
in supported GPLs. A commented example of adaptation specified with the DSL is
shown in Fig. 2. It depicts a possible strategy for StereoNav where the resolution of
the captured images is adjusted according to the vehicle speed.

In the DSL code presented, lines 3–7 refer to declarations. They specify the import
of two functions: stereoNav and getVehicleSpeed. The provided default
parameter values for stereoNav allow for a baseline failsafe execution with no
adaptation. Lines 8–13 define the operations, highlighting the evaluation location
for rule r1, which is triggered before the execution of the call to stereoNav.
Lines 14–27 enclose the rules section, defining rule r1. Rule r1 retrieves the
vehicle speed through the provided function, and depending on its value assigns
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different values for the image resolution parameters of the stereoNav function.
Line 17 specifies that rule r1 must be executed for each call of the stereoNav
function. The auxiliary code section could be provided at the end of the specifica-
tion.

2.2.1 Policies and strategies

A policy is the adaptation “program” specifying the modifications to be applied within
the application. Any software application is assigned one adaptation policy, while,
an adaptation policy can potentially be used by one or more software applications,
allowing reusability.

A policy defines strategies of adaptation, further composed of multiple properties
and other components that characterize how the strategy is enforced. As an aggre-
gator entity, the policy allows the administration and control over strategies, such
as their activation and deactivation, or extension composition schemes. A policy is
required to be composed of at least one strategy; however, the possibility to include
multiple strategies allows for better adaptive behavior organization. With the defini-
tion of multiple strategies, only the first strategy defined is activated, being all others
inactive.

The execution of a strategy can often be perceived as a parallel component to the
main application logic, in the sense that its execution is concurrent to the application’s
main workflow. Furthermore, strategy entities can be defined to receive configuration
parameters and output values, further promoting reusability to different operational
situations with particular characteristics.

2.2.2 Declarations

Declarations are the initial structural section in the arrangement of a DSL strategy.
This section’s purpose is to describe the necessary fields to be used within the strategy,
that provide state, such as variables; and also to indicate references to functions from
the target software application that are used within an adaptation specification defined
with the DSL.

Variables are declared by specifying a type, an identifier, an initial value, and a DSL-
specific supplementary property for value ranges to define (whenever known) the set or
range of valid values that a numerical variable may assume. Ranges allow a mechanism
for variable saturation, e.g., increments are only considered until the defined maximum
value. Regarding functions, it is possible to declare references to application-defined
functions, and therefore their identifiers specified in the strategy must be equal to the
original function name and must exist within the application source code. Within a
DSL-defined policy, for functions accepting or returning multiple values (i.e., inputs
and outputs), the different values are accessed with the DSL using a dot syntax. The
DSL also provides additional macro instructions related to functions that encompass
sets of instructions and actions that allow for useful functionalities when specifying
the adaptations to be performed (e.g., elapsed_time, rate).
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2.2.3 Operations

The operations section is responsible for specifying the adaptation’s operational con-
nections to the system’s computational process. The structure of this section is com-
posed mainly from blocks that specify the special locations for adaptation evaluation
and action.

The operations section is built with a main block, and a set of possible sub-block
structures that are used to define to frame-specific steps or components of the system’s
workflow. Such sub-block structures are used to concentrate operation steps that may
be activated or deactivated. An operation point defines a reference to the evaluation and
action locations where the referenced rule will be triggered, and therefore executed in
the source code. Operation points are associated with function calls or with specific
locations in the application’s source code. Multiple points can be defined for the same
rule, allowing the evaluation/action at different points in time. Operation points only
define the target location for rule evaluations, and other rule properties, such as rule
execution periodicity, are defined in the rule itself. Without the specification of the
specific points where rules should be evaluated, it would be a task of the weaver to
analyze the application code and to select the observation/monitoring and the action
points. In the current weaver, this analysis is not performed and it is a task of the user
to explicitly specify those points using the DSL.

2.2.4 Rules

The rules section specifies multiple adaptation rules, responsible for performing the
necessary adjustments that adapt the behavior of the target application, at the points
specified within the operations section. Each rule is composed by a rule identifier, a
triggering periodicity and condition, and a set of actions. Rule management is con-
centrated in this section and thus adding, removing or modifying existing rules are
accomplished without an added overhead and without changes scattered across several
locations. For prioritization and dependency, an evaluation order for rules can be pro-
vided, as well as predicates to constrain the execution of their actions (e.g., execution
of one action requires the prior execution of another).

Rules are triggered by events, fired when particular conditions occur or periodically.
Common triggering conditions are related to memory, CPU, energy, and execution
times (e.g., when memory is low, when energy consumption is high). These triggering
conditions are provided by imported functions or by the infrastructural support of the
DSL (e.g., code generated when integrating adaptations). The execution of a rule may
change the application to a new operational state, and there should always exist a
transition or a sequence of transitions that allows the application to return to its initial
state. In practice, rule executions are modelled as finite-state machines. Furthermore,
the execution of a rule is atomic, in the sense that when the execution is started
it must complete entirely, to avoid partially applied changes, which could result in
incomplete and erroneous situations of the application. Such problematic actions could
compromise the integrity of the entire application and also the benefits expected from
the adaptations.
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2.2.5 Code

The code section is an auxiliary section to the main DSL structure. Its purpose is to
allow developers to extend the DSL specification to add functionality using the target
programming language. This section also helps the integration with applications. In the
code section, functions and other external components can be defined in any supported
programming language (e.g., C, Java). The code section must be parameterized with
the name of the programming language in which the code is written.

Regarding integration, the target language code in this section is added to the
application source code. Depending on the language, the weaver integrates the code
differently. Mainly, the code within this section is inserted to the application code near
the adaptations and must be without errors and with all necessary components. For
example, in Java, a method defined in the code section is placed within the class where
the adaptations that use it are weaved.

3 Implementation: programming toolchain

Regarding implementation, the toolchain to support our approach incorporates the
adaptations statically into the target source code of the program to be adapted. This
toolchain currently supports C and Java programs and involves the validation of the
DSL code, compilation of DSL code, injection of the DSL code into the program
code, and the compilation of the adaptive program source code. An overview of the
toolchain is presented in Fig. 3.

For the integration and interfacing between the adaptation and the application code,
we are currently applying a joint-compilation process. As such, aiming to support
different target programming languages, the compilation process must translate the
DSL code into the target programming language, through a compiler tool that knows
how the domain abstractions defined with the DSL are represented in another language.
Initially, a compilation process translates the DSL code into a target GPL of the
application; secondly, the compiled adaptation code is weaved in the application’s
source code. To implement this process, several solutions surface depending on the
target language and platform. Our solution aims at weaving the adaptation code within
the application source code at compile-time, and thus requires access to the original
source code of the application.

3.1 Application source code analysis and adaptation specification

Each application is different in the sense that its functionality and requirements may
constrain or enable certain adaptations. Furthermore, if the application has not been
developed having adaptable behavior in mind, the coding style may also determine
the range of possible adaptations. Having a set of adaptations in mind to be applied,
an analysis of the source code must be conducted to evaluate if these adaptations can,
in fact, be applied.

If the application source code was not developed with the intention for the imple-
mentation of adaptations, some modifications may need to be applied before adapta-
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Fig. 3 Overview of the DSL’s implementation and programming toolchain

tions are incorporated, namely, to explicitly identify functions, their inputs and outputs,
variables, etc. Some code restructuring may also be accomplished, as non-structured
code complicates the implementation of adaptations. Nevertheless, the need for these
modifications is fairly reduced or even completely mitigated if the application is devel-
oped based on best practices, i.e., well-formed and well-developed code (e.g., [5,10]).
The bottom line is that nameable components, clearly identified variables, parame-
ters, and clear conceptual separation between application functionalities allow a more
direct integration of adaptations within the application code.

With knowledge of the application’s source code and with its restructuring to accom-
modate the incorporation of adaptations, it is possible to specify the adaptation policies
using the DSL. After specification, the adaptation code is verified to provide a valida-
tion of the adaptable behavior.

3.2 Verification and validation process

Verification and validation of an adaptation policy defined using the DSL is a required
process for checking specification consistency, and for determining potential con-
flicts (e.g., incompatibilities, integrity errors). The verification and validation process
is conducted at several levels, each one evaluating different aspects (e.g., rule inter-
operability verification), and different targets (e.g., all or only specific sections). Due
to its importance, we focus on the specific verification step for analyzing possible
conflicts within the rules section, which is a core component in the specification of
the adaptable behavior. The existence of multiple rules with several triggering con-
ditions and adaptation actions, may cause potential conflicting situations to arise,
namely: (i) rules that share at least a subset of triggering conditions; (ii) rules that
manipulate a subset of the same parameters; (iii) overriding or overlapping rules;
(iv) rules incompatible due to requirements or objectives. In order to verify the set
of adaptation rules defined, we propose a verification process based on automata the-
ory [21].

Adaptation rules are interpreted as automata with a set of adaptation states, a
set of triggering conditions, and a transition function that maps the transforma-
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Fig. 4 Rule control-flow translation between domain concepts and automaton components

tion from one adaptation state to another, according to the provided input condi-
tions. Also, automata can hold supplementary data, such as guards, conditions and
time restrictions. This process thus allows to model the rules section as different
automata, and through automata operations, potential conflicting situations are iden-
tified, both statically and dynamically, and through automatic and manual mecha-
nisms. Modeling and translating an adaptation rule to an automaton is based on
the rule’s code control flow graph [2], to identify operational states and the paths
that might be traversed with the rule’s actions during execution. For example, as
rules are often defined as if-then-else statements, each branch may hold information
defining a new adaptation state, its triggering condition and the set of actions (see
Fig. 4).

3.3 Adaptation compilation and weaving

With a valid DSL adaptation specification, the DSL code is translated into the target
source code language (e.g., DSL → Java, DSL → C). This translation is accom-
plished through specific DSL code generators that allow the posterior incorporation
of the adaptations into the application’s original source code. A static weaving is
used to support the integration of adaptation code with the application’s code at
compile time. Our current prototype implementation for compilation and weaving
is defined by the multiples components, which we describe in the following sec-
tions.

For further customization, there are supplementary compilation and weaving
options that extend the configurability of the developed toolchain to specific lan-
guages, platforms, devices, etc. At the DSL-compilation and code-generation stage,
the additional compilation-specific mapping and translation characteristics describe
details on how the DSL specification is translated and implemented. These configu-
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rations are optional and simply allow more customizations for the adaptation policies
specified. The supplementary configurations could be defined within the DSL or as a
separate parallel auxiliary configurability mechanism.

3.3.1 Compilation

The adaptations defined within DSL code are translated into code abstractions of the
target programming language. The compiler currently supports C and Java as target
languages. This process stage allows a direct translation of concepts, being rules of
the DSL section where most of the compilation is concentrated. The most relevant
compilation translations are:

– Declared variables are translated to global scope variables with the same type
and initialization. Saturation enforcing is performed by capping the variable value
using if-then-else statements.

– Dot syntax access to variables in the DSL is translated to the appropriate access
format depending on the type of variable and scope.

– DSL-specific macros are compiled to functions and the necessary support
code (e.g., the elapsed_time macro requires the measurement of a function’s
start and end time).

– Rule temporal triggers (i.e., periodicity) are implemented as timers. In Java, the
implementation uses Timer and TimerTask classes. In C, the implementation uses
a developed library which steers the implementation with specific adjustments
according to the platform, i.e., hardware timers with our Xilinx embedded boards,
and in Linux using the signal library.

– Rule prioritization, evaluation order, and predicates are implemented using control
variables and branching statements.

3.3.2 Weaving

The parts of the DSL code compiled to the target language need to be integrated with
the application. Our current weaving process is based on the aspect-oriented approach,
as the generated code from the DSL is woven within the application source code at
specific code locations. For code insertion, the current implementation requires the
processing of the application source code to obtain a data structure that is used to aid
with DSL code insertion. The most relevant weaving operations are as follows:

– An analysis of the source code for verification of the existence of the operation
point locations defined earlier in the DSL code.

– Insertion of the compiled DSL code for rule execution is accomplished at the
operation locations defined.

– DSL-defined function default values are translated and within the application code
as initialization values for the functions. Besides initializations, rules may further
influence the assignments of these values.

– Additional code provided in GPL is inserted as-is near the code location where it
is used. In Java, a method defined in the code section is placed within the class
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Fig. 5 Generated code excerpts for the same adaptation defined inlined (top) or within stub functions
(bottom) in the application code (in C)

where the adaptations that use it are weaved; whereas in C, a function is placed
within the same file.

Moreover, additional mapping-specific configurations can describe implementa-
tion details on how the DSL code should be integrated, namely on the type of adap-
tation code produced or platform particularities. Such configurations defined steer
the type of mapping options that are used when both translating source-to-source
the DSL code to the application code, and the mechanisms used in weaving. Fig-
ure 3 depicts two different targets of the process of compilation: an application
with embedded inline adaptations, and an application with stub functions to con-
nect to the adaptation code. Although adding stub functions for adaptations may
cause additional computational complexity (i.e., function calling), this solution is
more modular and maintains the separation between the main application logic and
the adaption logic. Figure 5 shows an example in C of the generated code relative
to adaptations implemented within stub functions or inlined within the application
code.

With explicit mapping configurations and using the stub function generation, more
beneficial solutions can be defined. For example, in a multicore scenario and consid-
ering direct communication between cores, a specific mapping configuration could
be defined so that the adaptation logic sits within an independent processing core.
Adaptation stub functions within the application code would be replaced with the
appropriate calls to the other core, since the adaptation code itself would be defined
inside another function to be executed in the other core (see Fig. 6).

3.4 Adaptive code compilation and deployment

With the adaptations compiled and incorporated into the application source code, the
complete program is again compiled using now the standard tools appropriate for the
application source code language (e.g., gcc [18], javac [31]). In short, the application
has now been compiled from a new program code, based on the original source code
plus the adaptations, and therefore the new application can now be deployed and
executed in the target environment.
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Fig. 6 Generated code for adaptations as stub functions targeted at two cores with communication via
direct channels using port number 0 (in C). The first section defines the code that sits within the application
code, and the second section the adaptation code

4 Case study: stereo navigation

To validate our approach we use a case study application for avionics, which consists
of an industry-developed embedded navigation system, named as Stereo Navigation
Application (StereoNav), and whose main stages are described in detail in [32]. The
StereoNav application takes as input the two independent images from the same or
multiple cameras, extracts features, and then represents them in a 3D space. The
analysis of these features allows for pose estimation of a vehicle, thus supporting its
localization and navigation.

Furthermore, the StereoNav navigation process includes several input parameters
such as image capture frequency or resolution, whose configuration impacts both
the output and the computation requirements of the process (e.g., execution time,
memory). Also, there is an explicit interest and requirement of the original industry
developer to easily manage these parameters. These characteristics make StereoNav
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an ideal scenario to illustrate several aspects of the use of our DSL-based approach to
specify adaptations to the algorithm and measure their impact.

However, additionally to the StereoNav case study, and to show the expressiveness
of this approach and its applicability to most general applications, we have been focus-
ing on Java-based case studies that require adaptations, namely: (i) physical activity
context-inference application that executes on constrained mobile phone environments
and thus adaptations are applied to optimize the context-inference process, by cus-
tomizing different methods to better infer the desired contexts [36]; and (ii) mobile
robot navigation application used for localization where several adaptations provide
configurations that allow a more optimized execution of the algorithm, vital in con-
strained mobile phone environments where it executes [37].

4.1 Experimental setup

The StereoNav application is part of an industry-developed navigation system, whose
main algorithm was developed in the C programming language and is prepared for
execution on traditional personal computers and embedded computing systems. For
our experimental evaluation, we used three setups:

– Setup 1: PC with a 2.0 GHz Intel Core 2 Duo and 2 GB of 667 MHz DDR2
SDRAM. C code was compiled with gcc. Execution times were measured with
the time.h library using the clock() function.

– Setup 2: Xilinx FPGA, with a PowerPC processor running at 400 MHz and with
heap size of 256 MB and stack size of 4 MB. The C code was compiled using ppc-
gcc, a gcc compiler instance targeting the PowerPC processor, and -O2 optimiza-
tion level. Execution times were measured using hardware timers implemented in
the FPGA.

– Setup 3: ML510 FPGA Development Board—Xilinx Virtex-5 FPGA, model
XC5VFX130T. The architecture consists of two Xilinx MicroBlaze (MB) proces-
sors (MB0 and MB1), each one with their own on-chip data and instruction mem-
ories, an external 1 GB DDR2 SDRAM memory shared by the two processors,
direct and blocking communication channels (FIFOs) between the two processors,
timers and UART components. The StereoNav application data is loaded on the
external memory.

4.2 Algorithm

The overall structure of the algorithm is presented in Fig. 7 depicting its key opera-
tions and parameters. The first three operations are performed concurrently for each
camera sensor, whereas the remaining operations execute sequentially. An explanatory
summary of each operation follows:

Debayering interpolates the input image data in a Bayer grid to GRGB output.
Various interpolation methods can be used differing in the quality of the produced
output image and computational cost.
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Fig. 7 StereoNav algorithm: main steps (solid boxes) and input parameters (dashed boxes)

Rectification projects the stereo images onto a common image plane, allowing
correction of image distortion by transforming the images into a standard coordinate
system. Rectification can be performed through different “warping” techniques, that
yield different results both in terms of quality and computational cost (e.g., bilinear
interpolation gives better results, but it is ten times slower than nearest neighbor [32]).

Feature extraction detects elements that can serve as reference locations in the
image, and it is usually performed with corner detectors (e.g., Harris corner detec-
tor [20]). Typically, around 100–1,000 features are extracted [32], and this information
is stored as compactly as possible in a hash-like structure.

Feature matching generates assignments between the extracted features, using fea-
ture data from the previous frame, the current frame, and from different cameras. Its
objective is to detect feature vectors that are identical. As the probability of having a
correct match in a cluttered urban environment is low, a circular check mechanism is
used to improve the assignment accuracy.

3D Reprojection derives 3D coordinates of a point from different image projections
of that point, given the feature matching from the previous step. A 3D reprojection
may be performed for a set of features at a given time, therefore one can calculate a
set of points in the 3D space at once [33].

Pose estimation produces the transformation between two camera reference frames,
allowing to determine the ego motion from that information using the dead reckon-
ing (odometry integration) or a simultaneous localization and mapping approach.
This estimation is performed using the RANdom SAmple Consensus (RANSAC)
algorithm [15].

Refinement may include some operational tweaks to produce the most accurate
position estimate.

4.3 Adaptation analysis

The StereoNav application requires a high level of accuracy to maintain an acceptable
QoS, measured in terms of timely correct navigation information. The overall algo-
rithm must be able to handle certain problematic situations, such as changes in vehicle
speed and availability of computational resources. Possible failures or application per-
formance degradation are eliminated by a dynamic adaptation of the application, as
certain troublesome situations may lead to significant reduction of service’s quality or
even the complete loss of service altogether [33].
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Fig. 8 Execution time impact of the main operations in StereoNav considering both setups

The stereo navigation algorithm includes several operations. The most computa-
tionally demanding is the most relevant for adaptation when the execution time and/or
energy savings are the primary objectives. Figure 8 reveals that (in both setups) the fea-
ture extraction and pose estimation operations are the most time consuming, on average
accounting for 89.3 and 5.6 % of the total execution time, respectively. Analyzing these
operations, there are two main candidate parameters that yield a significant compu-
tational impact: (i) the resolution of the processed images in the feature extraction
operation, and (ii) the number of iterations within the pose estimation operation.

4.4 Adjusting the image resolution

Changing the image resolution mainly influences the feature extraction, which is
the most computationally intensive operation. For the purpose of our scenarios, we
considered the two image resolutions of 640×480 (high resolution) and 320×240 (low
resolution). In both setups used, experimental testing showed that the execution time
is on average 3–4 times greater for the higher resolution than for the lower.

4.4.1 Adapting to the vehicle speed

Considering the influence of image resolution in the overall execution time, it is of
interest for the application to have an adaptation strategy that dynamically reconfigures
the resolution according to the current vehicle speed. Decreasing the image resolution
as the vehicle speed increases aids navigation since, the faster the vehicle moves, the
faster the application needs to determine its location. Calculating the image resolution
in relation to vehicle speed (in km/h) is performed as follows: 640×480 if speed ≤50;
320 × 240 if speed >50.

Figure 9 shows the change in vehicle speed, the overall algorithm execution time,
and the image resolution over time. In this strategy, when the speed increases, the image
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Fig. 9 Adjustments to image resolution and impact on the overall execution time, with respect to vehicle
speed (using setup 1)

resolution decreases, consequently decreasing the overall execution time (decreasing
resolution from 640×480 to 320×240 yields a sixfold computational time decrease).

The DSL code for this adaptation strategy was presented in Fig. 2 and specifies that
for each stereoNav step, the vehicle speed is measured and according to its value,
the size of the input images is modified.

4.4.2 Adapting to a time constraint

Ensuring the algorithm executes within a time constraint, due to resource constraints
or imposed deadlines, requires a strategy where if this time constraint is not satisfied,
then the image resolution is decreased for the subsequent execution, otherwise the
image resolution is increased, improving QoS. Experimental results of this strategy
considering a time window with variable size are presented in Fig. 10.

In each iteration where the algorithm exceeds the time constraint, the next iteration
will have a lower image resolution to satisfy the time constraint (e.g., iterations #1
and #2). On the other hand, satisfying the time constraint causes the next iteration
to be executed with higher image resolution (e.g., iterations #3 and #4). Since only
two image resolutions are being used, violating the constraint in low resolution or
satisfying with high resolution, causes the system to maintain the resolution as it
cannot decrease or increase the resolution beyond that. As constraint violations cause
subsequent delayed executions, the strategy for image resolution adaptation, whose
illustrated results are shown in Fig. 10, causes a time violation in approximately 44 %
of the iterations. In contrast, using a fixed high image resolution (640 × 480) would
cause a percentage of constraint violations around 75 %. Using a fixed low image
resolution (320 × 240) would fail in only 12.5 % of cases. Although using a low
resolution results in fewer violations, the average image quality used would be lower
limiting the overall application QoS.
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Fig. 10 Adjustment of image resolution to a time constraint (using setup 1). Steps 1, 2, 4, 6, 8, 13, 15, 16
use high resolution and steps 3, 5, 7, 9, 10, 11, 12, 14 use low resolution

Fig. 11 DSL code for adapting the image resolution according to a time constraint

The strategy for adapting image resolution according to a time constraint is specified
in Fig. 11. Contrasting with the DSL code from Fig. 2, the vehicle speed function is
replaced by a function that outputs the computation time requirement (line 2) allocated
for an iteration of the algorithm. Lines 3–5 define the evaluation location for the rule.
Lines 6–16 define a rule that depends on the DSL infrastructure provided macro, which
holds the elapsed time of the last stereoNav execution. Rule r2 retrieves the time
constraint and if the constraint is greater or equal than execution time of the previous
stereoNav iteration, then the navigation algorithm is parameterized to use the high
image resolution. Otherwise, the low resolution for the images is used.
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Fig. 12 Number of RANSAC iterations and corresponding execution time of pose estimation regarding the
variation of vehicle speed (using setup 1)

4.5 Adjusting the number of RANSAC iterations

The pose estsimation operation is implemented by the RANSAC iterative algo-
rithm. The higher the number of algorithm iterations, the higher the computation
demand (e.g., execution time), but also the higher the probability of a correct pose
estimation. Therefore, this algorithm is an ideal candidate for run-time algorithmic
adaptation based on available system resources. As the base acceptability criteria
for pose estimation is 90 % [33], we introduce configurations guaranteeing 90, 92,
94, 96, and 97 %, corresponding to 3,900, 4,300, 4,800, 5,500, and 5,800 iterations,
respectively.

4.5.1 Adapting to the vehicle speed

Similarly to the strategy of adapting the image resolution according to vehicle
speed, we now consider an adaptation strategy that varies the number of RANSAC
iterations. As the speed of the vehicle increases, the number of iterations must
be reduced causing less computational strain, and therefore less execution time
is required for the operation. The adjustment in the number of RANSAC itera-
tions due to vehicle speed is defined as follows: 5,800 if speed <25; 5,500 if
25≤ speed <50; 4,800 if 50 ≤ speed <75; 4,300 if 75 ≤ speed <100; and 3,900 if
speed ≥100. Figure 12 plots the results measured in one scenario, depicting the num-
ber of iterations and execution time of the RANSAC algorithm as the vehicle speed
increases.

The DSL specification code for this adaptation control strategy is similar to Fig. 2,
with the exception of the rules section, which is presented in Fig. 13. The code
presented specifies that rule r3 executes before the beginning of every stereoNav
iteration, retrieving the vehicle speed through a function. Depending on its evaluation
through conditions, it assigns the number of iterations to be conducted by the RANSAC
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Fig. 13 DSL code for adapting the RANSAC iterations according to vehicle speed

algorithm. This is performed by changing the input parameter value of the StereoNav
algorithm.

4.5.2 Adapting to a time constraint

Another adaptation strategy of interest is based on a time constraint for the execution
of the pose estimation operation, as proposed in [34]. This strategy is described as:
(i) measure the execution time of the operations that precede pose estimation (tpre) to
verify how much time has already been elapsed; (ii) get the execution time allowed
for the whole StereoNav algorithm (ttotal) considering the available computational
resources; (iii) calculate the execution time for the pose estimation operation as
test = ttotal − tpre (here, the execution time required for the computation of the
refinement operation is assumed to be negligible, as shown in Fig. 8); (iv) select
the number of iterations for the RANSAC algorithm according to the time available
for the operation (test), when the execution times of predefined numbers of itera-
tions are known. If there is not enough time to perform the operation with the lowest
predefined iteration number, then the time requirement for execution is not satis-
fied.

The proposed adaptation is possible due to previous knowledge of the average
execution time which the operations require. Knowing the available execution time,
it is possible to perform the highest number of RANSAC iterations and maintain QoS
levels as highest as possible, given the time constraint. Figure 14 depicts the behavior
of this adaptation strategy in a testing scenario where the RANSAC iterations are
adjusted to satisfy time constraints. In this testing scenario, only four iterations missed
the constraint (iterations 1, 14, 15, 18 had execution times greater than the available
time). The implementation in the DSL of such strategy is presented in Fig. 15, where
two new imported functions (lines 1 and 2) output the control variables needed to assign
the iteration number. Lines 7–22 set the appropriate iteration number according to the
available time for pose estimation.
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Fig. 14 Time allowed in seconds and corresponding execution time of the pose estimation operation. The
number of iterations used sequentially in each step are: 3,900, 3,900, 5,800, 4,800, 5,800, 3,900, 3,900,
5,800, 5,800, 5,800, 4,800, 5,500, 5,800, 3,900, 3,900, 5,500, 5,800, 3,900, 4,800, 3,900, 4,800, 5,800,
5,800, 5,800, 5,800 (using setup 1)

Fig. 15 DSL code for the RANSAC iteration adaptation strategy according to an available time budget for
the computation of the algorithm

4.6 Adjusting multiple parameters

For this strategy, we use previous knowledge from experiments with the algorithm.
Considering the two input parameters that have been used for adaptation, critical to
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the most time-consuming operations, their impact is different as the image resolution
parameter causes greater impact in the application than the number of iterations of the
RANSAC algorithm. Due to this difference in impact, the image resolution is used for
coarser adjustments and the number of iterations for finer adjustments.

Since the application provides information for navigation, it must comply with
requirements for frequency of execution. One can devise an overall adaptation strategy
that adjusts the parameters identified according to the number of frames per second
required to maintain a suitable navigation information at the presented vehicle speed.
Faster speeds reduce the available time budget for the application to execute, and
therefore require faster execution frequency. The strategy is defined as follows: (i) the
frequency of computation is calculated as a function of the vehicle speed; (ii) from
the required frequency of computation, a time budget is defined; (iii) considering
the available time budget, the algorithm configuration for execution must yield the
best results while satisfying the time constraint; (iv) to ensure the time constraint
compliance, it should be verified if the algorithm executed within the budget.

The DSL code for this adaptation strategy is presented in Fig. 16. The specifica-
tion contemplates two imported functions, one function defined internally and three
different rules. Lines 1–5 define necessary variables. Lines 6–7 specify the necessary
imported functions. Lines 8–11 specify the operations section. Rules are specified
from lines 12–40. Rule r1 computes the difference between the available time and
the elapsed time from the execution of the stereoNav function. If the elapsed time
is less than the available time, then there is a room for improvement and rule r3
is invoked. If the elapsed time exceeded the available time, then reduction of the
execution time must be accomplish and therefore rule r2 is invoked. Lines 41–43
specify the code for a C function calcFPStime, which computes the frequency of
computation.

4.7 Targeting different execution scenarios

In order to show and to evaluate a possible mapping of the adaptation and the appli-
cation codes into different processors, we prototyped an embedded dual-core system,
as described by setup 3.

4.7.1 Execution scenarios

For execution scenarios, we conduct experiments on the strategies previously pre-
sented considering different options for compilation and weaving. The strategies con-
sidered are as follows: (A) adjusting the image resolution according to vehicle speed;
(B) adjusting the image resolution according to time constraints; (C) adjusting the
RANSAC iterations according to vehicle speed; (D) adjusting the RANSAC iterations
according to time constraints; (E) combination of strategies A and C; and (F) combi-
nation of strategies B and D.

Regarding the interface between adaptation and application code, we consider three
scenarios: (i) adaptations embedded inline executing in a single core (1-MB inline);
(ii) adaptations integrated as stub functions executed in a single core (1-MB stubs); and

123



A DSL for specifying run-time 1241

Fig. 16 DSL code for the a composed adaptation strategy that adjusts the image resolution and the number
of RANSAC iterations
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Table 1 Execution time (in
clock cycles) for different
strategies and architectures

Strategy 1-MB (inline) 1-MB (stubs) 2-MB (stubs)

A 543 680 581

B 801 882 868

C 461 458 331

D 3,308 3,416 3,413

E 880 1,041 813

F 4,163 4,323 4,275

(iii) adaptations integrated as stub functions executed in a second core (2-MB stubs).
For the multicore architecture, processors MB0 and MB1 are responsible to execute
the application and the adaptations, respectively. MB0 executes the stereo navigation
application code and requests the adaptations to MB1. MB1 receives the requests from
MB0, executes the adaptation behavior accordingly, and reply, e.g., with parameter
values. The communication between the application and the adaptations (i.e., between
MB0 and MB1) is via the direct communication channels.

4.7.2 Impact on execution time

Table 1 presents the comparison for execution time considering the execution of the
generated adaptation-related code according to the different adaptation strategies and
execution platforms, as presented previously. Table 1 shows that the embedded inline
adaptation code is the fastest, on average, mainly because it neither has the overhead
of calling functions nor communication primitives (around 1.06× speedup regarding
1-MB stubs and 1.01× speedup regarding 2-MB stubs). With respect to the adaptation
code encapsulated into stub functions, the version executed on 2 MB is faster because
although it requires additional communication primitives between the two cores, the
adaptation strategies are not being executed in the same core, and thus relieve the
application core from additional processing (around 1.05× speedup). Although in this
experiment we expected minor performance improvements as the adaptation strategy
is very simple and not computationally intensive, it reflects an example of a DSL
specification with separation of adaptation and application logic making feasible the
generation of different implementations.

Additionally, we performed the same experimental tests with added debug informa-
tion to the adaptation strategies. In this case, the strategies are responsible for printing
verbosely the information regarding several aspects of the adaptation actions being
performed. Our objective is to assess the impact of this additional code complexity
added on the execution time considering the single and the multicore architecture.
Higher complex strategies show how the different execution scenarios scale regarding
the execution time metric.

Figure 17 shows the execution time (clock cycles), regarding the execution of
each strategy when seen by the processor core (MB0) executing the application, and
according to the different execution scenarios. For each strategy, Fig. 17 considers
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(a) (b)

(c)

Fig. 17 Execution time in clock cycles of each strategy according to the different execution scenarios,
measured from the main application logic

the initial versions and the newer versions with the added debug instructions and thus
complexity.

Figure 17 shows that with the increase of the complexity of the adaptation strategies,
the benefits of the use of two cores are evident, as the execution time does not increase
as it does with the single-core versions. In the multicore version, as the computation
of the strategies is on a dedicated core, the application overall execution time is almost
the same as the adaptations are computed in parallel. The benefit of this parallelism
can, thus, be achieved at a higher level of abstraction and is, therefore, not dependent
on the power of a compiler to extract this parallelism.

4.7.3 Generated code analysis

The code generated, considering the different execution scenarios, is of different com-
plexity and modularity, and thus also of different comprehension levels. Table 2
presents a comparison of the different C code generated consisting of the applica-
tion and the adaptation code according to several metrics, measured using the Source
Monitor tool [11].

In the metrics presented, the average complexity represents the arithmetic average
of all complexity values measured for each function, which represent the number
of execution paths through a function, to which the number of branch statements,
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Table 2 Evaluation metrics for
different C code generated
regarding the incorporation of
the adaptation code on the
application source code (blank
lines are ignored)

Code Original Adaptation 1-MB 1-MB 2-MB
Metric prepared (inline) (stubs) (stubs)

Files 58 58 60 60 61

Lines 13,083 13,525 14,111 14,173 14,342

Statements 7,367 7,363 7,735 7,783 7,889

Functions 165 170 185 202 207

Avg. complexity 8.07 7.82 7.71 7.14 7.03

boolean logic, loops, and others contribute to [28]. Higher values of complexity reveal
less understandable code.

Table 2 also includes metric values for the version of the application reflecting the
preparation of the original source code to be adapted (e.g., changing some hardcoded
values to variables that are of interest for adaptation). From the results presented for
mapping configurations, for the generated code in C, it is possible to observe that
there are many differences between the implementations. The metrics show that the
embedded inline version is more complex than all the versions involving adaptations
encapsulated within stub functions. Although using stub functions increases the num-
ber of lines, statements and functions, the average values for the complexity metric
decrease. The adaptations inlined in the application code are less scattered, but are
tangled and with code repetitions, whilst adaptations encapsulated into stub functions
are modular, readable and easier to maintain. Integrating the adaptation code results in
an increase in the number of files, number of lines, statements and functions. However,
the average complexity is lower. The difference in metrics between the mechanisms for
DSL adaptation code generation highlights the benefits of multiple possible versions
and also of the separation of concerns provided by having the generation options as
mapping configurations at the adaptation logic level.

5 Related work

Embedded systems are gaining momentum due to active research in topics such as
context-aware computing and ubiquitous computing (e.g., [6,23]). Due to the architec-
tural characteristics of such systems, run-time adaptations of embedded applications
are required to achieve performance goals under changing operating situations [13].
The concept of adaptation has been commonly applied in embedded systems targeting
energy concerns, because of their limited power capability. Examples of such adapta-
tion include energy-efficient location-aware applications that switch between different
sensors (e.g., [41]).

Software adaptation techniques have been addressed in many areas of research
and under many forms [24]. As such, adaptations can be defined in a multitude of
ways, however, with different objectives, costs and capabilities. Adaptation specifi-
cation and implementation can range from simple conditional expressions to highly
complex software architectures. While some simple solutions incorporated within
the application logic can suit more humble adaptation needs, other more elabo-
rate needs can only be accomplished with more flexible and independent solutions
that separate the application from the adaptation logic. This separation is benefi-
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cial not only in terms of design, but also because adaptations often go beyond the
core functionality of the application. Also, this separation into layers can express
different design alternatives and configurations of the same software [9]. Specif-
ically, techniques for software adaptations have been tackled through conditional
branching (e.g., [16]), context-oriented programming (e.g., [4,19]), aspect-oriented
programming (e.g., [26,40]), feature-oriented programming (e.g., [3]), and architec-
tures/frameworks (e.g., [16,17]).

When adding adaptations to software, the use of additional parameters and condi-
tional expressions are the most commonly seen due to their low barrier to initial devel-
opment. However, although introducing additional coding segments solves some sim-
ple and straightforward adaptation efforts, their continuous usage introduces clutter,
confusion and code comprehension difficulties by mixing adaptation with application
functionality. These drawbacks eventually make software evolution less flexible and
more costly.

When concentrating on contextual information, context-oriented programming
(COP) approaches (e.g., Subjective-C [19], ContextJ [4]) are relevant to apply lay-
ered operational behavior, dependent on contexts, to certain code sections. However,
although most COP approaches foster some degree of domain specificity, more than
often their end result is similar to hard-coded conditional statements. Furthermore,
their common approach of extending other host languages lock them to both their
host’s benefits and drawbacks, invalidating a broader and more general solution to
adaptation specification.

Alternatively, focusing on cross-cutting concerns, the AOP paradigm [25] allows
the separation of concerns aiming at defining aspects that can specify behavior to
be woven into applications, and thus possibly for adaptation (e.g., AspectJ [26],
AspectC++ [40]). As AOP defines an approach, it has several possible imple-
mentations, which cause development and design challenges. Moreover, traditional
pointcut mechanisms do not typically include constructs and semantic for most
weaving actions needed by run-time adaptation behavior (e.g., program execution
points obeying to certain periodicity). Furthermore, being somewhat general for
any aspect-weaving necessities, adaptation-specific abstractions have been somewhat
neglected.

As DSLs are tailored to specific application domains, they offer substantial advan-
tages in expressiveness and ease of use when compared to GPLs [29]. Several DSLs
have been proposed for software adaptation (e.g., [1,22]). For example, in the context
of a video processing application [1] the authors presented an extension to the BZR
language for adaptation control on a mobile phone, where the video display modes
are controlled by the adaptive system according to the status of computing resources.
Unlike our DSL, their adaptive behavior is specified in terms of hierarchical automata
and through contract policies.

Finally, several ad hoc solutions have been proposed (e.g., [8]), as authors develop
their own specific adaptation approaches tailored to their specific cases and applica-
tions. Although beneficial for the applications they are developing, these solutions
usually lack generality and reusability.
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6 Conclusion

This paper presented the feasibility of our DSL-based approach to specify adaptable
behavior for a real-life vehicle navigation application provided by industry. The experi-
mental results highlight not only the benefits and impact of the application’s adaptation,
but most importantly, our DSL’s advantage of providing a high-level programmable
approach to define such adaptability.

With the DSL described here, adaptation strategies are decoupled from the appli-
cations original code and are easily modified without having to rewrite the application
code. Furthermore, different adaptation strategies can be shared and deployed to dif-
ferent platforms and target languages, thus promoting programmer and application
portability. With the behavior defined in the DSL, it is possible to see how different
strategies are specified and to understand the impact of adding new rules, including
different functions, and evaluating the differences from one adaptation to another. We
also note the degree of similarity between the specifications of different strategies.
This aspect facilitates behavior modifications, thus reducing the complexity of man-
aging DSL code while allowing for rapid testing and validation of different strategies
as for example, when changing the target vehicle, or when trying to accommodate
other speed ranges.

Our ongoing and future work is focused on DSL extensions and improvements,
namely through: additional case studies, extending conflict and traceability analysis,
and extending our compiler/weaver support to allow multiple implementations for the
same DSL abstractions to take further advantages of platform characteristics.
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