
44 communications of the acm | may 2012 | vol. 55 | no. 5

V
viewpoints

V
ia a remarkable alignment of
technologies, the future of
software has been revolu-
tionized in a way that also
makes it easier to teach.

Cloud computing and the shift in the
software industrya toward Software as
a Serviceb (SaaS) using Agile develop-
ment has led to tools and techniques
that are a much better match to the
classroom than earlier software devel-
opment methods. In addition, modern
programming frameworks for Agile
development like Ruby on Rails dem-
onstrate that big ideas in program-
ming languages can deliver productiv-
ity through extensive software reuse.
We can leverage such productivity to
allow students to experience the whole
software life cycle repeatedly within a
single college course, which addresses
many criticisms from industry about
software education. By using free-trial
online services, students can develop
and deploy their SaaS apps in the cloud
without using (overloaded) campus
resources. Our enthusiasm for Agile,
SaaS, and cloud computing is not based
just on improving students’ employ-

a	 Virtually every shrink-wrap program is offered
as a service, including PC standard-bearers
like Office (see Office 365; http://www.micro-
soft.com/en-ca/office365/online-software.aspx)
and TurboTax (see TurboTax Online; http://
turbotax.intuit.com/personal-taxes/online/
compare.jsp).

b	 Instead of binaries that must be installed on
a local computer, SaaS delivers software and
associated data as a service over the Internet,
often via a thin program on client devices such
as a browser.

ability; rather, we are excited that they
can learn and practice software engi-
neering fundamentals, and that they
use them even after graduation. Our
50,000 online students are a testimony
to the popularity of the material and the
scalability of our SaaS “courseware.”

The Complaints and the Defense
While new college graduates are good
at coding and debugging,1 employers
complain about other missing skills
that are equally important. A standard
faculty reaction to such criticisms is
that we are trying to teach principles
that prepare students for their whole
careers; we are not trade schools that
teach the latest superficial fads.

To understand the complaints in
more depth, we spoke to representa-
tives from a half-dozen leading soft-
ware companies. We were struck by the
unanimity of the number-one request
from each company: that students
learn how to enhance sparsely docu-
mented legacy code. In priority order,
other requests were making testing a
first-class citizen, working with non-
technical customers, performing de-
sign reviews, and working in teams.
We agree that the social skills needed
to work effectively with nontechni-
cal customers, work well in teams,
and perform effective design reviews
are helpful for the students’ whole ca-
reers—the question is how to fit them

Viewpoint
Crossing the Software
Education Chasm
An Agile approach that exploits cloud computing.

doi:10.1145/2160718.2160732	 Armando Fox and David Patterson

Turning software concepts into Rails development tools.

SWEBOK Concept Agile Version Rails Tool

Software Requirements User Stories, Behavior-
Driven Design (BDD)*

Cucumber (http://cukes.info)

Project Management Velocity, Version
Control

Pivotal Tracker (http://www.pivotaltracker.com/),
GitHub (https://github.com/)

Software Verification
and Testing

Test-driven
development (TDD)

RSpec (unit/functional testing; http://rspec.info/),
SimpleCov (coverage measurement;
http://rubygems.org/gems/simplecov)

Software Maintenance Refactoring to control
complexity

metric-fu (captures metrics of code complexity
e.g., cyclomatic and ABC; http://metric-fu.
rubyforge.org/), pingdom (monitors 99%ile
response times to deployed app from around
the world; http://pingdom.com/). IDEs such
as Aptana (http://aptana.com/) and
RubyMine (http://www.jetbrains.com/ruby/)
include refactoring support, method name
autocompletion, visualizing dependencies
among classes, and so on.

Software Lifecycle Iterations See Figure 3
*BDD is a variation of TDD that suggests writing higher-level acceptance or integration tests first before writing code.

viewpoints

may 2012 | vol. 55 | no. 5 | communications of the acm 45

Calendar
of Events
May 15–17
Computing Frontiers
Conference,
Caligari, Italy,
Sponsored: SIGMICRO,
Contact: John Feo,
Email: john.feo@pnl.gov,
Phone: 509-375-3768

May 15–16
Workshop on Software and
Compilers for Embedded
Systems,
Sankt Goar, Germany,
Contact: Henk Corporaal,
Email: h.corporaal@tue.nl

May 16–21
The 9th Annual Conference on
Theory and Applications on
Models and Computation,
Beijing, China,
Contact: Li Angsheng,
Email: angsheng@ios.ac.cn

May 21–24
6th International Conference
on Pervasive Computing
Technologies
for Healthcare,
San Diego, CA,
Contact: Dr. Rosa I. Arriaga,
Email: arriagea@cc.gatech.edu

May 21–25
Shape Modeling International,
College Station, TX,
Contact: Ergun Akleman,
Email: ergun.akleman@gmail.
com,
Phone: 979-845-6599

May 21–25
The 2012 International
Conference on Collaboration
Technologies and Systems,
Denver, CO,
Contact: Geoffrey Fox,
Email: gcfexchange@gmail.com

May 22–25
International Working
Conference
on Advanced Visual Interfaces,
Capri Islands (Naples), Italy,
Contact: Tortora Genoveffa,
Email: tortora@unisa.it

May 23–25
Euro-American Conference on
Telematics and Information
Systems,
Valencia, Spain,
Contact: Samper J. Javier,
Email: jjsamper@uv.es

into a course. Similarly, no one ques-
tions the value of emphasizing test-
ing—the question is how to get stu-
dents to take it seriously.

Instructors respond that even if we
agreed with the recommendations,
time constrains how much one class
can cover. A typical undergraduate
workload of four courses per term and
a 50-hour workweek gives students
about 12 hours per week per course,
including lectures, labs, exams, and so
forth. This works out to approximately
120 hours per quarter to 180 hours per
semester, or just three to four weeks
for a full-time developer!

A Classroom Opportunity:
Agile Development
The Agile Manifesto signaled a para-
digm shift for many software applica-
tions. This approach embraces change
as a fact of life; small teams of devel-
opers continuously refine a working
but incomplete prototype until the
customer is happy with the result, with
the customer offering feedback with
every iteration. Agile emphasizes Test-
Driven Developmentc (TDD) to reduce
mistakes, which addresses industry’s
request to make testing a first-class cit-
izen; user storiesd to reach agreement
and validate customer requirements,
which addresses working with non-
technical customers; and velocitye to
measure progress. The Agile software
philosophy is to make new versions
available every two weeks. The as-
sumption is basically continuous code
refactoring over its lifetime, which de-
velops skills that can also work with
legacy code. Clearly, small teams and
multiple iterations of incomplete pro-
totypes could match the classroom.

Note that we do not tell students
that Agile is the only way to develop
software; indeed, we explain Agile is
inappropriate for safety-critical apps,
for example. We believe that new pro-
gramming methodologies develop
and become popular in response

c	 In TDD you first write a failing test case that
defines a new feature, and then write code to
pass that test.

d	 A user story is a few nontechnical sentences
that captures a feature the customer wants to
include in the app.

e	 Velocity is calculated by estimating units of
work per user story and then counting how
many units are completed.

to new opportunities, so we tell stu-
dents to expect to learn new method-
ologies and frameworks in the future.
Our experience is that once students
learn the classic steps of software de-
velopment and have a positive experi-
ence in using them via Agile, they will
use these key software engineering
principles in other projects no mat-
ter which methodology is used (see
Figure 5).

A Classroom Target for the Post-
PC Era: “I Do and I Understand”
To motivate students, it is helpful to
use a platform that allows them to cre-
ate compelling apps. In this emerging
post-PC era, mobile applications for
smartphones and tablets and Software
as a Service (SaaS) for cloud computing
are both compelling. (50,000 students
are evidence that SaaS is indeed com-
pelling.) As you can teach the princi-
ples with either target, given the time
constraints mentioned earlier, why
not pick the platform that has the most
productive tools? Our view is that the
only hope for addressing all the con-
cerns from industry within one course
is to use a highly productive program-
ming framework.

Our experience is that the Rails eco-
system has by far the best tools to sup-
port test-driven development, behav-
ior-driven design, and Agile processes,
many of which are made possible by
intellectually deep Ruby language fea-
tures such as closures, higher-order
functions, functional idioms, and

The only hope for
addressing all the
concerns from
industry within
the course time
constraints is to use
a highly productive
programming
framework.

46 communications of the acm | may 2012 | vol. 55 | no. 5

viewpoints

metaprogramming. The accompany-
ing table shows critical topics from the
SWEBOK (software engineering body
of knowledge),5 the Agile technique for
that topic, and the Rails tool that imple-
ments that technique. Because these
tools are lightweight, seamlessly inte-
grated with Rails, and require virtually

no installation or configuration—some
are delivered as SaaS—students quickly
begin learning important techniques
directly by doing them. We agree with
Confucius: “I hear and I forget. I see and
I remember. I do and I understand.”
Students see and use tools that we can
explain and check, rather than just hear

lectures about a methodology and then
forget to use them in their projects.

For example, the Cucumber tool
automates turning customer-under-
standable user stories into acceptance
tests. Figure 1 is an example feature
for a cash register application and
one “happy path” user story (called a
scenario in Cucumber) for that fea-
ture (see http://en.wikipedia.org/
wiki/Cucumber_%28software%29).
Note that this format is easy for the
nontechnical customer to under-
stand and help develop, which is a
founding principle of Agile and ad-
dresses a key criticism from industry.
Cucumber uses regular expressions
to match user stories to the testing
harness. Figure 2 is the key section
of the Cucumber and Ruby code that
automates the acceptance test by
matching regular expressions.

Such tools not only make it easy
for students to do what they hear in
lecture, but also simplify grading of
student effort from a time-intensive
subjective evaluation by reading code
to a low-effort objective evaluation by
measuring it. SimpleCov measures
test coverage, saikuro measures cyc-
lomatic complexity of the code, flog
measures code assignment-branch-
condition complexity, reek comments
on code quality by highlighting “code
smells,”f Cucumber shows the num-
ber of user stories completed, and Piv-
otal Tracker records weekly progress
and can point out problems in balance
of effort by members of teams. Indeed,
these tools make it plausible for the
online course to have automatically
gradable assignments with some teeth
in them.

Compared to Java and its frame-
works, Rails programmers have found
factors of three to five reductions in
number of lines of code, which is one
indication of productivity.6,8 Rails also
helps with a criticism of Agile in that
TDD and rapid iteration can lead to
poor software architecture. We do teach
design patterns (see Figure 3). Indeed,
the Rails framework follows the Model
View Controller (MVC)g design pattern

f	 Code smells highlight to sections of code that
may be hard to read, maintain, or evolve.

g	 MVC is a design pattern that separates input
logic, business logic, and user interface logic
yet provides a loose coupling between them.

Figure 1. An example feature for a cash register application and one “happy path” user
story for that feature.

Feature: Division
 In order to avoid silly mistakes
 Cashiers must be able to calculate a fraction

 Scenario: Regular numbers
 Given I have entered 3 into the calculator
 And I have entered 2 into the calculator
 When I press divide
 Then the result should be 1.5 on the screen

Figure 2. The key section of the Cucumber and Ruby code that automates the acceptance
test for the user story in Figure 1 by matching regular expressions.

Given /I have entered (\d+) into the calculator/ do |n|
 @calc.push n.to_i
end

When /I press (\w+)/ do |op|
 @result = @calc.send op
end

Then /the result should be (.*) on the screen/ do |result|
 @result.should == result.to_f
end

Figure 3. One Agile iteration in our course.

Talk to Customer

Behavior-Driven Design (user stories)

Test-Driven Development (unit test)

Measure Velocity

Deploy to Cloud

Legacy

Design patterns

viewpoints

may 2012 | vol. 55 | no. 5 | communications of the acm 47

A typical faculty reaction to the re-
quest for students to deal with poorly
documented legacy code is that it
should not exist if students are taught
good practices. However, despite de-
cades of well-meaning instructors ex-
pounding on the importance of prop-
erly factored and highly documented
code, our industry colleagues assure us
the legacy code problem will continue
to persist. Thus, on this point we quote
Shimon Peres: “If a problem has no solu-
tion, it may not be a problem, but a fact—
not to be solved, but to be coped with over
time.” Hence, if we can find principles
that teach how to cope with legacy code,
they would be appropriate for the class-
room since it is a long-lasting challenge.

To learn to deal with legacy apps,
our students learn and enhance a large,
popular, well-written (but poorly docu-
mented) open source app written in
Rails. We use Typo, a blogging frame-
work containing 30,000 lines of Ruby
and 15,000 lines of JavaScript, which
suggests that it has the functionality of
a Java program of 100,000 to 150,000
lines of code. We choose a Rails app
rather than a Java app to maintain the
programmer productivity we need to fit
within our time budget. Feathers2 ar-
gues that the first step is to write tests
for legacy code to ensure understand-
ing before modification, so enhancing

to simplify development of the classic
three-tiered applications of cloud com-
puting. In addition, because of cloud
computing, deploying their projects in
the same horizontally scalable environ-
ment used by professional developers
is instant, free for small projects, and
requires neither software installation
nor joining a developer program. In
particular, it frees the course from in-
structional computers, which are often
antiquated, overloaded, or both.

One criticism of the choice of Ruby
is its inefficiency compared to lan-
guages like Java or C++. Since hard-
ware has improved approximately
1,000X in cost-performance since
Java was announced in 1995 and
1,000,000X since C++ was unveiled in
1979,7 the efficiency of low-level code
matters in fewer places today than it
used to. We think using the improved
cost-performance to increase pro-
grammer productivity makes sense in
general, but especially so in the class-
room. Note that for cloud comput-
ing, horizontal scalability can trump
single-node performance; deploying
as SaaS on the cloud in this course lets
us teach (and test) what makes an app
scalable across many servers, which is
not covered elsewhere in our curricu-
lum. Once again, without using the
cloud to teach the class, we could not

offer students the chance to experi-
ment with scalability.

An Example Course
We use this approach to teach a soft-
ware course, which currently has more
than 100 juniors and seniors, at UC
Berkeley. We also are offering the first
part as a massive open online course
(MOOC) to 50,000 online students,
most of whom work in the IT industry
and graduated from college five to 10
years ago.3 (The MOOC tests the scal-
ability of the tools and automatic grad-
ing of programming assignments.)
Students follow steps shown in Figure
3, which turns the concepts and tools
listed in the table into a logical pro-
cess. Additional tools facilitate tying
together the steps of this process; for
example, Autotest monitors the source
code tree in the background, automati-
cally rerunning tests and user stories
via RSpec/Cucumber in response to
even minor code changes, giving im-
mediate feedback if something breaks.
Following the Agile philosophy, they
deploy on Amazon Web Services (AWS)
(via Heroku) multiple times during the
course. The teaching staff evaluates
iterations by interacting with the de-
ployed app on AWS and by using Pivot-
al Tracker to check velocity and stories
remaining to be implemented.

Figure 4. Survey results of software experience for former Berkeley students now in industry. (The waterfall software development
process is characterized by much of the design being done in advance of coding, completing each phase before going on to the next one.
The spiral model combines features of a prototyping model with the waterfall model and is intended for large projects.)

0%

21%

22%

50%

68% 22% 5% 5%

23% 15% 4% 4% 4%

19% 14% 14% 10% 6% 6% 4% 3%

1

JavaScript

Cloud (SaaS)

Agile Other in-house

Enhance Legacy SW Mobile

Ruby Python Java C++ C PHP

Objective C

Waterfall

Embedded Server PC

Erlang

Spiral

2 3 4 5 6 7 8 >8

10% 14% 21% 10% 7% 3% 7% 6%

Team Size

Language

Software Platform

Software Development Style

20% 40% 60% 80% 100%

48 communications of the acm | may 2012 | vol. 55 | no. 5

viewpoints

“Donec et felis
vestibulum dui
ligula id scelerisque,
suscipit quis dolor
nulla facilisi curabitur
sit amet pede fusce.

legacy code fits surprisingly well with the
test-driven development of Agile.

To learn to communicate with non-
technical customers, for the Berke-
ley course we asked for projects from
nonprofit organizations. The projects
are typically less than 3,000 lines of
code, with typically two to three times
more code for testing than for the app.
Teams of four or five students meet
with customers on each Agile iteration
for feedback on the current prototype
and to prioritize the next features to
add. (Moreover, we encourage students
to connect these applications to Face-
book or Twitter, which gives students
the chance to deal with users as well as
nontechnical customers within a single
course.) Teams members do design
reviews for each other as part of a bi-
weekly class laboratory section, as Agile
favors frequent code check-ins and de-
sign reviews. (Online students do not
do projects.)

Using the Course
Content Afterward
Figure 4 shows the survey results of
Berkeley students from two earlier
course offerings. Just 22 of the 47 re-
spondents had graduated, and just 19
had done significant software projects.

The percentages indicate the results
of their 26 software projects. We were
surprised that Agile software develop-
ment was so popular (68%) and that
the cloud was such a popular platform
(50%). Given that no language was used
in more than 22% of the projects, our
alumni must be using Agile in projects
that use languages other than Ruby or
Python. All the class teams had four or
five students, which directly matches
the average team size from the survey.

Once again, Agile development and
Rails were not selected because we ex-
pected them to dominate students’
professional careers upon graduation;
we use them to take advantage of their
productivity so we can fit several criti-
cal ideas into a single college course
in the hope they will use them later no
matter what methodology, program-
ming language, and framework.

Figure 5 shows the students’ rank-
ing of the topics the table and Figure
3 in terms of usefulness in their indus-
trial projects. Most students agreed
that the top nine topics in the course
were useful in their jobs. Once again,
we were pleased to see that these ideas
were still being used, even in indus-
trial projects that did not rely on Agile
or on Rails. The two lower ranked top-

ics were Lo-Fi User Interface Mockups,
which makes sense since few devel-
opers work on the UI of a user-facing
project, and Velocity, as progress can
be measured in other ways in industry.

Although a small sample and not
a conclusive user study, our survey of-
fers at least anecdotal evidence that
students of this course do continue to
use successful software development
techniques in later software projects of
all kinds.

Conclusion
Using Agile to develop SaaS apps via
highly productive tools like Rails and
deploying them using cloud comput-
ing cultivates good software practices
and pleases many stakeholders:

˲˲ Students like it because they get
the pride of accomplishment in ship-
ping code that works and is used by
people other than their instructors,
plus they get experience that can help
land internships or jobs.

˲˲ Faculty like it because students
actually use what they hear in lecture,
even after graduation, and they expe-
rience how big CS ideas genuinely im-
prove productivity. Virtual machines re-
duces hassles for faculty plus the cloud
allows for more interesting program-

Figure 5. Ranked results from survey of former Berkeley students on whether course topics listed in the table and Figure 3 were useful
in their industrial projects. These earlier versions of the course did not offer enhancing legacy code, design reviews, and working with
nontechnical customers.

21%

60%

67%

73%

75%

67%

20%

20%

20%

19%

13%

7%

7%

33%

20%

13%

7%

6%

7%

7%

57%

25% 25%

57%

87%

93%

100%

 A gree    N eutral    D isagree

0%

Velocity

Lo-Fi User Interface Mockups

User stories

Test-first development

Cloud computing knowledge

Ruby on Rails

Design patterns

Working in a team

Version control

Unit testing skills
(mocking, stubbing, test automation,…)

SaaS knowledge
(used in other languages/frameworks)

20% 40% 60% 80% 100%

80%

44%

viewpoints

may 2012 | vol. 55 | no. 5 | communications of the acm 49

The ACM Career & Job Center is the perfect place to
begin searching for your next employment opportunity!

http://jobs.acm.org

ACM’s
Career & Job Center

Looking for your next IT job?

Need Career Advice?

Visit ACM’s Career & Job Center at:

http://jobs.acm.org
Off ering a host of career-enhancing benefi ts:

➜ A highly targeted focus on job opportunities in
 the computing industry

➜ Access to hundreds of corporate job postings

➜ Resume posting keeping you connected to the
employment market while letting you maintain
full control over your confi dential information

➜ An advanced Job Alert system notifi es you of
new opportunities matching your criteria

➜ Career coaching and guidance from trained
experts dedicated to your success

➜ A content library of the best career articles
compiled from hundreds of sources, and much
more!

CareerCenter_TwoThird_Ad.indd 1 4/3/12 1:38 PM

ming assignments—which the testing
and code evaluation tools of Rails can
help grade—thereby allowing us to of-
fer a MOOC with 50,000 students.

˲˲ Colleagues in industry like it be-
cause it addresses several of their con-
cerns. An example is this quote from
a Googler: “I think what you’re doing
in your class is amazing. I’d be far more
likely to prefer graduates of this program
than any other I’ve seen. As you know,
we’re not a Ruby shop, but I feel this is
a good choice for the class to be able to
get real features done. Java or C++ would
take forever.”4

We received similar comments
from colleagues at Amazon, eBay, and
Microsoft, none of which are “Ruby
shops.” As we expected, leading soft-
ware companies prefer students learn
important ideas rather than steer us
to teach specific languages and tools
used inside those companies.

We believe Agile+Cloud+Rails can
turn a perceived weakness of the CS
curriculum into a potential strength.
If you are a potentially interested in-
structor, we would be happy to help
you cross the long-standing chasm be-
tween what industry recommends and
what academia offers.	

References
1.	B egel, A. and Simon, B. Novice software developers,

all over again. In ICER ‘08: Proceedings of the 4th
International Workshop on Computing Education
Research (Sept. 2008).

2.	F eathers, M. Working Effectively with Legacy Code,
Prentice Hall, 2004.

3.	F ox, A. and Patterson, D. Software engineering for
Software as a Service; http://www.saas-class.org,
March 2012 and May 2012.

4.	G reen, B. Private Communication, 2011.
5.	IEEE . Guide to the Software Engineering Body of

Knowledge (SWEBOK), 2004.
6.	 Ji, F. and Sedano, T. Comparing extreme programming

and waterfall project results. Conference on Software
Engineering Education and Training 2011 (2011).

7.	 Patterson, D.A. and Hennessy, J.L. Computer
Organization and Design: The Hardware/Software
Interface. Revised 4th Edition, Morgan Kaufmann
Publishers, 2012.

8.	 Stella, L.F.F., Jarzabek, S. and Wadhwa, B. A comparative
study of maintainability of Web applications on J2EE, .NET,
and Ruby on Rails. WSE 2008. 10th International Sym-
posium on Web Site Evolution (Oct. 3–4, 2008), 93–99.

Armando Fox (fox@cs.berkeley.edu) is an adjunct
associate professor at UC Berkeley and a co-founder of
the Berkeley RAD Lab.

David Patterson (pattrsn@cs.berkeley.edu) is the
E.H. and M.E. Pardee Chair of Computer Science at UC
Berkeley and is a past president of ACM.

We thank our colleagues at Amazon Web Services, eBay,
Facebook, GitHub, Google, Heroku, Microsoft, and Pivotal
Labs for their feedback and suggestions on this Viewpoint,
for their support and feedback during the development of
the course, and for their donations of services to support
the online course.

Copyright held by author.

Copyright of Communications of the ACM is the property of Association for Computing Machinery and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

