
Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

International Journal of Software Engineering
and Knowledge Engineering
Vol. 18, No. 2 (2008) 243–262
c© World Scientific Publishing Company

A LOOSELY COUPLED ASPECT LANGUAGE

FOR SOA APPLICATIONS

NABOR C. MENDONÇA∗, CLAYTON F. SILVA†,
IAN G. MAIA‡, MARIA ANDRÉIA F. RODRIGUES§

Mestrado em Informática Aplicada, Universidade de Fortaleza,

Av. Washington Soares, 1321, 60811-905 Fortaleza, CE, Brazil
∗nabor@unifor.br

†clayton fsilva@yahoo.com.br
‡iangmaia@gmail.com

§mafr@unifor.br

MARCO TÚLIO O. VALENTE

Instituto de Informática, Pontif́ıcia Universidade Católica de Minas Gerais,

Av. Dom Jose Gaspar, 500, 30535-610 Belo Horizonte, MG, Brazil

mtov@pucminas.br

The aspect-oriented programming (AOP) paradigm offers software developers with pow-
erful modularization abstractions to help them explicitly separate design concerns at the
source code level. However, the impact of AOP in the service-oriented architecture (SOA)
paradigm has been dwarfed by the fact that existing AOP solutions are tightly coupled to
a particular programming language, middleware system or execution platform. Clearly,
this not only restricts the implementation choices available to application developers,
but it also clashes with the heterogeneous and loosely coupled nature of SOA. This pa-
per presents the Web Service Aspect Language (WSAL) that seamlessly integrates AOP
and SOA concepts, thus avoiding the drawbacks of existing solutions. In WSAL, aspects
themselves are freely specified, implemented and executed as loosely coupled web ser-
vices. This characteristic allows WSAL aspects to be easily woven into the message flow
exchanged between service consumers and service providers, in a way that is completely

independent from any particular implementation technology. This paper also reports on
the implementation and preliminary evaluation of a prototype aspect weaver for WSAL,
which is based on an existing web intermediary technology.

Keywords: Aspect-oriented programming; service-oriented architectures; separation of
concerns.

1. Introduction

Service-oriented computing (SOC) is emerging as a powerful software develop-

ment paradigm in which services constitute the fundamental elements of design [1].

SOC applications follow a standard service-oriented architecture (SOA) in which

one or more service providers declaratively describe their services’ operations and

243

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

244 N. C. Mendonça et al.

invocation properties in a standard, machine-readable format, so that those ser-

vices can be dynamically discovered, selected, and invoked using a suit of standard

protocols [2]. The most popular manifestation of the SOC paradigm is in the form

of a suite of non-proprietary XML-based technologies collectively known as web

services [3]. These include three core technologies, namely SOAP [4], a service

invocation protocol, WSDL [5], a language for describing service interfaces, and

UDDI [6], a service-based repository for dynamic service discovery and location.

Other related technologies are also being developed to deal with non-functional

SOA requirements, such as reliability, security and performance [7].

The dynamic binding between service providers and service consumers makes

SOA applications loosely-coupled in nature, allowing services to be provided and

consumed independently of the client applications’ programming language, exe-

cution platform, and transport protocol. This characteristic has the main benefit

that it makes it easier to integrate independently developed SOA applications, even

when they have not been developed with integration as a major design concern.

On the other hand, the distributed and loosely-coupled nature of SOA applica-

tions also raises a series of design concerns (typically associated with the provision

of non-functional service properties) that must be properly addressed by applica-

tion developers. These concerns tend to be very difficult (or even impossible) to

be modularized using current SOA development technologies. The reason is that

non-functional concerns usually affect both service providers and service consumers.

As a consequence, their implementation becomes scattered across the implementa-

tion of several application components at both sides [8]. For example, to guarantee

secure service interactions it is necessary to modify the implementation of both

service providers and service consumers, so that both sides can put in place and

use the appropriate security mechanisms [9]. Similarly, to allow dynamic service

selection at the client side, it is necessary to change the implementation of service

providers, so that they can announce their service’ QoS properties using some sort

of service broker [10], and also to change the implementation of service consumers,

so that they can discover and select the servers that best suit their needs, before

invoking their required service operations [11].

Another consequence of the lack of better modularization support for non-

functional concerns in current SOA technologies is that, as the number of those

concerns increases, implementing and, subsequently, maintaining them become ex-

ceedingly difficult. This problem exacerbates for applications that are implemented

using different programming languages or executed over different execution plat-

forms, a typical SOA scenario.

The fact that some design concerns, such as those discussed above, are in-

herently difficult to modularize using traditional (i.e., functional) decomposition

techniques is the main motivation behind the aspect-oriented programming (AOP)

paradigm [12]. AOP introduces a new type of abstraction — called aspect — which

allows to explicitly separate design concerns that otherwise would have to be im-

plemented as part of (and tangled with) the implementation of several application

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

A Loosely Coupled Aspect Language for SOA Applications 245

components. AOP also provides novel software composition mechanisms to weave

the implementation of those concerns (called cross-cutting concerns) back into the

implementation of application components at well-defined execution points (called

join points).

In view of the current need for mechanisms to separate cross-cutting concerns

in SOA applications, and of the powerful modularization constructs introduced by

AOP, there is a natural demand for solutions that aim at integrating these two

emerging software development paradigms. Even though there has been a number

of works geared toward this direction recently [13]–[17], all solutions proposed thus

far suffer from the limitation of being tightly coupled to a particular programming

language, middleware technology or execution platform. The high level of coupling

associated with those solutions is undesirable for two main reasons: (i) it restricts

the spectrum of technological choices available to application developers; and (ii)

it clashes with the heterogeneous and loosely coupled nature of typical SOA ap-

plications. Therefore, any effective solution for integrating concepts from the SOA

and AOP paradigms must provide technology independence as a core design prin-

ciple [19].

In our previous work [18, 19], we have proposed a novel aspect model for SOA

applications, in which services themselves provide the necessary abstractions to

modularize cross-cutting concerns. In this paper, we present the Web Service Aspect

Language (WSAL), which is a concrete realization of the concepts first introduced

in that model. As such, WSAL seamlessly integrates fundamental AOP concepts,

such as aspects, join points and advices [12], into the SOA context. Differently

from other existing solutions that attempt to integrate these two emerging software

development paradigms, in WSAL aspects can be freely specified, implemented,

deployed and executed as loosely coupled web services. This characteristic allows

WSAL aspects to be easily woven into the message flow exchanged between service

consumers and service providers, in a way that is completely independent from any

particular implementation technology.

The rest of this paper is organized as follows. Section 2 describes the syntax

and semantics of WSAL. Section 3 illustrates the use of WSAL through a series of

examples. Section 4 reports on the implementation of a prototype aspect weaver for

WSAL. Section 5 presents the results of a preliminary evaluation of our prototype

in a controlled setting. Section 6 covers related work. Finally, Sec. 7 concludes the

paper and suggests some directions for future research.

2. Web Service Aspect Language

As we have mentioned, WSAL allows aspects to be both implemented and deployed

as web services, which we refer to as aspectual services [18]. The main benefit

of this approach is that the aspect weaving process can now take place at the

network level externally to the target applications’ execution environments, using

any existing web intermediary technology [20]. This weaving approach is based on

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

246 N. C. Mendonça et al.

������� ���	��
������� ��
 �
�	����������� �����

�����!

"�# �$��� %� �&���� ���

'

()

*+ ���,����� �����$-.�!/0�
1�$%2%3� �

-04��2�5�6� ������-7�!/0�
8�$%2%� �

� "�# ���&�4����

" ��
:9�� ���

�;���!

< �$��9���

�$-.�
� #�# � � �&���=� ���

�$-.�
� #�# � � �&���� ���

->4��	����� ������-!�!/0�
1�$%2%3� �

-04��2����� �����$-.�?/0�3
8��%2%� �

@

+ ���,����� ������-!�!/>�3
8��%8%� �

������� ���	��
������� ��
 �
�	����������� �����

�����!

"�# �$��� %� �&���� ���

'

()

*+ ���,����� �����$-.�!/0�
1�$%2%3� �

-04��2�5�6� ������-7�!/0�
8�$%2%� �

� "�# ���&�4����

" ��
:9�� ���

�;���!

< �$��9���

�$-.�
� #�# � � �&���=� ���

�$-.�
� #�# � � �&���� ���

->4��	����� ������-!�!/0�
1�$%2%3� �

-04��2����� �����$-.�?/0�3
8��%2%� �

@

+ ���,����� ������-!�!/>�3
8��%8%� �

Fig. 1. WSAL aspect weaving process.

the assumption that an effective attempt to integrate the AOP and SOA paradigms

must support the former without compromising the heterogeneous and loosely-

coupled nature of the latter.

The next subsections describe WSAL in details, starting with its underlying

aspect weaving process, and then presenting the syntax and semantics of its main

language constructs.

2.1. Weaving process

The WSAL weaving process is illustrated in Fig. 1. The weaver is responsible for

parsing and deploying a given WSAL specification (or aspect) using an appropriate

intermediary technology (step 1). Once an incoming SOAP message is intercepted

matching the aspect’s specified join points by the intermediary technology (step 2),

the weaver invokes the aspect’s specified aspectual service operations (step 3) and

then weaves the operations’ results back into the original SOAP traffic by either

forwarding them to the message’s original destination (step 4) or returning them

to its source (step 5). The actual behavior of the weaver will be determined by the

aspect specifications it processes.

Note that the process does not impose any restriction to the roles played by

the SOA applications whose messages are being intercepted. This means that the

process can equally be applied to SOAP messages representing service requests as

well as service responses. Moreover, since the process does not require any modifi-

cation to the implementation of either service consumers or service providers, it is

completely independent of any particular implementation technology. This charac-

teristic is a key feature of WSAL, as it gives SOA developers greater flexibility in

choosing an implementation technology (e.g., programming language, development

platform, web service middleware) that best suits their needs and preferences.

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

A Loosely Coupled Aspect Language for SOA Applications 247

2.2. Syntactic elements

Like most other languages used in SOA development, the WSAL syntax was de-

fined as an XML extension, with its own schema. The language syntactic elements

represent typical AOP constructs, such as join points, pointcuts, advices, and as-

pects [12]. The following subsections describe these elements.

2.2.1. Join points

A join point is a well-defined point in the structure or execution flow of a component

where aspects can be applied to [12]. Join points related to the components’ struc-

ture are called static join points, whereas join points related to the components’

execution flow are called dynamic join points. Since the WSAL weaving process

takes place outside the target applications’ execution environment, the language

offers no support for the definition of static join points. On the other hand, the

language supports six types of dynamic join points. Those types reflect the general

structure of SOAP messages, which in turn reflect the structures typically defined

in WSDL files [5]. These structures include elements such as service operations and

their input and output parameters, service endpoint, SOAP transport protocol, etc.

The six join point types supported by WSAL are described below.

namespace: A name space join point identifies one or more XML name spaces

associated with the target web service, by means of their Uniform Resource

Identifiers (URIs), as defined in the service’s WDSL description.

message part: A message part join point identifies one or more XML elements

that are part of the contents of the SOAP messages used as input or output

parameters for any of the operations provided by the target web service.

service operation: A service operation join point identifies the name of one or

more operations among those provided by the target web service.

service location: A service location join point identifies one or more network ad-

dresses where the target web service is physically provided, by means of

its Uniform Resource Locators (URL), as defined in the service’s WDSL

description.

client location: A client location join point identifies one or more network ad-

dresses where the consumer of the target web service resides, by means of

its IP address or network domain.

composite: The composite join point type is used in WSAL to define higher-level

join points (or pointcuts) from the arbitrary composition of primitive join

point definitions. This is done by means of three composition operators,

namely and (conjunction), or (disjunction) and not (negation).

Although certainly not comprehensive, this set of join point types is rich enough

to allow the definition of join points matching a wide range of SOAP message char-

acteristics, either in terms of their contents (using the types name space, message

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

248 N. C. Mendonça et al.

1 <!-- definition of a primitive join point -->

2 <pointcut name="primitive_jp" type="messagePart "

3 pattern ="<query *>web2 .0& lt;/ query>">

4

5 <!-- definition of a composite join point -->

6 <pointcut name="composite_jp" type="composite ">

7 <and >

8 <pointcut type=" serviceOperation" pattern =" doGoogleSearch"/>

9 <pointcut type="clientLocation" pattern ="188.188.* "/>

10 </and >

11 </pointcut >

Fig. 2. Example of two join points defined in WSAL.

part and service operation) or in terms of their underlying transport protocol (using

the types service location and client location).

Syntactically, a WSAL join point is defined using the pointcut element. This

element includes two mandatory attributes: type, which indicates the join point

type, and pattern, which is used to specify the join point matching context. The

pattern attribute can be specified using regular expressions, thus offering WSAL

developers greater flexibility in describing their join points (SOA events) of interest.

The pointcut element also includes a third (non-mandatory) attribute, name, which

specifies a unique name to the join point. This attribute is used within the definition

of advice elements, to associate the advice to a previously defined join point (see

Sec. 2.2.2).

Figure 2 illustrates the definition of two join points in WSAL. The first is a

named primitive join point of type message part (lines 2–3), while the second is a

named composite joint point defined in terms of the composition of two (unnamed)

primitive join points (of types service operation and client location, respectively)

using the and logical operator (lines 6–11).

2.2.2. Advices

According to the AOP terminology, advices are programming abstractions for

specifying what additional behavior an aspect should introduce at specific join

points [12]. In WSAL, in contrast to most existing AOP languages, advice imple-

mentations are not bound to any particular programming language or development

environment. Instead, they are implemented as loosely-coupled web service opera-

tions, so that they could be dynamically invoked by the WSAL weaver once their

specified join points are met. Therefore, WSAL developers are free to implement

their advices using any implementation technology, as long as they make them

available via a common web service interface.

A WSAL advice is defined using the advice element. This element includes a type

attribute, which specifies the advice type. In WSAL, the type of an advice denotes

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

A Loosely Coupled Aspect Language for SOA Applications 249

the expected semantics for the advice. Included in the semantics is information re-

lated to when an advice should be invoked once a specified join point is reached; the

join point context that should be passed as an invocation parameter to the advice

operation; and restrictions on the actual behavior that should be implemented by

the advice.

The advice types supported in WSAL are derived from the different types of

interaction events that may occur between service consumer and service provider

applications at runtime: service requests, service responses, and invocation failures

(or exceptions). Based on these three types of events, seven advice types were

considered as part of the WSAL design: before request, upon request, after response,

upon response, after exception, upon exception, and around. These advice types

are described below. To better illustrate the semantics associated with each of

those types, we also compare them with some of the advice types supported by

AspectJ [21], a well-known AOP Java extension.

before request: The before request advice type adds the crosscutting behavior pro-

vided by advice’s specified aspectual service operation before a SOAP re-

quest message (which has been intercepted matching the advice’s specified

join points) is forwarded to the target web service. The contents of the

message is left unchanged. This advice type is similar to the before advice

type of AspectJ.

upon request: The semantics of upon request is similar to the semantics of the

before request advice type, the only difference being that an upon request

advice is allowed to change the contents of the intercepted request message.

This advice type can be seen as a particular case of the around advice type

of AspectJ, one in which the last statement of the advice body corresponds

to an invocation of proceed.a

after response: The after response advice type adds the crosscutting behavior

provided by advice’s specified aspectual service operation after a SOAP

response message has been intercepted matching the advice’s specified join

points, but before the message is forwarded to the target client application.

The contents of the message is left unchanged. This advice type is similar

to the after returning advice type of AspectJ.

upon response: The semantics of upon response is similar to the semantics of the

after response advice type, the only difference being that an upon response

advice is allowed to change the contents of the intercepted response mes-

sage. This advice type can also be seen as a particular case of the around

advice type of AspectJ, but one in which the first statement of the advice

body corresponds to an invocation of proceed.

aIn AspectJ, calling the proceed construct in the body of an around-type advice causes the compiler
to call the original (advised) method.

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

250 N. C. Mendonça et al.

after exception: The after exception advice type adds the crosscutting behavior

provided by advice’s specified aspectual service operation after a SOAP

exception message has been intercepted matching the advice’s specified join

points, but before the message is forwarded to the target client application.

The contents of the message is left unchanged. This advice type is similar

to the after throwing advice type of AspectJ.

upon exception: The semantics of upon exception is similar to the semantics of

the after exception advice type, the only difference being that an upon

exception advice is allowed to change the contents of the intercepted ex-

ception message. As with upon request and upon response, this advice type

can also be seen as a particular case of the around advice type of AspectJ,

but one in which the proceed construct is called as the first statement of

the advice body and the invocation fails (i.e., the advised method throws

an exception).

around: The around advice type replaces the behavior of a requested service op-

eration matching the advice’s specified join points. This is done by having

the advice’s specified aspectual service operation generating a new SOAP

response to be forwarded to the target client application, instead of the

response message that would have been produced by invoking the target

web service provider. This advice type corresponds to a more constrained

version of the around advice type of AspectJ. The constrain is related to the

fact that, because the WSAL weaving mechanism has no control over how

each aspectual service is actually implemented, WSAL offers no construct

for invoking the intercepted service operation from within the around ad-

vice body. This constrain is the main reason for including three upon advice

types as part of the WSAL design. As we have mentioned above, the se-

mantics of these three types correspond to particular uses of proceed within

an around advice body in AspectJ.

In addition to provide the expected semantics for advice operations, in WSAL

advice types also constrain the kinds of context information that will be available

to a given advice operation. Specifically, for advices of types before request, upon

request, and around, the available context information will include the contents

of the intercepted request message, along with some important properties related

to the message’s underlying transport protocol, such as the network location of

both service consumers and service providers. For the other advice types, context

information will further include the contents of the intercepted response message

(in the case of the advice types after response and upon response) or the contents of

the intercepted exception message (in the case of advice types after exception and

upon exception).

Providing context information to advice operations is particularly useful to

around type advices that need to invoke the original (intercepted) web service

operation. This is the case of advices that implement caching or service selection

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

A Loosely Coupled Aspect Language for SOA Applications 251

concerns. In those cases, invoking the original service operation simply requires

forwarding the intercepted request message to its original destination.

It should be stressed that we are aware that implementing and invoking advices

as external web service operations is likely to have a significant impact on the per-

formance of our aspect weaving mechanism and, consequently, on the performance

of the target SOA applications. To help developers in reducing the potential per-

formance impact imposed by our weaving mechanism, the WSAL advice element

includes two special attributes, namely context and mode, which can be used to

reduce the communication overhead between the weaver and the aspectual service

operations it invokes.

The context attribute can be used to further restrict the kinds of context infor-

mation that the weaver passes on as input to the advice’s aspectual service opera-

tion. This feature is particularly useful in situations where context information may

not be necessary (either entirely or in part) to the successful execution of an advice

operation. For example, an advice operation only concerned with measuring the

target service’s reliability would not required any context information at all, but

only the final status (either success or failure) of each requested service invocation.

The mode attribute, in turn, is only applicable to before or after type advices.

It is used in WSAL to indicate to the weaver that the advice’s specified operation

must be invoked asynchronously, meaning that the weaver must not block waiting

for the operation to complete its execution. The underlying idea is that, since before

and after advice types are not required to return any kind of information to the

weaver, they could – in principle, at least – be executed in parallel with the weaver

without compromising their expected semantics. Nevertheless, the decision about

whether or not it is safe to invoke a given before or after advice in asynchronous

mode will be entirely up to the WSAL developer.

2.2.3. Aspects

In WSAL, an aspect is defined using the aspect element. This element relates a

set of pointcut elements to an aservice element. The aservice element is used in

WSAL to specify an externally provided aspectual service. It includes the following

attributes: a name, which assigns a unique name to the aspectual service; a location,

which specifies the network location (URL) where the aspectual service is physically

provided; and one or more advice elements. In this way, an aspect element comprises

all the information necessary for the weaver to manipulate the intercepted SOAP

traffic and invoke the provided aspectual service operations, as specified by the

WSAL developer. In addition, by requiring that aspect and aservice elements be

specified separately, WSAL makes it easier to reuse the same aspectual service

operations across different aspect specifications.

The next section illustrates the use of WSAL by presenting the specification of

three aspects: client authentication, cache, and billing.

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

252 N. C. Mendonça et al.

3. WSAL Examples

3.1. Client authentication aspect

Figure 3 shows an example of a WSAL specification for a client authentication

aspect. This aspect encapsulates all the authentication details necessary for a client

application to access the Google search service [22]. In this example, the aspect

defines a pointcut element of type service location, whose pattern attribute contains

the Google service’s access URL (lines 2–4). The aspect also defines an aservice

element with a single advice, of type upon request (line 7). This advice is associated

with an aspectual service operation named AddCredential (line 9), provided by

the AuthenticationService service (line 5), whose main purpose is to insert the

necessary credentials for accessing the Google service into the intercepted request

messages. In this way, all SOAP request messages intercepted by the weaver, which

have the Google service URL as their destination, will be preprocessed by the

authentication aspectual service to have the required credential properly included,

before the message is forwarded to its original destination.

1 <aspect id="ClientAuthenticationAspect ">

2 <pointcut name=" googleService"

3 type=" serviceLocation"

4 pattern ="http: //api.google .com/search /beta2"/>

5 <aservice name=" AuthenticationService "

6 location ="http: // server1 /axis/AuthService ">

7 <advice type="uponRequest "

8 pointcut -ref=" googleService"

9 operation =" AddCredential"

10 context ="infoRequest " />

11 </ aservice >

12 </ aspect >

Fig. 3. Example of a client authentication aspect specified in WSAL.

With this aspect, all information related to the client authentication concern

would be completely encapsulated in the aspect’s WSAL specification and the im-

plementation of its corresponding aspectual service. This level of modularization

is beneficial, in that any modification required to the authentication concern (e.g.,

changing or renewing the client credentials) would be implemented exclusively in

those two components, without affecting the implementation of any client applica-

tion directly. In fact, with the authentication aspect in place, the authentication

process would be totally transparent to client applications developers, who could

then focus their development effort in the applications’ main business concerns.

3.2. Cache aspect

Cache mechanisms are largely used in distributed system to improve the perfor-

mance and availability of remote services [23]. In the case of web services, caching

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

A Loosely Coupled Aspect Language for SOA Applications 253

is only valid for operations that produce the same results when invoked with the

same set of parameters [24]. Figure 4 shows an example of a WSAL specification

for a web service cache aspect. This aspect defines a composite pointcut from the

combination of three primitive pointcuts, of types service location, service operation

and message part, respectively, whose pattern attributes will match every invoca-

tion issued to the doGoogleSearch operation, provided by the Google search service,

and whose query parameter contains the string “Internet Standards” (lines 2–11).

The aspect’s additional behavior is specified by means of an advice element of type

around (line 14), whose implementation is given by the GenerateResponse aspectual

service operation (line 15), provided by the CacheService service (line 12).

1 <aspect id="CacheAspect ">

2 <pointcut name="googleSearch" type="composite ">

3 <and>

4 < pointcut type="serviceLocation"

5 pattern ="http: //api.google .com/search /beta2 "/>

6 < pointcut type="serviceOperation"

7 pattern ="doGoogleSearch"/>

8 < pointcut type="messagePart "

9 pattern ="<query *> Internet Standards </ query>"/>

10 </ and>

11 </ pointcut >

12 <aservice name="CacheService"

13 location ="http: // localhost:8080/axis/services / ASCaching1 ">

14 <advice type="around " pointcut -ref ="googleSearch"

15 operation ="GenerateResponse" context ="all"/>

16 </ aservice >

17 </ aspect >

Fig. 4. Example of a web service cache aspect specified in WSAL.

The cache aspect works as follows. Every time the WSAL weaver intercepts a

SOAP request message matching the cache aspect’s specified join points, it invokes

the GenerateResponse aspectual service operation, passing the intercepted message

and other context information as parameters. The GenerateResponse operation then

checks whether a similar request message (sent to the same service operation and

involving the same set of parameters) has been registered in the cache before. If it

finds a similar message in the cache, it returns the cached response to the weaver.

Otherwise, it forwards the intercepted request message to its original target service

(in this case, the Google search service), waits for a response, stores both the request

message and the response message in the cache, and, finally, returns the response to

the weaver. Once the weaver receives a response back from the aspectual service, it

simply returns this message back to the client application. If the aspectual service

fails to contact the target service, it returns an exception to the weaver, which then

propagates the exception to the client application.

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

254 N. C. Mendonça et al.

In [24], the authors propose annotating the WSDL specification with information

indicating whether a given service operation is considered to be cache-safe by the

web service developers. In this way, it would be up to client application developers

to decide whether it would be worth caching the results of those operations marked

as “cacheable” in the WSDL document. With the WSAL cache aspect in place,

any cache-related concern (such as the decision about whether or not to cache

the results of a given service operation) would be completely modularized in the

aspect specification and in the implementation of its associated aspectual service,

thus freeing software developers from having to deal with those issues in every new

application they implement.

3.3. Billing aspect

Figure 5 shows an example of a WSAL specification for a billing aspect. This

aspect is used to register each successful invocation to a given service, so that client

applications can later be charged for their accesses. The aspect defines a pointcut

element of type client location, whose pattern attribute contains a single network

domain name (lines 2–4). This means that only invocations generated from that

domain will be charged by the aspect’s associated aspectual service operation. The

aspect also defines an aservice element with a single advice, of type after response

(line 7). This type was chosen as only successful invocations must be charged. Note

that the after response advice is specified to be invoked in asynchronous mode

(line 11). This is possible because its aspectual service operation does not return

any relevant information back to the weaver.

1 <aspect id="ServiceBillingAspect ">

2 <pointcut name=" UseService "

3 type=" clientLocation"

4 pattern ="http: // client .domain /"/>

5 <aservice name=" BillingService"

6 location ="http: // server2 /axis/BillingService">

7 <advice type="afterResponse"

8 pointcut -ref=" UseService "

9 operation =" BillingPerUse"

10 context ="infoHTTP "

11 mode="asynchronous"/>

12 </ aservice >

13 </ aspect >

Fig. 5. Example of a service billing aspect specified in WSAL.

3.4. Discussion

It is worth noting that, because WSAL is a specification language, rather than an

implementation one, all details pertaining to the implementation of aspectual ser-

vice operations are under the responsibility of their respective developers. Therefore,

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

A Loosely Coupled Aspect Language for SOA Applications 255

it is the developers’ responsibility to guarantee that the implemented operations

comply with their execution semantics, as required by the WSAL weaver.

On the other hand, by decoupling aspect specifications from their implementa-

tions, WSAL allows aspect implementations to be reused across applications devel-

oped using different implementation technologies. For example, the client authenti-

cation aspect (shown in Fig. 3) could be reused to add credentials to SOAP request

messages generated from client applications running in different network domains,

independently of the their programming language, midlleware system or execution

environment. Similar arguments also apply to the cache and billing aspects. Such

level of reuse is simply not possible with existing solutions that also attempt to

integrate the AOP and SOA paradigms.

A more detailed comparison between WSAL and a number of related approaches

can be found in Sec. 6.

4. Development of a Prototype Aspect Weaver for WSAL

As mentioned previously, the aspect weaving process in WSAL is based on the

interception of SOAP messages exchanged between SOA applications at the network

level, which means that messages are intercepted externally to the applications’

execution environments. In this way, the WSAL weaver plays the role of a web

intermediary (or proxy) [20] between service consumers and service providers.

In our prototype, we have implemented the WSAL weaver on top of IBM’s

WBI [25]. WBI was chosen because it already offers an extensible web intermediary

platform for intercepting and handling HTTP messages. Since HTTP is still the

most commonly used transport protocol for delivering SOAP messages, WBI has

proved a handy solution to implement our weaver prototype.

More specifically, WBI is a programmable HTTP proxy written in Java. Its ex-

tension mechanism is based on the concepts of plugins and MEGs. Plugins are Java

classes that can be dynamically loaded into the WBI runtime environment (JVM).

They are used to configure and control the execution of one or more MEGs. MEGs

are special objects used to handle HTTP request and response messages intercepted

under the conditions configured in the MEG by the plugin. The term MEG is an

acronym for Monitor, Editor and Generator, which reflect the three different types

of MEG supported by WBI. A monitor MEG is used to monitor HTTP messages

that have been intercepted by WBI without applying any modification to their

contents or destination. An editor MEG in turn is used to modify the contents

of intercepted HTTP messages without changing their destination. Finally, a gen-

erator MEG is used to generate new HTTP messages that can be then sent to

a destination in place of any intercepted HTTP message. WBI also supports the

definition of new types of MEGs, by extending these three basic types.

To avoid coupling our implementation to a specific intermediary technology, we

have taken some design decisions aimed at improving the reusability of the weaver

components. These design decisions are discussed in Secs. 4.1 and 4.2.

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

256 N. C. Mendonça et al.

Fig. 6. WSAL weaver architecture.

4.1. Deployment strategies

Firstly, we had to decide how the WSAL specifications would be deployed by the

weaver, and how the weaver would use that information to handle the HTTP mes-

sage traffic according to what was specified in the WSAL aspects. Two alternatives

were considered:

(1) Static: An external tool could be created to read the WSAL specifications and

then, using predefined code templates, to generate the WBI code necessary to

handle the intercepted HTTP messages according to the behavior specified for

each aspect. A possible implementation strategy would be to generate a new

WBI plugin for each WSAL aspect.

(2) Dynamic: A set of generic classes could be created, which would be responsible

for loading the WSAL specifications into memory. At execution time, those

classes would check the execution conditions for each deployed aspect and, if

the conditions are met, handle the HTTP traffic as necessary.

Both strategies have advantages and disadvantages. For example, while the for-

mer requires generating new code for each new WSAL specification, the generated

code could be made more efficient by exploring the characteristics of a specific in-

termediary technology. The latter, on the other hand, would trade performance for

reusability, as it could be provided in the form of a generic weaving API, which then

could be implemented using different web intermediary technologies. Since we favor

platform-independence as a major design concern, we adopted the latter solution

in the implementation of our weaver prototype.

4.2. Weaver architecture

Figure 6 shows the main architectural elements of our weaver prototype. These

include components for parsing and validating the WSAL specifications, and de-

ploying the specified aspects using the underlying intermediary technology. A more

detailed description of these components in terms of their functionalities and

implementation strategies are provided below.

WSAL Setup: This is a simple mechanism used to load the WSAL specifica-

tion files into memory and pass them to the validation component (WSAL

Validation). It works by obtaining a list of files which end with the extension

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

A Loosely Coupled Aspect Language for SOA Applications 257

“.wsal.xml”, and then invoking the validation component to validate the loaded

aspect specifications.

WSAL Validation: This component converts the XML files loaded by WSAL

Setup into Java objects, using an XML-Java binding technology (currently we

use JAXB [26] as the binding technology). The component also provides an

XML-independent WSAL validation API, which consists of a set of interfaces

for traversing and validating the WSAL elements. This design decision isolates

the validation process from any specific binding technology, thus making it

easier to replace the latter in future versions of the weaver.

WSAL WBI Plugin: This component is a single class that is responsible for co-

ordinating the other components at deployment time. It invokes the WSAL

Setup and Validation components, obtains the aspect definitions, and instan-

tiates and configures the WBI MEGs necessary to intercept and handle the

HTTP traffic.

WSAL MEGs: These are three WBI MEGs (namely WsalWeavingRequestEdi-

tor, WsalWeavingDocumentEditor and WsalWeavingGenerator) created specif-

ically for the WSAL weaver. Each MEG handles different types of advices, as

described below:

• WsalWeavingRequestEditor: this MEG is a subtype of RequestEditor,

which is the MEG type defined for WBI to handle and possibly mod-

ify HTTP requests. In our weaver prototype, this MEG is used to handle

advices of types beforeRequest and uponRequest;

• WsalWeavingDocumentEditor: this MEG is a subtype of DocumentEditor,

which is the MEG type defined for WBI to handle and possibly modify

HTTP responses. In our weaver prototype, this MEG is used to handle

advices of types afterException, afterResponse, uponException and upon-

Response;

• WsalWeavingGenerator: this MEG is a subtype of Generator, which is

the MEG type defined for WBI to generate new HTTP responses. In our

weaver prototype, this MEG is used to handle advices of type around.

WSAL Weaving: This is the core component of our weaver prototype. It is re-

sponsible for realizing the full semantics of WSAL, i.e., evaluating join points,

compiling context information, invoking aspectual services, and resuming the

intercepted HTTP flow. It was implemented using existing technologies for ma-

nipulating the XML structure of SOAP messages [27] and for dynamic service

invocation [28]. The relationships between this component and these two tech-

nologies is illustrated on the right of Fig. 6.

5. Preliminary Evaluation

This section presents the results of a preliminary evaluation of our WSAL weaver

prototype. Our motivation at this stage is twofold: (i) to provide some early evidence

of the performance impact of WSAL on existing SOA applications; and (ii) to

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

258 N. C. Mendonça et al.

establish a methodological basis upon which to conduct further experiments with

larger systems, possibly using a more robust implementation of the weaver.

The evaluation consisted of several experiments carried out to measure the per-

formance impact of the billing aspect (presented in Fig. 5) on a toy web service.

This aspect affects only the implementation of a given service. However, other non-

functional requirements may demand aspects that crosscut both client and service

providers, such as authentication, authorization, caching, etc [8]. The experiments

measured the average service response time, as perceived at the client side, in

three different scenarios: with the billing concern implemented as part of the toy

service implementation (Scenario 1); with the billing concern implemented by an

external aspectual service operation invoked by the weaver in asynchronous mode

(Scenario 2); and with the billing concern implemented by an external aspectual

service operation invoked by the weaver in synchronous mode (Scenario 3).

The evaluation involved three machines connected through a Fast Ethernet

(10/100 Mbps) local area network. The three machines had the same configuration:

Windows XP Professional (SP2); Pentium IV processor (3.2 GHz) and 512 MB

RAM. One machine was used to run the client application; a second machine was

used to run both the WBI components required by our prototype weaver imple-

mentation and the billing aspectual service; finally, the third machine was used to

deploy the target toy service whose successful invocations would be registered by

the billing aspectual service.

The target service provides a single operation which receives a text string as

input and returns the same text string as output, but with all characters non-

capitalized. Four sequences of invocations were performed as part of the experi-

ments. In each sequence, the service was invoked 15 times, using the same string as

input. At each new sequence, the string size (in bytes) was increased. The string sizes

used in each sequence were 1, 20, 40, and 60 KBytes, in that order. For each service

invocation the client application computed the service response time by measuring

the elapsed time between invoking the service and receiving a complete response.

To avoid service initialization time interfering in our results, we discarded the first

five invocations in each sequence when computing the mean service response time.

The evaluation results are depicted in Fig. 7. As expected, the results show that

the weaver may impose different levels of performance overhead, depending on the

synchronization mode used to invoke the aspectual service.

As described before, in the first scenario the billing concern is part of the toy

service implementation, which means that its execution was considered when mea-

suring the service response times. In Scenario 2, an aspectual service modularizes

the billing concern. Because this service was invoked asynchronously, its execution

was not considered in the service response times. For this reason, the average re-

sponse time observed in Scenario 2 is slightly inferior to the results of Scenario 1.

Scenario 3 is similar to Scenario 2, but with the aspectual service being invoked

synchronously. Thus, in Scenario 3, the measured service response times include

the overhead of accessing the billing service and waiting for its execution.

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

A Loosely Coupled Aspect Language for SOA Applications 259

0

50

100

150

200

250

300

1K 20K 40K 60K

Message size

A
ve

ra
g

e
 r

e
sp

o
ns

e
 t

im
e

 (
m

s
)

S1

S2

S3

0

50

100

150

200

250

300

1K 20K 40K 60K

Message size

A
ve

ra
g

e
 r

e
sp

o
ns

e
 t

im
e

 (
m

s
)

S1

S2

S3

Fig. 7. Billing service’s average response time in the three scenarios investigated.

Note that the relative performance overhead observed in Scenario 3 with respect

to the other two scenarios gradually decreases as the message size increases. This is

explained by the fact that the toy service response time increases proportionally to

the size of the input parameter, while the overhead imposed by the weaver remains

under 100 ms for all message sizes.

Even though the results show that the weaver may impose a noticeable per-

formance overhead when an aspectual service is invoked in synchronous mode, we

believe that, in many situations, this may be compensated by the reusability and

platform-independence benefits that are brought about when using a loosely cou-

pled aspect language such as WSAL. For example, in the particular case of the

billing aspectual service used in our preliminary evaluation, the overhead was un-

der 100 ms for all message sizes. This level of performance degradation could be

perfectly acceptable, in so far as it does not compromise the QoS requirements of

the client application.

6. Related Work

Using SOAP intermediaries as a way to implement crosscutting SOA concerns is

not a novel ideal. In fact, it has been part of the SOAP specification since its

early versions [4]. In most existing web service frameworks, such as .NET [29] and

JAX-WS [30], such intermediaries are implemented as message handlers, which can

be deployed at both the client and service sides. The weaving model supported by

WSAL takes this idea one step ahead, by using SOAP intermediaries not as the

technology to implement SOA concerns directly (which would bind concern imple-

mentations to a particular intermediary technology), but as the means to decouple,

in a SOA context, concern composition (weaving) from concern implementation.

A number of other approaches exist that aim at integrating concepts from the

AOP and SOC paradigms [13, 17, 31]. However, those solutions all rely on an aspect

weaving mechanism that is tightly bound to a specific programming language or de-

velopment environment. For instance, the approaches by Verheecke and Cibrán [13]

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

260 N. C. Mendonça et al.

and Baligand and Monfort [31] rely on different weaving mechanisms specific to

the Java platform, and thus require that both the aspects and their target appli-

cations be implemented in Java. Similarly, the approach by Verheecke et al. [17]

relies on a weaving mechanism specific to .NET, and thus requires aspects and ap-

plications only to be implemented using that framework. In contrast to the above

approaches, in WSAl aspects are implemented as loosely-coupled web services that

can be weaved dynamically into SOAP-based interaction events captured over the

network.

Two other related works follow a slightly different approach [14, 15]. They both

integrate AOP and SOC concepts at the service composition level, and both extend

BPEL4WS [32], a web service-based process composition language. The extension

includes creating new constructs for specifying process composition aspects, and a

new composition mechanism for weaving the aspects back to the original BPEL4WS

processes. By relying on a weaving mechanism that works at the service composition

level, those two works, like our work on WSAL, also support aspect implementation

and weaving in the form of loosely coupled web services. However, the weaving

mechanism used in those approaches is more limited in scope, being restricted

to dynamic join points expressed in terms of interaction events captured by the

BPEL4WS execution engine at the service composition level. This feature has the

drawback that it tightly couples aspect implementation in those approaches to the

BPEL4WS language.

On the other hand, WSAL design is independent from SOAP engines and busi-

ness process modeling languages. The prototype aspect weaver for WSAL described

in this paper relies on the WBI framework for message interception. However, other

weavers can be implemented using different SOAP engines or providing their own

interception frameworks.

7. Conclusions

This paper presented a novel aspect language, called Web Service Aspect Language

(WSAL), which provides a natural mechanism for integrating aspect-oriented pro-

gramming concepts into the context of service-oriented architectures. In WSAL,

aspects are both implemented and deployed as loosely-coupled web services, which

allow crosscutting concern implementations (or advices) to be dynamically woven

into the SOAP traffic generated between service consumers and services providers.

In contrast to most existing approaches that also aim at integrating these two

emerging software development paradigms, the weaving process supported in WSAL

is completely independent of any particular implementation technology. The paper

also presented some details on the design and implementation of a prototype aspect

weaver for WSAL, which has been developed based on a existing HTTP interme-

diary framework. Results of a preliminary performance evaluation of the weaver in

a controlled setting were finally presented and discussed.

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

A Loosely Coupled Aspect Language for SOA Applications 261

As regards future work, we envision the following research lines:

• Developing new versions of the weaver using different intermediary technologies.

The idea is to evaluate empirically the characteristics of reusability and interme-

diary platform independence of our proposed weaver architecture.

• Conducting a more systematic evaluation of our tools, in both controlled and

production settings. This would help us in fine tuning their performance to meet

the QoS requirements of industrial-strength SOA applications.

• Developing new tools to support the creation, deployment and monitoring of

WSAL aspects. These tools are vital to improve the quality of the WSAL devel-

opment process and to make it more accessible to SOA developers in general.

References

1. M. P. Papazoglou and D. Georgakopoulos, Service-oriented computing, Commun.
ACM 46(10) (2003) 25–28.

2. OASIS, OASIS Reference Model for Service Oriented Architecture V1.0, 2006,
http://www.oasis-open.org/committees/tc home.php?wg abbrev=soa-rm.

3. G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services: Concepts, Architec-
ture and Applications (Springer Verlag, 2004).

4. M. Gudin, M. Hadley, N. Mendelsohn, J. Moreau and H. F. Nielsen, SOAP Version
1.2, W3C Recommendation, 2003, http://www.w3.org/TR/soap12.

5. E. Christensen, F. Curbera, G. Meredith et al., Web Services Description Language
(WSDL) version 1.1, W3C Note, 2001, http://www.w3.org/TR/wsdl.

6. D. Bryan, V. Draluk, D. Ehnebuske, T. Glover et al., Universal Description, Discovery
and Integration (UDDI) version 2.04, 2002, http://uddi.org/pubs/ProgrammersAPI-
V2.04-Published-20020719.htm.

7. D. A. Menascé, QoS Issues in Web Services, IEEE Internet Computing 6(6) (2002)
72–75.

8. E. Wohlstadter, S. Jackson, and P. Devanbu, DADO: Enhancing middleware to
support cross-cutting features in distributed, heterogeneous systems, in Proc. 25th
IEEE/ACM Int. Conf. on Software Engineering (ICSE’03), 2003, pp. 174–186.

9. OASIS, WS-Security Core Specification V1.1, 2004, http://www.oasis-open.org/
committees/tc home.php?wg abbrev=wss.

10. M. A. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui, A QoS broker based architec-
ture for efficient web services selection, in Proc. IEEE Int. Conf. on Web Services
(ICWS’05), 2005, pp. 113–120.

11. N. C. Mendonça and J. A. F. Silva, An empirical evaluation of client-side server
selection policies for accessing replicated web services, in Proc. 20th Annual ACM
Symp. on Applied Computing (SAC’05), Web Technologies and Applications Track,
Santa Fé, New Mexico, USA, 2005, pp. 1704–1708.

12. G. J. Kiczales, L. A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin,
Aspect-oriented programming, in Proc. 11th European Conf. on Object-Oriented Pro-
gramming (ECOOP’97), LNCS Vol. 1241 (Springer-Verlag, 1997), pp. 220–242.

13. B. Verheecke and M. A. Cibrán, AOP for dynamic configuration and management of
web services, in Proc. Int. Conf. on Web Services — Europe 2003 (ICWS-Europe’03),
Erfurt, Germany, 2003.

14. A. Charfi and M. Mezini, Aspect-oriented web service composition with AO4BPEL,
in Proc. European Conf. on Web Services (ECOWS’04), LNCS Vol. 3250 (Springer-
Verlag, 2004), pp. 168–182.

Final Reading
May 26, 2008 19:4 WSPC/117-ijseke 00362

262 N. C. Mendonça et al.

15. C. Courbis and A. Finkelstein, Towards an aspect weaving BPEL engine in Proc. 3rd
AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software
(ACP4IS’01), Lancaster, UK, 2004.

16. M. Henkel, G. Boström, and J. Wäyrynen, Moving from internal to external services
using aspects, in Proc. 1st Int. Conf. on Interoperability of Enterprise Software and
Applications (ICIESA’05), Geneva, Switzerland, 2005.

17. B. Verheecke, W. Vanderperren, and V. Jonckers, Unraveling crosscutting concerns
in web services middleware, IEEE Software 23(1) (2006) 42–50.

18. N. C. Mendonça and C. F. Silva, Aspectual services: Unifying service- and aspect-
oriented software development, in Proc. 1st Int. Conf. on Next Generation Web
Services Practices (NWeSP’05), Seoul, Korea, 2005, pp. 351–356.

19. N. C. Mendonça and C. F. Silva, A unified model for service- and aspect-oriented
software development, Int. J. Web Services Practices 2(1–2) (2006) 59–67.

20. R. Barret and P. Maglio, Intermediaries: New places for producing and manipulating
web content, Computer Networks and ISDN Systems 30(1–7) (1998) 509–518.

21. R. Laddad, AspectJ in Action (Manning Publications Co., 2003).
22. Google, Google SOAP Search API (Beta), 2006, http://code.google.com/apis/

soapsearch/reference.html.
23. G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems: Concepts and

Design (Addison Wesley, 2005).
24. D. B. Terry and V. Ramasubramanian, Caching XML web services for mobility, ACM

Queue 1(3) (2003) 70–78.
25. IBM Research, Web Intermediaries (WBI), http://www.almaden.ibm.com/cs/wbi/.
26. SUN Microsystems, Java Enterprise Ed. 5, 2006, http://java.sun.com/javaee/5/.
27. SUN Microsystems, SAAJ Project, 2007, https://saaj.dev.java.net/.
28. The Apache Software Foundation, WSIF Project, 2006, http://ws.apache.org/wsif/.
29. Microsoft Corp., .NET Framework, 2007, http://msdn.microsoft.com/netframework/.
30. SUN Microsystems, JAX-WS, http://jax-ws.dev.java.net/.
31. F. Baligand and V. Monfort, A concrete solution for web services adaptability

using policies and aspects, in Proc. 2nd Int. Conf. on Service Oriented Computing
(ICSOC’04), New York, NY, USA, 2004, pp. 134–142.

32. BEA Systems, IBM, Microsoft, SAP AG and Siebel Systems, Business Process Execu-
tion Language for Web Services (BPEL4WS) version 1.1, http://www-128.ibm.com/
developerworks/library/specification/ws-bpel/.

