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languages defined by the underlying structure of their words. J Symb Log 53(4):1009–
1026, 1988]. These languages are defined by local sentences and extend ω-languages
accepted by Büchi automata or defined by monadic second order sentences. We inves-
tigate their topological complexity. All locally finite ω-languages are analytic sets, the
class LOCω of locally finite ω-languages meets all finite levels of the Borel hierarchy
and there exist some locally finite ω-languages which are Borel sets of infinite rank or
even analytic but non-Borel sets. This gives partial answers to questions of Simonnet
(Automates et Théorie Descriptive, Ph.D. Thesis. Université Paris 7, March 1992) and
of Duparc et al. [Computer science and the fine structure of Borel sets. Theor Comput
Sci 257(1–2):85–105, 2001].
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626 O. Finkel

1 Introduction

Local sentences were introduced by Ressayre in [32]. He proved there some remarkable
stretching theorems which established some links between the finite and the infinite
model theory of these sentences. Some of these theorems can only be proved assuming
the existence (or the consistency of the existence) of large cardinals like inaccessible
or Mahlo cardinals. These theorems show that the existence of some well ordered
models of a local sentence ϕ (a binary relation symbol is here assumed to belong
to the signature of ϕ and to be interpreted by a linear order in every model of ϕ) is
equivalent to the existence of some finite model of ϕ, generated by some particular
kind of indiscernibles, like special, remarkable or monotonic ones. In particular, a local
sentence ϕ has a model of order type ω if and only if it has a finite model generated
by Nϕ special indiscernibles (where Nϕ is a positive integer depending on ϕ), and a
similar result establishes a connection between the existence of a model of order type
α (where α is an ordinal <ωω) and the existence of a finite model (of another local
sentence ϕα) generated by semi-monotonic indiscernibles [14].

These theorems provide some decision algorithms which show the decidability of
the following problem:
(P1) “For a given local sentence ϕ and an ordinal α < ωω, has ϕ a model of order

type α ?”
These results look like Büchi’s one about the decidability of the monadic second

order theory of one successor over the integers [4], and even more like its extension: the
decidability of the monadic second order theory of the structure (α,<) for a countable
ordinal α.

In order to prove this result, Büchi studied in the sixties the class of ω-languages
accepted by finite automata with what is now called Büchi acceptance condition. He
showed that an ω-language, i.e. a set of words of length ω over a finite alphabet, is
accepted by a finite automaton with the Büchi acceptance condition if and only if it is
defined by a monadic second order sentence and he found algorithms to give such an
automaton from the monadic second order sentence. Hence the decision problem cited
above was reduced to the decidability of the emptiness problem for Büchi automata
which is easily shown to be decidable [4,39]. The equivalence between definability
by monadic second order sentences and acceptance by finite automata, which is also
true for languages of finite words [3], has then been extended to α-languages, i.e.
languages of words of length α, where α is a countable ordinal ≥ ω [5]. This led
to similar decision algorithms showing that the monadic second order theory of the
structure (α,<) is decidable.

In order to compare the power of the above decidability results concerning local or
monadic sentences, it is now interesting to compare the expressive power of monadic
sentences and of local sentences, and then to consider languages defined by these
sentences.

Ressayre introduced locally finite languages which are defined by local sentences.
Local sentences are first order, but they define locally finite languages via existential
quantifications over relations and functions which appear in the local sentence. These
second order quantifications are more general than the monadic ones:
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Topological complexity of locally finite ω-languages 627

– When finite words are considered, each regular language is locally finite [32],
each quasirational language is locally finite, and many context-free as well as non-
context-free languages are locally finite [15].

– Each regularω-language is a locally finiteω-language, and there exist locally finite
ω-languages which are not regular [12,15].

– This is extended to languages of transfinite length words: when α is an ordinal <ωω,
an α-language accepted by a Büchi automaton is also defined by a local sentence
[15].

Thus the class LOCα of locally finite α-languages, for ω ≤ α < ωω, is a strict
extension of the class REGα of regular α-languages (defined by monadic second
order sentences). Then the following question naturally arises:

How large is the extension of REGα by LOCα?

A way to attack this problem is to study the topological complexity of α-languages in
each of these classes, and firstly to locate them with regard to the Borel and projective
hierarchies. We restrict here our study to ω-languages and then it is well known that
all regular ω-languages are boolean combinations of �0

2-sets hence �0
3-sets [30,39].

We shall see in this paper that locally finite ω-languages extend far beyond regular
ω-languages: the class LOCω meets all finite levels of the Borel hierarchy, contains
some Borel sets of infinite rank and even some analytic but non-Borel sets.

This will show that the decision algorithm for the sentences in the form ∃R1, . . . ,

∃Rkϕ, where ϕ is local in the signature S(ϕ) = {<, R1, . . . , Rk} and R1, . . . , Rk are
relations or n-ary function symbols with n ≥ 1, provides a very large extension, for
α < ωω, of Büchi’s result about the decidability of the monadic second order theory
of (α,<). Moreover, at least for α = ω, the algorithm for local sentences (given by
Theorem 2.7 below) is of much lower complexity than the corresponding algorithm
for monadic second order sentences.

The question of the topological complexity of locally finite ω-languages is also
motivated by the general project of studying the logical definability of classes of formal
languages of (finite or) infinite words, (or of relational structures like graphs). This
research area is now called “descriptive complexity”, see [31,40] for a survey about
this field of research.

The study of topological complexity of locally finite ω-languages was also asked
by Simonnet [36] and also by Duparc et al. in [10] where they asked for extensions of
the Wagner hierarchy of regular ω-languages.

The paper is organized as follows. In Sect. 2 we review the definitions and some
properties of local sentences and locally finite (omega) languages. Then we give some
examples of locally finite ω-languages. In Sect. 3 we study topological properties
of locally finite ω-languages. Firstly we show that LOCω is included in the class of
analytic sets. Duparc studied recently the Wadge hierarchy which is a great refine-
ment of the Borel hierarchy. He gave a normal form for Borel sets of finite rank in
each Wadge degree, using operations over sets of finite and infinite words [9]. Using
Duparc’s operation of exponentiation of sets, we prove that the class LOCω meets all
finite levels of the Borel hierarchy. Then we show that there exist some locally finite
ω-languages which are Borel sets of infinite rank, and some others which are analytic
but non-Borel sets.
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628 O. Finkel

2 Review of local sentences and languages

2.1 Definitions and properties of local sentences

In this paper the (first order) signatures are finite, always contain one binary predicate
symbol = for equality, and can contain both functional and relational symbols. The
terms, open formulas and formulas are built in the usual way.

When M is a structure in a signature Λ and X ⊆ |M |, we define:
cl1(X,M) = X ∪⋃

{ f n−ary function of Λ} f M (Xn) ∪⋃
{a constant of Λ} aM

cln+1(X,M) = cl1(cln(X,M),M) for an integer n≥ 1
and cl(X,M)= ⋃

n≥1 cln(X,M) is the closure of X in M .
Let us now define local sentences. We shall denote S(ϕ) the signature of a first order

sentence ϕ, i.e. the set of non-logical symbols appearing in ϕ.

Definition 2.1 A first order sentence ϕ is local if and only if:

(a) M |� ϕ and X ⊆ |M | imply cl(X,M) |� ϕ
(b) ∃n ∈ N such that ∀M , if M |� ϕ and X ⊆ |M |, then cl(X,M) = cln(X,M),

(closure in models of ϕ takes at most n steps).

Notation For a local sentence ϕ, let nϕ be the smallest integer n ≥ 1 verifying b of
the above definition.

Remark 2.2 Because of a of Definition 2.1, a local sentence ϕ is always equivalent to
a universal sentence, so we may assume that ϕ is universal.

Let us now state first properties of local sentences.

Theorem 2.3 (a) The set of local sentences is recursively enumerable.
(b) It is undecidable whether an arbitrary sentence ϕ is a local one.
(c) It is undecidable whether an arbitrary universal sentence ϕ is a local one.
(d) It is undecidable whether an arbitrary universal sentenceϕ, such that S(ϕ) contains

only two unary function symbols, is a local one.
(e) It is undecidable whether an arbitrary universal sentenceϕ, such that S(ϕ) contains

only one binary function symbol, is a local one.

Items (a) and (b) are results of Ressayre, see [15]. The proof of item (b) relies on
Church’s Theorem: it is undecidable to determine whether an arbitrary first order
sentence ϕ is consistent. But one can prove in the same way items (c), (d), and
(e) because it is undecidable to determine whether an arbitrary universal first order
sentence ϕ is consistent, even if we assume that the signature of ϕ contains only two
unary function symbols or one binary function symbol [1].

Per contra to these negative results, there exists a “recursive presentation” up to
logical equivalence of all local sentences.

Theorem 2.4 (Ressayre, see [15]) There exist a recursive set L of local sentences and
a recursive function F such that:

(1) ψ local←→ ∃ψ ′ ∈ L such that ψ ≡ ψ ′.
(2) ψ ′ ∈ L −→ nψ ′ = F(ψ ′).

123



Topological complexity of locally finite ω-languages 629

The elements of L are theψ∧Cn , whereψ run over the universal formulas and Cn run
over the universal formulas in the signature S(ψ)which express that closure in a model
takes at most n steps. ψ ∧ Cn is local and nψ∧Cn ≤ n. Then we can compute nψ∧Cn ,
considering only finite models of cardinal≤ m, where m is an integer depending on n.
And each local sentenceψ is equivalent to a universal formula θ , henceψ ≡ θ ∧Cnψ .

We shall restrict now our attention to local sentences with a binary predicate < in
their signature which is interpreted by a linear ordering in all of their models.

Let us now recall a fundamental result, the stretching theorem for local sentences,
which shows the existence of remarkable connections between the finite and the infi-
nite model theory of local sentences. Below, semi-monotonic, special, and monotonic
indiscernibles are particular kinds of indiscernibles which satisfy some extra proper-
ties; they are precisely defined in [14].

Theorem 2.5 ([14]) For each local sentence ϕ there exists a positive integer Nϕ ,
which can be effectively computed, such that

(A) ϕ has arbitrarily large finite models if and only if ϕ has an infinite model if and
only if ϕ has a finite model generated by Nϕ indiscernibles.

(B) ϕ has an infinite well ordered model if and only if ϕ has a finite model generated
by Nϕ semi-monotonic indiscernibles.

(C) ϕ has a model of order type ω if and only if ϕ has a finite model generated by Nϕ
special indiscernibles.

(D) ϕ has well ordered models of unbounded order types in the ordinals if and only
if ϕ has a finite model generated by Nϕ monotonic indiscernibles.

Remark 2.6 In the above theorem the integer Nϕ can be effectively computed from
nϕ and q where ϕ = ∀x1 . . . ∀xqθ(x1, . . . , xq) and θ is an open formula. Let v(ϕ) be
the maximum number of variables of terms of complexity ≤nϕ + 1 and v′(ϕ) be the
maximum number of variables of an atomic formula involving terms of complexity
≤nϕ + 1 then

Nϕ = max{3v(ϕ); v′(ϕ)+ v(ϕ); q.v′(ϕ)}

Thus the stretching theorem implies the existence of decision procedures for several
problems. Let us remark that the set of local sentences is not recursive but we can
consider that the algorithms given by the following theorem are applied to local sen-
tences in the recursive set L given by Proposition 2.4. In particular ϕ is given with the
integer nϕ .

Theorem 2.7 ([14]) It is decidable, for a given local sentence ϕ, whether

(1) ϕ has arbitrarily large finite models.
(2) ϕ has an infinite model.
(3) ϕ has an infinite well ordered model.
(4) ϕ has a model of order type ω.
(5) ϕ has well ordered models of unbounded order types in the ordinals.

Remark 2.8 As indicated by the referee of this paper, “ the above theorem is still
true even the local sentences were not assumed to be in the recursive set L. Given
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630 O. Finkel

an arbitrary local sentence, the algorithm could begin by searching for an equivalent
sentence in L (together with a formal proof of the equivalence) and then, when it finds
one, apply the algorithm to this sentence in L. Of course this would be only a partial
recursive function, defined on the class of local sentences, and its complexity would
be much worse than the complexity given below, but it is still an algorithm.”

Theorem 2.7 follows directly from the stretching Theorem 2.5. For instance Theo-
rem 2.5 (C) states that a local sentence ϕ has a model of order type ω iff it has a
finite model generated by Nϕ special indiscernibles, where Nϕ is a positive integer
effectively computable from ϕ and nϕ . Thus the existence of a model of order type
ω of ϕ can be checked by considering only models whose cardinals are bounded by
an integer depending on nϕ and Nϕ (because closure in models of ϕ takes at most nϕ
steps). A similar argument is used to prove other items of Theorem 2.7.

The question of the complexity of these decidable problems naturally arises. It is
easy to see that the problems (1)–(5) which are shown to be decidable by Theorem 2.7
are in the class

NTIME(2O(n.log(n)))

when the algorithms work with input (ϕ, Nϕ). Using non-determinism a Turing
machine may guess a finite structure M of signature S(ϕ) generated in at most nϕ steps
by Nϕ elements y1, . . . yNϕ . Then, assuming ϕ = ∀x1 . . . ∀xqθ(x1, . . . , xq)where θ is
an open formula, the Turing machine checks that θ(x1, . . . , xq) holds for all x1 . . . xq in
M , and that the elements y1, . . . yNϕ are indiscernibles (respectively, semi-monotonic,
special, monotonic, indiscernibles) in M .

On the other side Büchi showed that one can decide whether a monadic second
order formula of S1S is true in the structure (ω,<). But for a formula of size n his
procedure might run in time

22.
.2

n

︸ ︷︷ ︸
O(n)

see [4,34] for more details. Moreover it has been proved by Meyer that one cannot
essentially improve this result: the monadic second order theory of the structure (ω,<)
is not elementary recursive [27].

Notice that the complexity of Büchi’s algorithm for monadic sentences is in terms
of the length of the formula and the complexity of the algorithms for local sentences
is in terms of the length of a local sentence ϕ and the corresponding integer Nϕ . But
a sentence in L is of the form ϕ = ψ ∧ Cn , where ψ is a universal sentence and Cn

is a universal sentence in the signature S(ψ) which expresses that closure in a model
takes at most n steps. The length of Cn is greater than n and nϕ = nψ∧Cn ≤ n. So
nϕ ≤ |ϕ| where |ϕ| is the length of ϕ and we can easily get from the equality given in
Remark 2.6 that Nϕ = O(|ϕ|3).

Thus the algorithms for local sentences given by Theorem 2.7 are of much lower
complexity than the algorithm for decidability of S1S. This is remarkable because
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Topological complexity of locally finite ω-languages 631

the expressive power of local sentences is also greater than the expressive power of
monadic second order sentences.

Recall also that there is an extension of item (C) of the stretching Theorem 2.5 for
ordinals α < ωω from which we can infer other decidability results.

Theorem 2.9 ([14]) To every local sentence ϕ and every ordinal α such thatω ≤ α <
ωω one can associate by an effective procedure a local sentence ϕα , a unary predicate
symbol P being in the signature S(ϕα), such that the following equivalence holds:

(Cα) ϕ has a well ordered model of order type α if and only if ϕα has a finite model
M generated by Nϕα semi-monotonic indiscernibles in P M .

Theorem 2.10 ([14]) It is decidable, for a given local sentence ϕ and a given ordinal
α < ωω, whether ϕ has a model of order type α.

There are also other variations of the stretching theorem involving large cardinal
axioms, see [14].

2.2 Definitions and first properties of local languages

Let us now introduce notations for words. Let Σ be a finite alphabet whose elements
are called letters. A finite non-empty word over Σ is a finite sequence of letters:
x = a1a2 . . . an where ∀i ∈ [1; n] ai ∈ Σ . We shall denote x(i) = ai the i th letter
of x and x[i] = x(1) . . . x(i) for i ≤ n. The length of x is |x | = n. The empty word
will be denoted by λ and has 0 letters. Its length is 0. The set of finite words over Σ
is denoted 	
. Σ+ = 	
 − {λ} is the set of non-empty words over Σ . A (finitary)
language L over Σ is a subset of 	
. Its complement (in 	
) is L− = 	
 − L . The
usual concatenation product of u and v will be denoted by u.v or just uv. For V ⊆ 	
,
we denote V 
 = {v1 . . . vn | n ∈ N and ∀i ∈ [1; n] vi ∈ V }.

The first infinite ordinal is ω. An ω-word overΣ is an ω -sequence a1a2 . . . an . . .,
where ∀i ≥ 1 ai ∈ Σ . When σ is an ω-word over σ , we write σ = σ(1)σ (2) . . .
σ (n) . . . and σ [n] = σ(1)σ (2) . . . σ (n) the finite word of length n, prefix of σ . The set
of ω-words over the alphabet Σ is denoted by Σω. An ω-language over an alphabet
Σ is a subset of Σω. For V ⊆ 	
, V ω = {σ = u1 . . . un . . . ∈ Σω | ∀i ≥ 1 ui ∈ V }
is the ω-power of V . For a subset A ⊆ Σω, the complement of A (in Σω) is Σω − A
denoted A−. The concatenation product is extended to the product of a finite word u
and an ω-word v: the infinite word u.v is then the ω-word such that: (u.v)(k) = u(k)
if k ≤ |u|, and (u.v)(k) = v(k − |u|) if k > |u|.

The prefix relation is denoted �: the finite word u is a prefix of the finite word v
(respectively, the infinite word v), denoted u � v, if and only if there exists a finite
word w (respectively, an infinite word w), such that v = u.w.

A word over Σ may be considered as a structure in the following usual manner:
Let Σ be a finite alphabet. We denote Pa a unary predicate for each letter a ∈ Σ
and ΛΣ the signature {<, (Pa)a∈Σ }. Let σ be a finite word over the alphabet Σ , |σ |
is the length of the word σ . We may write that |σ | = {1, 2, . . . , |σ |}. σ is identified
with the structure (|σ |,<σ , (Pσa )a∈Σ) of signature ΛΣ where Pσa = {1 ≤ i ≤ |σ | |
the i thletter of σ is an a}. In a similar manner if σ is an ω-word over the alphabet
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632 O. Finkel

Σ , then ω is the length of the word σ and we may write |σ | = {1, 2, 3, . . .}. σ is
identified to the structure (|σ |,<σ , (Pσa )a∈σ ) of signatureΛΣ where Pσa = {1 ≤ i <
ω | the i th letter of σ is an a}.
Definition 2.11 LetΣ be a finite alphabet and L ⊆ Σ
 be a language of finite words
(respectively, L ⊆ Σω be a language of infinite words) over the alphabetΣ . Then L is
a locally finite language (respectively, ω-language)←→ there exists a local sentence
ϕ in a signature Λ ⊇ ΛΣ such that σ ∈ L iff ∃ finite M , (respectively, ∃M of order
type ω) M |� ϕ and M |ΛΣ = σ (where M |ΛΣ is the reduction of M to the signature
ΛΣ ).

We then denote L = LΣ(ϕ) (respectively, L = LΣω (ϕ)), and to simplify, when
there is no ambiguity, L = L(ϕ) (respectively, L = Lω(ϕ)) the locally finite language
(respectively, ω-language) defined by ϕ. The class of locally finite languages will be
denoted LOC. The class of locally finite ω-languages will be denoted LOCω.

The empty word λ has 0 letters. It is represented by the empty structure. Recall that
if L(ϕ) is a locally finite language then L(ϕ) − {λ} and L(ϕ) ∪ {λ} are also locally
finite [15].

Remark 2.12 The notion of locally finite language is very different from the usual
notion of local language which represents a subclass of the class of rational languages.
But from now on, as in [15], things being well defined and made precise, we shall call
simply local languages the locally finite languages.

Let us state the following decidability results.

Theorem 2.13 It is decidable, for a local sentence ϕ, given with the integer nϕ, and
an alphabet Σ, whether

(1) The local language LΣ(ϕ) is empty.
(2) The local language LΣ(ϕ) is infinite.
(3) The local ω-language LΣω (ϕ) is empty.

(1) follows directly from the fact that if a local sentence ϕ has a finite model then it
has a model whose cardinal is bounded by a positive integer depending only on
arities of the function symbols of the signature of ϕ and on nϕ .

(2) and (3) follows items (1) and (4) of Theorem 2.7.
(3) states that the emptiness problem for local ω-languages is decidable. It relies

on a remarkable analogue to the property: “a Büchi language is non-empty iff it
contains an ultimately periodic word, i.e. an ω-word in the form u.vω where u
and v are finite words.”

When local ω-languages are considered, this property becomes: “a local ω-language is
non-empty iff it contains an ω-word which is the reduction, to the signature of words,
of an ω-model generated by special indiscernibles.”

2.3 Examples of local ω-languages

Example 2.14 ([18]) The ω-language which contains only the word σ = abab2

ab3ab4 . . . is a local ω-language over the alphabet {a, b}.
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Recall that for any family L of finitary languages, the ω-Kleene closure of L , is:

ω−K C(L) =
⎧
⎨

⎩

⋃

1≤i≤n

Ui .V
ω
i | ∀i ∈ [1, n] Ui , Vi ∈ L

⎫
⎬

⎭
.

It is well known that the class REGω of regular ω-languages (respectively, the class
C Fω of context free ω-languages) is theω-Kleene closure of the family REG of regular
finitary languages (respectively, of the family C F of context free finitary languages)
[38,39].

We showed that a similar characterization does not hold for local languages.

Theorem 2.15 ([18]) The ω-Kleene closure of the class LOC of finitary local lan-
guages is strictly included in the class LOCω of local ω-languages.

Then we easily derive the following example because every regular finitary language
is local [32].

Example 2.16 ([15]) Every regular ω-language is a local ω-language, i.e. REGω ⊆
LOCω.

Since numerous context free languages are local [15], CFω = ω−K C(CF) implies
that many context free ω-languages are local. The problem whether every context
free ω-language is local is still open but by Theorem 2.15, C F ⊆ LOC would imply
that CFω ⊆ LOCω.

Example 2.17 The ω-languages Uω and U.aω, where U = {an2
bn2

cn2 | n ≥ 1} is a
local finitary language over the alphabet {a, b, c} [15], are examples of local but non
context free ω-languages.

Example 2.18 ([18]) The ω-language L = {0n1p2ω | p ≤ 2n} over the alphabet
Σ = {0, 1, 2} is local because the finitary language {0n1p | p ≤ 2n} is local [15]. But
the ω-language A = {0n1p2ω | p > 2n} over the same alphabet Σ is not local [18].
From this we can easily deduce that the complement of L is not a local ω-language.

We shall construct some other local ω-languages in the sequel, see for example the
construction of local ω-languages which are Borel of infinite rank in Sect. 3.3, or
analytic but non Borel in Sect. 3.4.

Now we recall some closure properties of the class LOCω which allow us to generate
many other local ω-languages from the known ones. The class LOCω is closed under
union, left concatenation with local finitary languages, λ-free substitution of local
(finitary) languages, λ-free morphism [18].

3 Topological complexity of local ω-languages

3.1 Borel and projective hierarchies

We assume the reader to be familiar with basic notions of topology which may be
found in [22,23,28].
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634 O. Finkel

Topology is an important tool for the study of subsets of a set Σω, where Σ is a
finite or infinite set. We study here local ω-languages which are defined over a finite
alphabet. Thus we shall restrict our study to subsets of spaces in the form Σω, where
Σ is a finite set, called here an alphabet, having at least two elements (because the case
of an alphabet having a single letter is trivial). We shall consider Σω as a topological
space with the Cantor topology. The open sets of Σω are the sets in the form W.Σω,
where W ⊆ Σ
.

Define now the following classes of the Borel Hierarchy:

Definition 3.1 The classes �0
n and �0

n of the Borel Hierarchy on the topological space
Σω are defined as follows:

�0
1 is the class of open subsets of Σω.

�0
1 is the class of closed subsets of Σω.

And for any integer n ≥ 1:

�0
n+1 is the class of countable unions of �0

n-subsets of Σω.

�0
n+1 is the class of countable intersections of �0

n-subsets of Σω.

The Borel Hierarchy is also defined for transfinite levels. The classes �0
α and �0

α , for
a countable ordinal α, are defined in the following way:

�0
α is the class of countable unions of subsets of Σω in

⋃
γ<α �0

γ .

�0
α is the class of countable intersections of subsets of Σω in

⋃
γ<α �0

γ .

Recall some basic results about these classes [28]:

Theorem 3.2

(a) �0
α ∪�0

α � �0
α+1 ∩�0

α+1, for each countable ordinal α ≥ 1.
(b)

⋃
γ<α �0

γ =
⋃
γ<α �0

γ � �0
α ∩�0

α , for each countable limit ordinal α.

(c) A set W ⊆ Σω is in the class �0
α iff its complement is in the class �0

α .
(d) �0

α −�0
α �= ∅ and �0

α − �0
α �= ∅ for every countable ordinal α ≥ 1.

We shall say that a subset ofΣω is a Borel set of rank α, for a countable ordinal α, iff
it is in �0

α ∪�0
α but not in

⋃
γ<α(�

0
γ ∪�0

γ ).
The class of Borel subsets ofΣω is strictly included in the class of analytic subsets

of Σω which we now define.

Definition 3.3 A subset A of Σω is in the class �1
1 of analytic sets iff there exists

another finite set Y and a Borel subset B of (Σ × Y )ω such that x ∈ A ↔ ∃y ∈ Yω

such that (x, y) ∈ B, where (x, y) is the infinite word over the alphabet Σ × Y such
that (x, y)(i) = (x(i), y(i)) for each integer i ≥ 1.

Remark 3.4 In the above definition we could take B in the class �0
2. Moreover analytic

subsets of Σω are the projections of �0
1-subsets of Σω × ωω, where ωω is the Baire

space [28].
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Recall that a set F ⊆ Σω is said to be a �0
α (respectively, �0

α , �1
1)-complete set iff

for any set E ⊆ Yω, E is in �0
α (respectively, �0

α , �1
1) iff there exists a continuous

function f : Yω → Σω, such that E = f −1(F).
Let us now recall the definition of the arithmetical hierarchy of ω-languages, see

for example [38] or [28]. LetΣ be a finite alphabet. An ω-language L ⊆ Σω belongs
to the classΣn if and only if there exists a recursive relation RL ⊆ (N)n−1×Σ
 such
that

L = {σ ∈ Σω | ∃a1 . . . Qnan (a1, . . . , an−1, σ [an + 1]) ∈ RL}

where Qi is one of the quantifiers ∀ or ∃ (not necessarily in an alternating order). An
ω-language L ⊆ Σω belongs to the class Πn if and only if its complement Σω − L
belongs to the class Σn . The inclusion relations that hold between the classes Σn

and Πn are the same as for the corresponding classes of the Borel hierarchy and the
classes Σn and Πn are strictly included in the respective classes �0

n and �0
n of the

Borel hierarchy.
As in the case of the Borel hierarchy, projections of arithmetical sets (of the second

Π -class) lead beyond the arithmetical hierarchy, to the analytical hierarchy of ω-
languages. The first class of the analytical hierarchy of ω-languages is the class Σ1

1
(lightface). An ω-language L ⊆ Σω belongs to the classΣ1

1 if and only if there exists
a recursive relation RL ⊆ (N)× {0, 1}
 ×Σ
 such that:

L = {σ ∈ Σω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ [m]) ∈ RL))}.

Thus an ω-language L ⊆ Σω is in the class Σ1
1 iff it is the projection of an

ω-language over the alphabet {0, 1} × Σ which is in the class Π2 of the arithme-
tical hierarchy.

Remark 3.5 Σ1
1 -subsets ofΣω are also projections ofΠ1-subsets ofΣω×ωω, where

ωω is the Baire space [28].

It turns out that an ω-language L ⊆ Σω is in the class Σ1
1 iff it is accepted by a non

deterministic Turing machine reading ω-words with a Muller acceptance condition.
(A Turing machine T is given with a set F of designated state sets which are particular
subsets of its finite set K of states; then an ω-word σ is accepted by T iff there exists a
run of T reading σ for which the set of states entered infinitely often by T during this
run is in F). This class is denoted N T (inf,=) (where (inf,=) indicates the Muller
condition) in [38] and also called the class of recursive ω-languages REKω.1

With the above definitions, we can state the following:

Theorem 3.6 The class LOCω is strictly included in the class Σ1
1 .

Proof Let LΣω (ϕ) be a local ω-language defined by the local sentence ϕ. We may
replace the constant and function symbols of S(ϕ) by relation symbols in a usual

1 In another presentation, as in [33], the recursive ω-languages are those which are in the intersection
Σ1 ∩Π1.
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manner. For example we replace an n-ary function f by a (n+1)-ary relation R f and
we express by a Π0

2 formula that the relation R f is functional:

∀x1 . . . xnzz′∃y[R f (x1, . . . , xn, y) ∧ (R f (x1, . . . , xn, z)

∧R f (x1, . . . , xn, z′)→ z = z′)].

Then from ϕ we obtain another first order sentence which is not universal and not
local but which defines the same ω-language when reductions of models to the
signature ΛΣ of words are considered. Let us call ψ(R1, . . . , Rk) the resulting first
order sentence in the signature ΛΣ ∪ {R1, . . . , Rk} where R1, . . . , Rk are relation
symbols of arities n1, . . . , nk .

An ω-model of ψ(R1, . . . , Rk) may be viewed as an element of:

Σω × 2ω
n1 × 2ω

n2 × · · · × 2ω
nk

because any n-ary relation R over ω can be identified with its characteristic function,
i.e. a function ωn → 2 = {0, 1} which associates 1 to an n-tuple (x1, . . . , xn) iff
R(x1, . . . , xn).

ButΣω×2ω
n1 ×2ω

n2 × . . .×2ω
nk is a classical recursively presented Polish space

(generalizingΣω) and it is well known [28] that a subset of this space which is defined
by a first order sentence where the quantifiers run only over the integers of ω is an
arithmetical subset of Σω × 2ω

n1 × 2ω
n2 × · · · × 2ω

nk .
And LΣω (ϕ) is the projection of this arithmetical set onto Σω and it is well known

that such a projection of an arithmetical set is a Σ1
1 -subset of Σω.

Remark 3.7 Another way to show this result is to consider a non deterministic Turing
machine T which accepts Lω(ϕ). Let then σ be an ω-word over Σ . The non deter-
minism of T is used to guess an expansion of the word σ (considered as a structure
of signature ΛΣ ) to a structure in the signature S(ϕ) which is coded by an ω-word.
Then the Turing machine checks whether this expansion is a model of ϕ. This can be
checked with a Muller acceptance condition. If such a model exists, the word σ is in
Lω(ϕ). And if no such model exists, the word σ is not in Lω(ϕ). Then an ω-word σ
over Σ is in Lω(ϕ) iff there exists an accepting run of T on σ .

The strictness of the inclusion is easy to prove. The ω-language A = {0n1p2ω | p >
2n} over the alphabetΣ = {0, 1, 2}, given in Example 2.18, is not local but it is easily
shown to be in the class Σ1

1 and even in the class Σ0
2 . ��

The inclusion Σ1
1 ⊂ �1

1 is trivial and well known. Thus, when studying local
ω-languages, we shall not have to consider non �1

1-sets.

Corollary 3.8 Every local ω-language over a finite alphabetΣ is an analytic subset
of Σω.

By Suslin’s Theorem [22, p. 226], an analytic subset of Σω is either countable or has
the continuum power. Then we can infer the following:

Corollary 3.9 Let Σ be a finite alphabet. Every local ω-language LΣω (ϕ) over the
alphabet Σ is either countable or has the continuum power.
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3.2 Borel sets of finite rank and local ω-languages

We shall prove that the class LOCω meets all finite levels of the Borel hierarchy.
The proof is very similar to our corresponding proof for the class of context free
ω-languages in [16]. We shall use recent results of Duparc who studied the Wadge
hierarchy which is a great refinement of the Borel hierarchy. He gave an inductive
construction of a Borel set of every given degree of this hierarchy, introducing opera-
tions over sets of finite or infinite words over an alphabet Σ , called conciliating sets
in [7,9]. So we shall sometimes consider subsets ofΣ
∪Σω = Σ≤ω, for an alphabet
Σ , and the correspondence A→ Ad where for A ⊆ Σ≤ω and d a letter not in Σ :

Ad = {x ∈ (Σ ∪ {d})ω | x(/d) ∈ A}

where x(/d) is the sequence obtained from x when removing every occurrence of the
letter d.

We shall only use in this paper Duparc’s operation of exponentiation:

A→ A∼

which produces some sets of higher complexity, in the following sense:

Theorem 3.10 (Duparc [9]) Let n be an integer≥1 and A ⊆ Σ≤ω. If Ad ⊆ (Σ∪{d})ω
is a �0

n-complete (respectively, �0
n-complete) set then (A∼)d is a �0

n+1-complete
(respectively,�0

n+1-complete) set.

Let us now introduce Duparc’s operation of exponentiation on sets.

Definition 3.11 Let Σ be a finite alphabet and �/∈ Σ , let X = Σ ∪ {�}. Let x be a
finite or infinite word over the alphabet X = Σ∪{�}. Then x� is inductively defined
by:

λ� = λ,
and for a finite word u ∈ (Σ ∪ {�})
:
(u.a)� = u�.a, if a ∈ Σ ,
(u. �)� = u� with its last letter removed, if |u�| > 0,
(u. �)� = λ, if |u�| = 0,
and for u infinite:
(u)� = limn∈ω(u[n])�, where, given βn and v in Σ
,
v � limn∈ω βn ↔ ∃n∀p ≥ n βp[|v|] = v.

Remark 3.12 For x ∈ X≤ω, x� denotes the string x , once every � occurring in x
has been “evaluated” to the back space operation (the one familiar to your computer!),
proceeding from left to right inside x . In other words x� = x from which every
interval of the form “a � ” (a ∈ Σ) is removed.

For example if u = (a �)n , for n an integer ≥ 1, or u = (a �)ω, or u = (a ��)ω,
then (u)� = λ. If u = (ab �)ω then (u)� = aω and if u = bb(� a)ω then
(u)� = b.
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We define now the operation A→ A∼ of exponentiation of conciliating sets:

Definition 3.13 For A ⊆ Σ≤ω and � /∈ Σ , let

A∼ = {x ∈ (Σ ∪ {�})≤ω | x� ∈ A}.

We now prove that the class LOCω is closed under this operation ∼.

Proposition 3.14 If A ⊆ Σω is in LOCω, then A∼ ⊆ (Σ ∪ {�})ω is also in LOCω.

Proof We remark that an ω-word σ ∈ A∼ may be considered as an ω-word σ� ∈ A
to which we possibly add, before the first letter σ�(1) of σ� (respectively, between
two consecutive letters σ�(n) and σ�(n+1) of σ�), a finite wordw1 (respectively,
wn+1 ) where:
wn+1 belongs to the context free (finitary) language C1 generated by the context free
grammar with the following production rules:
S→ aS � S with a ∈ Σ and S→ λ where λ is the empty word.
This language C1 corresponds to words where every letter of Σ has been erased
after using the back space operation. And w1 belongs to the finitary language C2 =
(C1.(�)
)
. This language corresponds to words where every letter of Σ has been
removed after using the back space operation and this operation may be has been used
also when there was not any letter to erase. Then for A ⊆ Σω, the ω-language A∼ ⊆
(Σ ∪ {�})ω is obtained by substituting in A the language a.C1 for each letter a ∈ Σ ,
and then making a left concatenation by the language C2.

Now we easily show that the language C1 is local, defined by the following sentence
ϕ in the signature S(ϕ) = {<, (Pa)a∈(Σ∪{�}), s}, where s is a unary function symbol.
ϕ is the conjunction of:

– ∀xyz[(x ≤ y∨y ≤ x)∧((x ≤ y∧y ≤ x)↔ x = y)∧((x ≤ y∧y ≤ z)→ x ≤ z)]
(this means: “ < is a linear order ”),

– ∀x[(∨a∈(Σ∪{�}) Pa(x)) ∧ (∧(a,a′)∈(Σ∪{�})2,a �=a′ ¬(Pa(x) ∧ Pa′(x)))]
(this means: “(Pa)a∈(Σ∪{�}) form a partition ”),

– ∀x[Pa(x)→ (x < s(x) ∧ P�(s(x))], for each a ∈ Σ ,
– ∀xz[(Pa(x) ∧ Pb(z) ∧ x < z)→ (s(x) < z ∨ s(z) < s(x))], for all a, b ∈ Σ ,
– ∀x[(∨a∈Σ Pa(x))↔ P�(s(x))],
– ∀x[s(s(x)) = x].
ϕ is equivalent to a universal formula and closure in its models takes only one step
because ϕ → ∀x[s(s(x)) = x]. Then ϕ is a local sentence and we easily check that
L(ϕ) = C1 (the function s is used to associate a letter a ∈ Σ with the eraser � which
erases a). Hence C1 is a local language and so is a.C1 for a ∈ Σ . But C2 = (C1.(�)
)


and the class LOC is closed under concatenation product and star operation [15]. Thus
the language C2 is also local.

LOCω is closed under substitution of local finitary languages and left concatenation
by local finitary languages [18], therefore if A ⊆ Σω is a local ω-language then the
ω-language A∼ is a local ω-language. ��
Consider now subsets ofΣ≤ω in the form A∪ B, where A = LΣ(ϕ) is a local finitary
language and B = LΣω (ψ) is a local ω-language. Remark that A and B might not be
defined by the same sentence. Let us prove the following:
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Proposition 3.15 If C = A ∪ B, where A ⊆ 	
 is in LOC and B ⊆ 	ω is in LOCω,
then C∼ is also the union of a local finitary language and a local ω-language over
the alphabet Σ ∪ {�}.
Proof Let A ⊆ 	
 be a local finitary language and let B ⊆ 	ω be a local
ω-language. It follows from the definition of the operation A→ A∼ that if C = A∪B
then C∼=A∼ ∪ B∼. But if B = LΣω (ψ), where ψ is a local sentence, then, by Propo-

sition 3.14, there exists a local sentence ψ1 such that B∼ = LΣ∪{�}ω (ψ1).
Consider now the set A∼ ⊆ (Σ ∪ {�})≤ω: it is constituted of finite and infinite

words. Let h be the substitution: Σ → P((Σ ∪ {�})
) defined by a → a.C1 where
C1 is the local language defined above. Then it is easy to see that the finite words of
A∼ are obtained by substituting in A the language a.C1 for each letter a ∈ Σ and
concatenating on the left by the language C2. But LOC is closed under substitution
and concatenation [15], so this language is a local language L(ϕ1) defined by a local
sentence ϕ1.

The infinite words in A∼ constitutes the ω-language

L(ϕ1).(C1 − {λ})ω if λ /∈ A, and
L(ϕ1).(C1 − {λ})ω ∪ (C2 − {λ})ω if λ ∈ A,

The languages C2 − {λ} and C1 − {λ} are local. Thus the set of infinite words in A∼
is a local ω-language Lω(ϕ2) because ω− KC(LOC) ⊆ LOCω by Theorem 2.15.
Finally we have got

C∼ = Lω(ψ1) ∪ Lω(ϕ2) ∪ L(ϕ1)

But LOCω is closed under union [18] hence Lω(ψ1)∪ Lω(ϕ2) is a local ω-language.
This ends the proof. ��

We have seen above that the correspondence A→ Ad is involved in Theorem 3.10.
Hence we shall need the following proposition.

Proposition 3.16 (a) if A ⊆ 	
 is a local language, then Ad is a local ω-language.
(b) if A ⊆ Σω is a local ω-language, then Ad is a local ω-language.
(c) If A = LΣ(ϕ) ∪ LΣω (ψ) is the union of a finitary local language and of a local

ω-language over the same alphabet Σ, then Ad is a local ω-language over the
alphabet Σ ∪ {d}.

Proof of (a) Let A = LΣ(ϕ) be a local finitary language over the alphabetΣ . Let Pd

be a new letter unary predicate symbol and a be a new constant symbol. Let ϕ′ be the
following sentence in the signature S(ϕ′) = S(ϕ)∪ {Pd , a}, which is the conjunction
of the following formulas:

1. (< is a linear order ),
2. ((Pe)e∈ (Σ∪{d}) form a partition),
3. ∀x1 . . . x j ∈ ¬Pd [ϕ0(x1, . . . , x j )], where ϕ = ∀x1 . . . x jϕ0(x1, . . . , x j ) with ϕ0

an open formula,
4. ∀x1 . . . xm ∈ ¬Pd [ f (x1, . . . , xm) ∈ ¬Pd ], for each m-ary function f of S(ϕ),
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5. ¬Pd(c), for each constant c of S(ϕ),
6. ∀x1 . . . xm[∨1≤i≤m Pd(xi ) → f (x1, . . . , xm) = min(x1, . . . , xm)], for each

m-ary function f of S(ϕ).
7. ∀x[x ≥ a→ Pd(x)].
This sentence is equivalent to a universal one and closure in its models takes at most
nϕ + 1 steps. By construction L(ϕ′) = Ad holds. ��

Remark 3.17 We have defined the function f by f (x1, . . . , xm) = min(x1, . . . , xm)

when at least one of the xi was in Pd (see the conjunct numbered 6). In that case the
function f is not useful for defining the local ω-language Ad , but this will imply that
closure in models of ϕ′ takes at most a finite number of steps, because f (x1, . . . , xm)

is then equal to one of the xi . This method will be applied in the construction of
most local sentences in the sequel of this paper, where some functions are somewhere
trivially defined (like f (x, y) = x or p(x) = x for a binary function f or a unary
function p) in order to make the sentence local.

Proof of (b) Assume that A = Lω(ϕ) where ϕ is a local sentence and d /∈ Σ . Ad

is defined by the following sentence ψ of signature S(ψ) = S(ϕ) ∪ {Pd , s}, where
Pd is a new unary predicate symbol and s is a new unary function symbol. ψ is the
conjunction of:

– The same formulas (1) to (6) as in the proof of a),
– ∀x[¬Pd(x)→ s(x) = x],
– ∀x[Pd(x)→ ¬Pd(s(x))],
– ∀xy[(Pd(x) ∧ Pd(y) ∧ x �= y)→ s(x) �= s(y)].
This sentence is equivalent to a universal one and closure in its models takes at most
nϕ + 1 steps (one applies first the function s and then the functions of S(ϕ)). In a
model M of ψ , it is easy to see that s M is an injective function from P M

d into ¬P M
d

and then, if M has order type ω, ¬P M
d is infinite and induces an ω-word which is a

word of Lω(ϕ). So Lω(ψ) = (Lω(ϕ))d . ��

Proof of (c) Let A and B be subsets of Σ≤ω for a finite alphabet Σ . Then we easily
see that if C = A ∪ B, Cd = Ad ∪ Bd holds. (c) is now an easy consequence of (a)
and (b) because LOCω is closed under finite union [18]. ��

We can now state the following result:

Theorem 3.18 For each integer n ≥ 1, there exist �0
n-complete and �0

n-complete
local ω-languages.

Proof Consider first S1 (respectively, P1) being the following subsets of {0, 1}≤ω:
S1 = {x ∈ {0, 1}≤ω | ∃ i x(i) = 1} and P1 = {λ}. Then (S1)

d (respectively, (P1)
d )

are �0
1-complete (respectively, �0

1-complete).
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We can now apply n≥ 1 times the operation of exponentiation of sets. More preci-
sely, we define, for a set A ⊆ Σ≤ω:

A∼.0 = A
A∼.1 = A∼ and
A∼.(n+1) = (A∼.n)∼.

Now apply n times (for an integer n ≥ 1) the operation ∼ (with different new letters
�1, �2, �3,…, �n) to S1 and P1.

By Theorem 3.10, it holds that for an integer n ≥ 1:

(S∼.n1 )d is a �0
n+1-complete subset of {0, 1,�1, . . . ,�n, d}.

(P∼.n1 )d is a �0
n+1-complete subset of {0, 1,�1, . . . ,�n, d}.

It is easy to see that S1 and P1 are in the form L{0,1}(ϕ)∪ L{0,1}ω (ψ)where ϕ andψ are
local sentences (they are in fact unions of a finitary regular language and of a regular
ω-language). Then it follows from Propositions 3.15 and 3.16 that the ω-languages
(S∼.n1 )d and (P∼.n1 )d are local. Hence the class LOCω meets all finite levels of the
Borel hierarchy. ��
Remark 3.19 For n = 1 and n = 2, we could get some �0

n-complete and �0
n-complete

sets by considering well known examples of regularω-languages [25,26,30], because
REGω ⊆ LOCω:

A1 = {α ∈ {0, 1}ω | ∃i α(i) = 1} is �0
1-complete,

B1 = {α ∈ {0, 1}ω | ∀i α(i) = 0} is �0
1-complete,

A2 = {α ∈ {0, 1}ω | ∃<ωi α(i) = 1} is �0
2-complete,

B2 = {α ∈ {0, 1}ω | ∃ωi α(i) = 0} is �0
2-complete,

where ∃<ωi means: “ there exist only finitely many i such that…”, and
∃ωi means: “ there exist infinitely many i such that…”.

Remark 3.20 Reasoning as in [16] for ω-powers of finitary context free languages,
we can prove a similar result for local languages: for each integer n ≥ 1, there exists
a local language Ln such that (Ln)

ω is a �0
n-complete set.

3.3 Borel sets of infinite rank and local ω-languages

We are going now to prove that there exist some local ω-languages which are Borel
sets of infinite rank. More precisely:

Theorem 3.21 There exists a local ω-language which is a �0
ω-set but not a Borel

set of finite rank.

123



642 O. Finkel

Proof Recall that we can define the following operation on ω-languages: Let (Ai )i∈N
be a countable infinite family of subsets of Xω for X a finite alphabet containing at
least two letters a and b. Then [9]:

supi∈N Ai =
⋃

i∈N
ai .b.Ai .

Assume now that each set Ai is a Borel set of finite rank and that for every integer
j ≥ 1 there exists an integer i j such that Ai j is of Borel rank greater than j . Then
the set supi∈N Ai is a Borel set which is in �0

ω = �0
ω ∩ �0

ω. Firstly, it is easy to see
that the Borel rank of the set ai .b.Ai is the same as the Borel rank of the set Ai .
Thus the set supi∈N Ai = ⋃

i∈N ai .b.Ai is a �0
ω-set because it is a countable union

of Borel sets of finite ranks. Secondly
⋃

i∈N ai .b.Ai is the intersection of the sets
Bi = ⋃

j �=i a j .b.Xω ∪ ai .b.Ai . But for each integer i the set Bi is the union of two

Borel sets of finite rank (the set
⋃

j �=i a j .b.Xω = (
⋃

j �=i a j .b).Xω is an open set).

Thus supi∈N Ai = ⋃
i∈N ai .b.Ai is a countable intersection of Borel sets of finite

rank hence it is a �0
ω set. Moreover the set supi∈N Ai is not a Borel set of finite rank

because otherwise assume that it is in the Borel class �0
J for an integer J ≥ 1. Then

for each i , the language ai .b.Ai would be the intersection of the open set ai .b.Xω and
of supi∈N Ai . But each class �0

J is closed under finite intersection and then for each
i ∈ N, ai .b.Ai would be in the class �0

J . This would imply that, for all i , Ai ∈ �0
J

also holds which is in contradiction with the hypothesis.
In order to simplify the following proof, we now introduce a variant of A∼ which

was already defined in [16]:

Definition 3.22 For A ⊆ Σ≤ω and � /∈ Σ , let X = Σ ∪ {�} and
A≈ = {x ∈ (Σ ∪ {�})≤ω | x� ∈ A},
where x� is inductively defined by:

λ� = λ,

and for a finite word u ∈ (Σ ∪ {�})
:
(u.a)� = u�.a, if a ∈ Σ ,
(u. �)� = u� with its last letter removed if |u�| > 0,
(u. �)� is undefined if |u�| = 0,

and for u infinite:

(u)� = limn∈ω(u[n])�, where, given βn and v in Σ
,
v � limn∈ω βn ↔ ∃n∀p ≥ n βp[|v|] = v.

The only difference between the previous definition and this one is that here (u. �)�
is undefined if |u�| = 0. Recall that if A is a �0

2-complete subset of Σω, then for
each integer n ≥ 1 the set A≈.n is a �0

n+2-complete subset of (Σ ∪ {�1, . . . ,�n})ω
[16]. Then the set supi∈N A≈.i is a Borel set of rank ω.

In fact this latter result is true only when countable infinite alphabets are allowed
because we see from the definition of A≈.n that this is a set over the alphabetΣ ∪{�1
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, . . . ,�n}. So if we want to find such a set in LOCω we have to modify this set
by coding the infinite number of erasers �1, . . . ,�n ,…by finite words over a finite
alphabet. We shall then code the eraser �n by the word a.bn where a and b are two
letters which are not in Σ .

It is easy to see that the resulting set A≈.n will still be a �0
n+2-complete subset (of

(Σ ∪ {a, b})ω ). The proof is left to the reader.
Let then A = Lω(ϕ) be a local ω-language over the alphabet Σ . We are going to

show that supi∈N A≈.i is a local ω-language.
An ω-word of supi∈N A≈.i is in the form an .b.u where u ∈ A≈.n .
Remark that in such an ω-word, there are only finitely many (codes of) erasers and

that the number of erasers is fixed by the initial segment an .b.
We have now to find a local sentence which defines this ω-language. As in the

proof of closure of the class LOC [15], (respectively, LOCω [18]) under substitution
by finitary local languages, we use a unary function I which marks the first letters of
the subwords, in order to divide an ω-word into omega (finite) subwords (the function
I will be constant on each such “subword” and I (x) will indicate the first letter of the
subword containing x). This is expressed by the following sentence θ1 conjunction of:

– “ < is a linear order ”,
– ∀xy[(I (y) ≤ y) ∧ (y ≤ x → I (y) ≤ I (x)) ∧ (I (y) ≤ x ≤ y → I (x) = I (y))].
Every subword will have a last letter (and then it will be finite). We use another unary
function e to designate this last letter. This is expressed by the following sentence θ2
conjunction of:

– ∀x[I (e(x)) = I (x)],
– ∀x[x ≤ e(x)],
– ∀xy[I (x) = I (y)→ (e(x) = e(y))].
The initial segment of the word in the form an .b will be indicated by a unary predicate
P0 and a constant B. Notice that we can assume, without loss of generality, that 0 is
not a letter of the alphabet Σ , so the predicate P0 cannot be a letter predicate. This is
expressed by the following sentence θ3 conjunction of:

– ∀xy[P0(x) ∧ ¬P0(y)→ x < y],
– P0(B),
– ∀x[P0(x)→ x ≤ B],
– Pb(B),
– ∀x[P0(x) ∧ x < B → Pa(x)].
We shall say that if a subword on which the function I is constant has length 1 it
designates a letter in P0 or a letter of the alphabetΣ , and otherwise (if such a subword
has length >1) it designates an eraser a.bn where n is an integer ≥1. We use a unary
predicate P to indicate the letters in Σ . This is expressed by the following sentence
θ4 conjunction of:

– ∀x[P0(x)→ I (x) = x = e(x)],
– ∀x[P(x)↔ (I (x) = x = e(x) ∧ ¬P0(x))],
– ∀x[P(x)↔∨

c∈Σ Pc(x)],
– ∀x[I (x) �= e(x)→ Pa(I (x))],
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– ∀x[(I (x) �= e(x) ∧ x �= I (x))→ Pb(x)].
We have now to say that if the ω-word begins with an .b the erasers are in the finite
set {a.b1, . . . , a.bn}. We shall use a unary function i which will be injective from
each subword into the initial segment designated by P0; and we add that i is strictly
increasing on each subword, this will be useful in the sequel. This is expressed by the
following sentence θ5 conjunction of:

– ∀x[¬P0(x)→ P0(i(x))],
– ∀xy[(I (x) = I (y) ∧ x < y)→ i(x) < i(y)],
– ∀x[P0(x)→ i(x) = x].

(this third conjunct expresses that i is trivially defined on P0).

Now we want to be able to compare the erasers because an eraser �k= a.bk is allowed
to erase another eraser � j= a.b j if and only if k > j , because of the inductive
definition of the sets A≈.n . Then we will compare each eraser to an initial segment
of P0. We use for that purpose another binary function f such that, for I (x) /∈ P0,
f (I (x), .) will be a function from P0 into {y | I (y) = I (x)}. This is expressed by the
following sentence θ6 conjunction of:

– ∀xy[(¬P0(x) ∧ P0(y))→ I ( f (I (x), y)) = I (x)],
– ∀xy[P0(x)→ f (x, y) = x],
– ∀xy[I (x) �= x → f (x, y) = x],
– ∀xy[¬P0(y)→ f (x, y) = x].

(these three latest conjuncts are used to trivially define the function f when it is not
useful for our purpose, see Remark 3.17)

Now we are going to say that f (I (x), .) is strictly increasing, hence also injective, from
{z ∈ P0 | z ≤ i(e(x))} into {y | I (y) = I (x)}. This ensures that i is an injection from
{y | I (y) = I (x)} into {z ∈ P0 | z ≤ i(e(x))} (because i is increasing) and conversely
f (I (x), .) is an injection from {z ∈ P0 | z ≤ i(e(x))} into {y | I (y) = I (x)}.
Therefore these sets have the same cardinal because they are finite and, for x /∈ P0,
i is a strictly increasing bijection from {y | I (y) = I (x)} onto an initial segment of
P0. Hence we shall be able to compare two erasers by comparing the images by the
function i of the last elements e(x) and e(y) of the segments which code these erasers.
This is expressed by the following sentence θ7:

– ∀xyz[(¬P0(x) ∧ P0(y) ∧ P0(z) ∧ y < z ≤ i(e(x))→ f (I (x), y) < f (I (x), z)].
Now we are able to associate an eraser a.b j which really erases with the letter of Σ
or the other eraser of type a.bk , with k < j , which is erased by a.b j . Indeed we shall
use a unary function s which associates the first element of the eraser with the letter of
Σ or the first element of the eraser which is erased. Let P1 and P2 be two new unary
predicate symbols, the first one will indicate the first elements of the erasers which
really erase and the second one will indicate the letters ofΣ or the first elements of the
erasers which are erased. This is expressed by the following sentence θ8, conjunction
of:

– ∀x[(P1(x) ∨ P2(x))→ (¬P0(x) ∧ I (x) = x)],
– ∀x[I (x) �= e(x)→ (P1(I (x)) ∨ P2(I (x)))],
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– ∀x[¬(P1(x) ∨ P2(x))→ s(x) = x],
– ∀x[P2(x)↔ P1(s(x))],
– ∀x[s(s(x)) = x],
– ∀x[P2(x)→ x < s(x)].
Remark that some letters of Σ will not be erased by any eraser, hence we have not
added the conjunct ∀x[P(x)→ P2(x)].

Now we have to ensure, as already mentioned above, that an eraser erase a letter
of Σ or an another eraser it is allowed to erase. This is expressed by the following
sentence θ9:

– ∀x[P2(x)→ i(e(x)) < i(e(s(x)))].
More, the operations of erasing have to be done in a good order, i.e. in an ω-word
which contains only the erasers �1, . . . ,�n , the first operation of erasing uses the
last eraser �n , then the second one uses the eraser �n−1, and so on. Moreover there
is not any letter ofΣ which is not erased between an eraser and the segment it erases.
This is expressed by the following sentence θ10 conjunction of:

– ∀xy[(P1(x) ∧ P1(y) ∧ x < y)→ ((s(x) < x < s(y) < y) ∨ (s(y) < s(x) < x <
y ∧ i(e(x)) ≥ i(e(y))))]

– ∀xy[(P1(x) ∧ s(x) < y < x ∧ I (y) = e(y))→ P2(y)].
Consider now an ω-word of the form an .b.u where u ∈ A≈.n . When the operations of
erasing (with the erasers �1, . . . ,�n) have been completed in u, then the resulting
word must be in A = Lω(ϕ). Let P3 be a new unary predicate, we shall say that P3
induces this resulting word. This is expressed by the following sentence θ11 conjunction
of:

– ∀x[P3(x)↔ (P(x) ∧ ¬P2(x))],
– ∀x1 . . . x j ∈ P3[ϕ0(x1, . . . , x j )], where ϕ = ∀x1 . . . x jϕ0(x1, . . . , x j ) with ϕ0 an

open formula,
– ∀x1 . . . xm ∈ P3[g(x1, . . . , xm) ∈ P3], for each m-ary function g of S(ϕ),
– ∀x1 . . . xm[∨1≤i≤m ¬P3(xi ) → g(x1, . . . , xm) = min(x1, . . . , xm)], for each

m-ary function g of S(ϕ),
– P3(c), for each constant c of S(ϕ).

We add the following sentence θ12 which expresses that j is an injective function
from P2 into P3, where j is a new unary function symbol. This will ensure that in
an ω-model, P3 is infinite and hence it induces an ω-word of Lω(ϕ) (which remains
when the operations of erasing have been made). θ12 is the conjunction of:

– ∀x[P2(x)→ P3( j (x))],
– ∀xy[(P2(x) ∧ P2(y) ∧ x �= y)→ j (x) �= j (y)],
– ∀x[¬P2(x)→ j (x) = x].

(this latest conjunct is used to define trivially the function j on ¬P2, see
Remark 3.17).

Now the conjunction
∧

1≤i≤12 θi is a sentence which is equivalent to a universal
sentence, because it is the conjunction of a finite number of universal sentences, and
closure in its models takes at most nϕ + 5 steps: one takes first closure under the
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functions I and e, then under s, and again under I and e, then under i and j , then
under f and the functions of S(ϕ).

By construction we check that:

Lω

⎛

⎝
∧

1≤i≤12

θi

⎞

⎠ = supi∈N(Lω(ϕ))≈.i .

��
Remark 3.23 The above proof is the first step for the study of local ω-languages
which are Borel sets of infinite rank. Using this first result and other methods, we have
constructed some local ω-languages which are Borel sets of every Borel rank smaller
than the Cantor ordinal ε0 [17]. On the other side, Kechris et al. proved in [24] that the
supremum of the set of Borel ranks of (lightface)Π1

1 , so also of (lightface)Σ1
1 , sets is

the ordinal γ 1
2 . This ordinal is strictly greater than the first non-∆1

2 ordinal [24]. Thus
it holds that ωCK

1 < γ 1
2 , where ωCK

1 is the first non-recursive ordinal. The question is
left open to determine completely the set of all Borel ranks of local ω-languages and
in particular to find its supremum which is of course smaller than or equal to γ 1

2 .

3.4 Beyond Borel sets

The question naturally arises: are there local ω-languages which are analytic but not
Borel sets?

Theorem 3.24 There exist local ω-languages which are �1
1-complete hence non

Borel sets.

Proof We shall use here results about languages of infinite binary trees whose nodes
are labeled in a finite alphabet Σ . A node of an infinite binary tree is represented
by a finite word over the alphabet {l, r} where r means “right” and l means “left”.
Then an infinite binary tree whose nodes are labeled inΣ is identified with a function
t : {l, r}
→ Σ . The set of infinite binary trees labeled in Σ will be denoted T ωΣ .

There is a natural topology on this set T ωΣ [22,26,28]. It is defined by the following
distance: Let t and s be two distinct infinite trees in T ωΣ . Then the distance between
t and s is 1

2n where n is the smallest integer such that t (x) �= s(x) for some word
x ∈ {l, r}
 of length n. The open sets are then in the form T0.T ωΣ where T0 is a set of
finite labeled trees. T0.T ωΣ is the set of infinite binary trees which extend some finite
labeled binary tree t0 ∈ T0, t0 is here a sort of prefix, an “initial subtree” of a tree in
t0.T ωΣ .

The Borel hierarchy and the projective hierarchy on T ωΣ are defined from open sets
in the same manner as in the case of the topological space Σω.

Let t be a tree. A branch B of t is a subset of the set of nodes of t which is linearly
ordered by the tree partial order R (R(xy) ↔ x � y) and which is closed under the
prefix relation, i.e. if x and y are nodes of t such that y ∈ B and x � y then x ∈ B.
A branch B of a tree is said to be maximal iff there is not any other branch of t which
strictly contains B.
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Let t be an infinite binary tree in T ωΣ . If B is a maximal branch of t , then this
branch is infinite. Let (ui )i≥0 be the enumeration of the nodes in B which is strictly
increasing for the prefix order. The infinite sequence of labels of the nodes of such a
maximal branch B, i.e. t (u0)t (u1) . . . t (un) . . . is called a path. It is an ω-word over
the alphabet Σ .

Let then L ⊆ Σω be an ω-language over Σ . Then we denote Path(L) the set of
infinite trees t in T ωΣ such that t has (at least) a path in L .

It is well known that if L ⊆ Σω is an ω-language overΣ which is a �0
2-complete

subset ofΣω (or a set of higher complexity in the Borel hierarchy) then the set Path(L)
is a �1

1-complete subset of T ωΣ . Hence Path(L) is not a Borel set [22,30,37].
For LΣω (ϕ) a local ω-language, we shall find another local ω-language

L(Σ∪{0,1})ω (ψ) and a continuous function

h : T ωΣ → (Σ ∪ {0, 1})ω

such that Path(LΣω (ϕ)) = h−1(L(Σ∪{0,1})ω (ψ)). For that we shall code trees labeled in
Σ by words over Σ ∪ {0, 1}, where 0 and 1 are supposed to be two new letters not in
Σ . We use two new unary predicate symbols, P and B. The first one will indicate the
set of nodes of the tree and the second one will indicate a maximal branch of the tree
which provides a word of LΣω (ϕ)when the labels are considered. We first express that
R (a binary new relation) is a strict partial order over P by the following sentence φ1,
conjunction of:

– ∀xy[R(xy)→ P(x) ∧ P(y)],
– ∀xyz[R(xy) ∧ R(yz)→ R(xz)],
– ∀xy[R(xy)→ ¬R(yx)].
We have to say that this order is the order of a tree, i.e. that the predecessors of an
element x ∈ P are linearly ordered by R. This is expressed by the following sentence
φ2:

– ∀xyz[R(xz) ∧ R(yz)→ (R(xy) ∨ R(yx) ∨ x = y)].
Now we use a new constant symbol S and the following sentence φ3 expresses that
this constant is interpreted by the root node of the tree:

– P(S) ∧ ∀x ∈ P[x �= S→ R(Sx)].
The trees are labeled in Σ , and we use the two other letters to code the relation R in
a word. So let φ4 be the following sentence, conjunction of:

– ((Pa)a∈(Σ∪{0,1}) form a partition),
– ∀x[P(x)↔∨

a∈Σ Pa(x)],
– ∀x[¬P(x)↔ P0(x) ∨ P1(x)].
We use a binary new function f and two unary new functions p and p′ to say that a
model M of ψ is the disjoint union of P M and of f M (P M × P M ). f M will be an
injective function from P M × P M into ¬P M , and the projections pM and p′M will
ensure that f M (P M × P M ) = ¬P M . This is expressed by the following sentence φ5,
conjunction of:
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– ∀xy ∈ P[¬P( f (xy))],
– ∀x[¬P(x)→ P(p(x)) ∧ P(p′(x))],
– ∀xy[P(x) ∧ P(y)→ x = p( f (xy)) ∧ y = p′( f (xy))],
– ∀x[¬P(x)→ x = f (p(x)p′(x))],

(these four latest conjuncts imply that the function f is a bijection from P× P onto
¬P),

– ∀xy[¬P(x) ∨ ¬P(y)→ f (xy) = x],
– ∀x[P(x)→ p(x) = p′(x) = x],

(these two latest conjuncts trivially define somewhere the functions f , p and p′
according to Remark 3.17).

The order of the elements of f M (P M × P M ) for<M in M will be also determined by
the order<M on P M . Let us remark that we choose such an order on f M (P M × P M )

but we could have made another choice. But we want this order to be determined byψ .
Then once the enumeration of order type ω of the nodes has been chosen, the code of
a tree as an ω-word over the alphabetΣ ∪{0, 1} is completely fixed. This is expressed
by the following sentence φ6, conjunction of:

– ∀xyx ′y′ ∈ P[max(xy) < max(x ′y′)→ f (xy) < f (x ′y′)],
(where max(xy) = y iff x ≤ y and max(xy) = x iff y ≤ x),

– ∀xyz ∈ P[y < z ≤ x → ( f (xy) < f (xz)∧ f (zx) > f (yx)∧ f (xy) < f (zx))],
– ∀xyz ∈ P[y ≤ x < z→ (x < f (xy) < z ∧ x < f (yx) < z)].
This will fix the order of the letters 0 and 1 which code the tree order and in order
to really code the tree order by the letters 0 and 1 of the word, we use the following
sentence φ7, conjunction of:

– ∀xy[R(xy)→ P0( f (xy))],
– ∀xy[¬R(xy)→ P1( f (xy))].
In order to say that the branches of the tree have at most length ω when the word
coding the tree is an ω-word we use the following sentence φ8 which expresses that
the order R is compatible with the order < of the words:

– ∀xy[R(xy)→ x < y].
The unary predicate B will indicate the nodes of a branch of the tree, this is expressed
by using the following sentence φ9, conjunction of:

– ∀x[B(x)→ P(x)],
– ∀xy[(B(x) ∧ B(y) ∧ x �= y)→ (R(xy) ∨ R(yx))],
– ∀xy[B(x) ∧ R(yx)→ B(y)].
This branch will be a maximal branch (this will be useful for having an infinite branch
when infinite trees are considered). We use a new unary function i which is trivial
on B and which associates to each node x of ¬B another node i(x) of the branch B
such that x and i(x) are incomparable with regard to the relation R of the tree. This is
expressed by the following sentence φ10, conjunction of:

– ∀x[(P(x) ∧ ¬B(x))→ B(i(x))],
– ∀x[(P(x) ∧ ¬B(x))→ (¬R(xi(x)) ∧ ¬R(i(x)x))],
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– ∀x[¬P(x)→ i(x) = x],
– ∀x[B(x)→ i(x) = x].

(these two latest conjuncts trivially define the function i on B and on ¬P).

Now we have to say that the branch B induces a word of Lω(ϕ) (when the branch is
infinite of length ω).
This is expressed by the following sentence φ11, conjunction of:

– B(c), for each constant c of S(ϕ),
– ∀x1 . . . xk[S(x1 . . . xk)→ B(x1) ∧ . . . ∧ B(xk)], for each predicate S(x1 . . . xk) of

S(ϕ),
– ∀x1 . . . x j [(B(x1)∧ . . .∧ B(x j ))→ B(g(x1 . . . x j ))], for each j-ary function sym-

bol g of S(ϕ),
– ∀x1 . . . x j [(∨1≤i≤ j ¬B(xi )) → g(x1 . . . x j ) = min(x1 . . . x j )], for each j-ary

function symbol g of S(ϕ),
– ∀x1 . . . xm[(B(x1) ∧ . . . ∧ B(xm)) → ϕ0(x1 . . . xm)], where ϕ = ∀x1 . . . xmϕ0
(x1 . . . xm) with ϕ0 an open formula,

Consider now the conjunction:

ψ =
∧

1≤i≤11

φi .

This sentence is written in the signature:

S(ψ) = S(ϕ) ∪ {S, P, B, R, P0, P1, f, p, p′, i}

where S is a constant symbol, P, B, P0, P1 are unary predicate symbols, R is a binary
predicate symbol, p, p′, i are unary function symbols and f is a binary function
symbol. ψ is equivalent to a universal sentence, because it is the conjunction of a
finite number of universal sentences, and closure in its models takes at most nϕ + 3
steps (one takes closure under the functions p and p′, then under S and i , then under
the functions of S(ϕ) and finally under f ). Hence ψ is a local sentence and it defines
a local ω-language over the alphabet Σ ∪ {0, 1}.

Consider now the set {l, r}
 of nodes of the infinite binary tree, and the lexicographic
order on this set (assuming that l is before r for this order). Then, in the enumeration of
the nodes with regard to this order, the first nodes will be λ, l, r, ll, lr, rl, rr, lll, llr, . . .
Let then h be the mapping from T ωΣ into (Σ∪{0, 1})ω such that for every labeled binary
infinite tree t of T ωΣ , h(t) is the code of the tree as defined above (by the sentences φ1
to φ8), where the enumeration of length ω of the nodes is in lexicographic order as
explained above. Then for a tree t ∈ T ωΣ , h(t) ∈ Lω(ψ) if and only if t has a path in

Lω(ϕ) thus Path(LΣω (ϕ)) = h−1(LΣ∪{0,1}ω (ψ)) holds.
Hence if Lω(ϕ) is a Borel set which is at least a �0

2-complete subset of Σω, the
language Path(Lω(ϕ)) = h−1(Lω(ψ)) is a �1

1-complete subset of T ωΣ . But it is easy
to see from the definition of h and of the lexicographic order on {l, r}
 that h is a
continuous function from T ωΣ into (Σ ∪ {0, 1})ω. Then the ω-language Lω(ψ) is
at least �1

1-complete because h−1(Lω(ψ)) is a �1
1-complete set and it is in fact a
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�1
1-complete subset of (Σ ∪ {0, 1})ω because every local ω-language is an analytic

set by Theorem 3.8. Then in that case Lω(ψ) is not a Borel set because a �1
1-complete

set is not a Borel set.
Indeed this gives infinitely many �1

1-complete local ω-languages, because there
exist infinitely many local ω-languages which are �0

2-complete (for example the
regular ω-languages which are �0

2-complete). ��
A natural question arises about the recursive analogue to Theorem 3.24: are there local
languages which are in the classΣ1

1 but in not any class of the arithmetical hierarchy?
The answer can be easily derived from the inclusions Σn ⊆ �0

n and Πn ⊆ �0
n and

Theorem 3.24:

Corollary 3.25 There exist some local ω-languages in Σ1
1 −

⋃
n≥1Σn.

Remark 3.26 The method we have used in the above proof to code the tree order
relation may be used more generally to code the ω-models of some local sentence ϕ.
Then we can show that the set of codes of ω-models of ϕ is itself a local ω-language.
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