
Marching Simplices

Philipp Schwaha∗ and René Heinzl†

∗Shenteq s.r.o., Záhradnícka 7, 81107 Bratislava, Slovak Republic
†Institute for Microelectronics, Technische Universität Wien, Gußhausstraße 27-29, 1040 Vienna, Austria

Abstract. A multi-dimensional algorithm for surface extraction from a structured domain is presented. Topological informa-
tion is used to split the n-cubes into simplices which are used to extract the possible configurations of new surface elements.
The algorithm is intended to complement to the existing surface extraction algorithms, which are specialized to deal with a
set dimension, while this algorithm will adapt to any chosen dimension.

Keywords: C++, Meta-Programming, Computational Topology
PACS: 89.20.Ff, 02.40.Pc, 07.05.Tp

INTRODUCTION

Marching cubes [1] has been a key algorithm for the rapid extraction of surfaces. It however not only has issues with

topological ambiguity, but has also been handicapped by patenting issues. Both of these issues have been addressed

by the development of the marching tetrahedra [2], which suffers neither patent issues or topological ambiguity.

Where marching cubes constructs its output by examining the cuts of plane with cubes, marching tetrahedra splits

the cube into tetrahedra for which intersections are then evaluated. While these methods differ in this respect, their

implementations are not too dissimilar. Both are customarily implemented using look-up tables to steer the generation

of new elements in a run time efficient manner. These look-up tables are usually prepared before compilation of the

intended application.

We present a means utilizing generic programming methods and paradigms, which allows to forgo the use of a

hard coded look-up table and instead utilize higher level representations of the underlying topological information or

determine a look-up table as needed. The procedure is realized using the capabilities already present in the Generic

Scientific Simulation Environment (GSSE) [3–5]. In this fashion the procedure is generalized to arbitrary dimensions.

This allows to supply an algorithm for surface extraction which is suitable for data of any supplied dimension, since it

will adapt to the supplied dimension.

GENERIC SURFACE EXTRACTION

The algorithm is schematically illustrated in Figure 1. The original n-cube cell is decomposed into simplices. It is

easy to obtain all the edges from the simplices generated in this fashion. The edges are essential for the surface

extraction process, since the vertices which are subsequently used to spawn the extracted surface representation are

derived directly from them, by means of interpolation. While it may be tempting to discard the simplex information

since vertex generation is so tightly coupled to the edges, the simplices are essential for the generation of surface

elements as they eliminate ambiguity. For, while the generation of surface elements within any given simplex can be

done consistently, the lone set of vertices in an n-cube leaves too many degrees of freedom undetermined, which is

also the source for ambiguity when using the marching cubes algorithm [6]. While this situation is easily containable

in the three dimensional case, the effort required in higher dimensions increases dramatically [7].

The task of determining the simplices filling an n-cube does not have a unique solution. As is already apparent in the

case of a three dimensional cube, which admits a filling consisting of either five or six tetrahedra. While the generation

of a minimal number of elements is desirable, the minimization of the element count is not a driving motivation, but

symmetry needs to be considered in order to enable a seamless repetition of neighboring cells. In the particular case

of the three dimensional cube this condition singles out the decomposition into six tetrahedra. In more general terms

the composition in which all tetrahedra share the space diagonal which crosses the n-cube cell meets the required

symmetry conditions.

1651

n-cube

Split into tetrahedra Obtain edge complete set

Point placement

Surface eglement generation

Boundary of Cell

Extract space diagonal

Simplex

Diagonal edges

Record point

Quadrilateral Cell

FIGURE 1. Schematic overview of the marching simplices algorithm. The overall algorithm is sketched to the left, while the
right part shows the extraction of diagonal edges and simplices.

0 1

2 3

4

6 7

5

FIGURE 2. Vertices forming a 3-cube. All of the shown edges belong to tetrahedra obtained by the described algoirthm.

DECOMPOSITION ALGORITHM

The proposed algorithm utilizes information available in from the n-cube. When utilizing the topological mechanisms

available in the GSSE, very detailed information regarding the arrangement of lower dimensional components is

already available. The proposed algorithm therefore reuses as much of this information as possible.

Starting with a n-cube cell Q0. First the space diagonal D0 is extracted and its vertices stored for simplex construc-

tion, before the boundary elements of the n-cube ∂Q0, which are themselves n-cubes Qi ∈ ∂Q0 again, are queried.

From each of the boundary elements Qi, which are of course of lower dimension than before dimQ0 = dimQi+1, the

space diagonal Di is extracted and its vertices added to the simplex again before recursing to again determining the

boundary elements Qi j ∈ ∂Qi of the current cell Qi. The procedure is applied recursively until the cells are themselves

edges and thus cannot support a distinct diagonal. The space diagonals, thusly generated in conjunction with the edge

boundary of the n-cube form the complete set of edges required to extract a surface representation from the n-cube.

Simplices are determined while selecting the space diagonals and aggregating the encountered vertices.

An example using a 3-cube is provided to further illustrate the procedure of the algorithm. Considering an n-

cube cell formed by vertices as illustrated in Figure 2. The n-cube cell is given as Q0 = {0,1,2,3,4,5,6,7}. From

this the diagonal D0 = {0,7} is extracted. The vertices {0} and {7} are two initial vertices of all the tetrahedra,

which will be constructed, thus this edge is shared among all the generated tetrahedra. The boundary elements

∂Q0 = ∪Qi = {{0,1,2,3}, {4,5,6,7}, {0,2,4,6}, {1,3,5,7}, {0,1,4,5}, {2,3,6,7}} are then each considered in

turn, giving the diagonals {0,3}, {4,7}, {0,6}, {1,7}, {0,5}, {2,7} respectively. As can be seen every one of the

additional diagonals contains a new vertex to build a tetrahedron, when comparing to the already selected {0,7}
vertices. Adding this vertex the list of partial simplices is {0,3,7}, {0,4,7}, {0,6,7}, {0,1,7}, {0,5,7}, {0,2,7},

which are now missing a single vertex for completion. As no further diagonals can be generated as the boundary

1652

operation on the cells Qi, thus no further recursion is initiated. However, the vertices of the edges are examined to

complete the forming simplices. This finally gives the tetrahedra to be {0,1,3,7}, {0,2,3,7}, {0,4,5,7}, {0,4,6,7},

{0,2,6,7}, {0,1,5,7}.

The simplices are traversed letting the GSSE decompose them into their edge components. Thereby the membership

relations between the simplices and the edges are available naturally. The overall complexity of the algorithm is broken

down due to the reuse of the GSSE’s topological operations. However, edges may be evaluated several times, as they

belong to several different simplices, which comes as overhead if left unaddressed.

As each of the generated simplices is traversed the vertices originating from the edges are used for the formation of

surface elements immediately, thus once all simplices have been traversed the surface has been extracted.

IMPLEMENTATION CONSIDERATIONS

The problem of splitting an n-cube into simplices is relatively expensive in terms of computational effort and grows

considerable as dimension increases. It is therefore prudent to reuse the extracted topological structures as much as

possible. Fortunately, the topological decomposition of an n-cube into simplices is required to be performed only once

and can be reused multiple times once the information has been initialized. Furthermore, traversal of the individual

simplices for every cell can be omitted when the information is condensed into an associative container, which mimics

the hard coded look-up tables already in use. However, instead of only guiding subsequent formation of elements one

by one, the generic approach may be used to provide all of the resulting surface elements in its own container. Since

the GSSE can provide topological information it is feasible to implement the entire algorithm using meta programming

techniques [8, 9].

Thus it is possible to concisely access a surface extraction in the following manner:

t e m p a l t e <typename InputDomainType , typename SurfaceDomainType ,

typename Paramete rPackageType >

void s u r f a c e _ e x t r a c t o r (InputDomainType& inpu t_domain ,

SurfaceDomainType& o u t p u t _ s u r f a c e ,

const Parame te rPackageType& p a r a m e t e r s)

{

typedef typename g e t _ c e l l _ t y p e <InputDomainType > : : t y p e c e l l _ t y p e ;

typedef typename g e t _ c e l l _ t y p e <SurfaceDomainType > : : t y p e s i m p l e x _ t y p e ;

m a r c h i n g _ s i m p l i c e s < c e l l _ t y p e , s i m p l e x _ t y p e , Paramete rPackageType > : : t y p e

march (p a r a m e t e r s) ;

g s s e : : t r a v e r s e < a t _ c l >

[

i n s e r t (o u t p u t _ s u r f a c e , march (_1))

] (domain) ;

}

It utilizes the functional paradigm in the spirit of Boost Phoenix [10, 11] which is enabled by GSSE facilities for

traversal and extends the GSSE by a surface extraction mechanism. The parameter pack can be used to supply a

prescription for interpolation, so as to provide an additional degree of adaptivity.

template<typename Conta ine rType >

struct g e n e r a t o r

{

C o n t a i n e r T y p e r e t u r n _ t e m p l a t e ;

template<typename I n i t i a l i s a t i o n T y p e >

g e n e r a t o r (I n i t i a l i s a t i o n T y p e *)

{ . . . }

template<typename QuadCellType >

C o n t a i n e r T y p e operator () (const QuadCel lType& quad) const

{ . . . }

} ;

1653

The InitialisationType encodes the instructions to initialize the return_template at construction time.

Subsequent calls to the operator() uses this information to assemble and return the correct surface elements by

remapping the representation, which is local to the cell, to the global indices. By initializing the member variable in

this fashion in a templated constructor, where the type is utilized for control enables the structs to share the same type

and thus be easily stored in the associative container, while at the same time returning different values at evaluation

time.

Since it is not possible to invoke the templated constructor explicitly by the compiler needs to deduce the type

automatically, a dummy pointer argument is used, whereby any instantiation of the passed type can be avoided by

using

g e n e r a t o r ((t y p e *) 0)

For compatibility with the containers in the STL, a default constructor is also required.

It should go unnoted that the size of the associative container increases quickly with increasing dimension if

symmetry is not utilized to reduce the number of different cases. This can be accomplished by establishing a canonical

ordering which is then mapped to the rest by permutations corresponding to the symmetries.

CONCLUSION

An algorithm of decomposing an n-cube into simplices in arbitrary dimension has been discussed. It builds upon

topological information already available and extends the capabilities of the capabilities of the GSSE to allow for

surface extractions of arbitrary dimensions. The chosen approach evaluates the expensive combinatorial components

of the decomposition and element generation at compile time in order to ease run time evaluations. The proposed

algorithm is not intended to be a replacement of already established surface extraction methodologies of marching

cubes or marching tetrahedra, but rather to complement them, since it provides a means for surface extraction which

adapts to any required dimension, instead of the implementations specific for a single dimension. The used approach

to implementation makes it easy to select more specific algorithms or implementations where required.

ACKNOWLEDGMENTS

We are greatful to Franz Stimpfl and Josef Weinbub for their invaluable support and discussions. This work has been

supported by the Austrian Science Fund FWF, project P19532-N13.

REFERENCES

1. W. E. Lorensen, and H. E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm,” ACM, New York,
NY, USA, 1987, vol. 21, pp. 163–169, ISSN 0097-8930.

2. P. Shirley, and A. Tuchman, “A polygonal approximation to direct scalar volume rendering,” ACM, New York, NY, USA,
1990, vol. 24, pp. 63–70, ISSN 0097-8930.

3. R. Heinzl, Concepts for Scientific Computing, Dissertation, Technische Universität Wien, Austria (2007).
4. R. Heinzl, P. Schwaha, F. Stimpfl, and S. Selberherr, “Parallel Library-Centric Application Design by a Generic Scientific

Simulation Environment,” in Proc. of the POOSC, Paphos, Cyprus, 2008.
5. R. Heinzl, and P. Schwaha, “A generic topology library,” 2009, ISSN 0167-6423, URL http://www.sciencedirect.

com/science/InProceedings/B6V17-4XBR4GX-1/2/339efd429eaae7140a250e3b8a0c71b8.
6. G. M. Nielson, and B. Hamann, “The asymptotic decider: resolving the ambiguity in marching cubes,” in VIS ’91: Proceedings

of the 2nd conference on Visualization ’91, IEEE Computer Society Press, Los Alamitos, CA, USA, 1991, pp. 83–91, ISBN
0-8186-2245-8.

7. A. J. Zomorodian, “Topology for Computing,” in Cambridge Monographs on Applied and Computational Mathematics, 2005.
8. T. L. Veldhuizen, “Using C++ Template Metaprograms,” 1995, vol. 7, pp. 36–43, ISSN 1040-6042, reprinted in C++ Gems,

ed. Stanley Lippman.
9. D. Abrahams, and A. Gurtovoy, C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond

(C++ in Depth Series), Addison-Wesley, 2004, ISBN 0321227255.
10. Boost C++ Libraries, 1.43, URL http://www.boost.org, http://www.boost.org.
11. Boost, Boost Phoenix 2.0, URL http://www.boost.org/libs/spirit/phoenix,

http://www.boost.org/libs/spirit/phoenix.

1654

Copyright of AIP Conference Proceedings is the property of American Institute of Physics and its content may

not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.

	copyright1:

