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A language A is left cancellative if from AB = AC, it follows that B = C, for any two languages B and C.
Semi-singular and inf-singular languages are two disjoint sub-sets of left cancellative languages and are
introduced by Hsieh and Shyr [Left cancellative elements in the monoid of languages, Soochow J. Math. 4
(1978), pp. 7–15]. In this paper, we further study them. It is shown that all non-dense and all maximal left
cancellative languages are semi-singular while all right dense left cancellative languages are inf-singular.
Finally, a theorem shows that there is a left cancellative language which is neither semi-singular nor
inf-singular.
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1. Introduction

Prefix codes are widely used in information theory and computer science, for example, in encoding
and decoding, data compression and transmission, DES and Huffman’s algorithms [4,5,7–9].
Left cancellative languages are a kind of generalization of prefix codes. For the properties of left
cancellative languages, see [3,10–12]. Especially in [12], maximal left cancellative languages are
studied. From [10], we know that left singular languages are a kind of left cancellative languages
and they are studied in [2,6,10]. In this paper, we find that maximal left cancellative languages and
left singular languages have some characteristics in common.They are all semi-singular languages.
In fact, the notions of semi-singular and inf-singular languages are discussed and introduced in [3].
Based on [3], we make a further study on semi-singular and inf-singular languages.

The paper is organized as follows. Section 2 gives some definitions and properties used in the
paper. To investigate semi-singular and inf-singular languages, we propose some properties of
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semi-singular and inf-singular words in Section 3. In Section 4, some results on semi-singular
and inf-singular languages are proved. First, we prove that the set of semi-singular languages is a
strongly prefix sub-semi-group and the set of inf-singular languages is a left ideal of the monoid
of left cancellative languages which generalize the result that the set of semi-singular languages
is a sub-semi-group of left cancellative languages in [3]. Then, we prove that all non-dense and
all maximal left cancellative languages are semi-singular while all right dense left cancellative
languages are inf-singular and all inf-singular languages are dense. At last, a theorem is given to
show that there is a left cancellative language which is neither semi-singular nor inf-singular. So
the monoid of left cancellative languages is the union of three disjoint sub-classes of semi-singular
languages, inf-singular languages and left cancellative languages which are neither semi-singular
nor inf-singular.

2. Definitions and preliminaries

Let X be a non-empty finite set of letters. Any finite string over X is called a word. For example,
w = abab2a is a word over {a, b}. The word that contains no letter is called the empty word,
denoted by 1. The set of all words is denoted by X∗, which is a free monoid with concatenation.
For example, the production of two words x = ab2 and y = ab3a is the word xy = ab2ab3a.
For any word w in X∗, let lg(w) be the number of letters that occur in w. Then lg(w) = 6 for
the former w = abab2a. Let X+ = X∗ \ {1}. Any non-empty sub-set of X+ is called a language.
The set M = {A | A ⊆ X+ or A = {1}} with concatenation is the monoid of languages. And
D(M) ={A ∈ M | AB = AC implies B = C for all B, C ∈ M} is the monoid of left cancellative
languages. An element in D(M) is called a left cancellative language.

Let A be a language and ZA = A \ AX+. For example, let X = {a, b} and A =
{a, b, a3, b3, aba, bab}. Then ZA = {a, b}. For every language A, we can see A ⊆ ZA ∪ ZAX+.
A language A is called a prefix code if ZA = A (see [1,11]). A prefix code A is called a maximal
prefix code if A ∪ {x} is not a prefix code for all x ∈ X+ \ A (see [1,11]).

In [3], semi-singular and inf-singular languages are defined as follows. Let A be a language.
For v ∈ ZA and x ∈ X+, the word vx is called A-semi-singular if vxr = yz for some y ∈ A and
r, z ∈ X∗, then v = y. Let SA ={x ∈ X+| vx is A-semi-singular for some v ∈ ZA} and GA =
SA \ SAX+. A language A is called semi-singular if GA is a maximal prefix code. The set of all
semi-singular languages is denoted by S(M). For example, let X = {a, b} and A = {a, b, a2, b2}.
From the definition of SA, we can see SA = aX∗ ∪ bX∗ and hence GA = {a, b} is a maximal
prefix code. So A ∈ S(M).

Let X+
x = X+ \ {x} and LA ={x ∈ X+|vx /∈ AX+

x for some v ∈ A}. A word x ∈ X+ is called
A-inf-singular if the following two conditions hold:

(i) xX∗ ⊆ LA;
(ii) for every g ∈ GA and m ∈ X∗, g �= xm and x �= gm.

Let IA ={x ∈ X+|x is A-inf-singular} and HA = IA \ IAX+. A language A is called inf-
singular if HA is a maximal prefix code. The set of all inf-singular languages is denoted by
I (M). In the following, we review some results which will be used in the rest of the paper.

Lemma 2.1 [3] A language A is a left cancellative language if and only if GA ∪ HA is a maximal
prefix code.

Lemma 2.2 [3] S(M) ⊆ D(M).
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Lemma 2.3 [3] SA ∩ IA = GA ∩ HA = ∅.

Lemma 2.4 [3] SA = {x ∈ X+|vx /∈ AX+
x and vxX∗ ∩ A = ∅ for some v ∈ A}.

By the definition of LA ={x ∈ X+|vx /∈ AX+
x for some v ∈ A}, we have SA ⊆ LA.

Lemma 2.5 [3] If A is a left singular language, then SA = X+.

All left singular languages are inS(M)becauseGA = X is a maximal prefix code by Lemma 2.5.

Lemma 2.6 [3] Let A be a bounded language. Then A ∈ D(M) if and only if GA is a maximal
prefix code.

All finite left cancellative languages are in S(M) (see [11]), and if A ∈ I (M) then A is
unbounded and infinite. The following lemma is an example of an inf-singular language.

Lemma 2.7 [3] Let X = {a, b} and B = b+a ∪ (
⋃∞

i=1 biaXi). Then B ∈ I (M).

Lemma 2.8 [3] S(M) is a sub-semi-group of D(M).

3. Properties of SA, LA and IA

The sets SA, LA and IA are introduced by the definitions of semi-singular and inf-singular
languages. Before we show some results on S(M) and I (M), we give some properties of these
three sets which are often used in the later of the article. First, we cite a property of left cancellative
languages which we need.

Lemma 3.1 [3,10] A language A ∈ D(M) if and only if AX+ �= AX+
x (or ZAX+ �= AX+

x ) for
all x ∈ X+.

Proposition 3.2 A language A is left cancellative if and only if LA = X+.

Proof (⇒) Let A be a left cancellative language. Then AX+ �= AX+
x for every x ∈ X+ by

Lemma 3.1. So for every x ∈ X+, there exists p ∈ A such that px /∈ AX+
x . Then x ∈ LA for

every x ∈ X+. So X+ ⊆ LA. On the other hand, LA ⊆ X+ by the definition of LA. From above,
we know LA = X+.

(⇐) Let LA = X+. Then x ∈ LA for every x ∈ X+. So for every x ∈ X+ there exists p ∈ A

such that px /∈ AX+
x . Then AX+ �= AX+

x for every x ∈ X+. So A ∈ D(M) by Lemma 3.1. �

We can now prove the following proposition.

Proposition 3.3 Let A be a language. Then A ∈ I (M) if and only if IA = X+.

Proof (⇒) Let A ∈ I (M). Then HA is a maximal prefix code. Suppose that GA �= ∅. Then there
exists x ∈ X+ such that x ∈ GA. So x /∈ HA by Lemma 2.3. Then HA ∪ {x} is not a prefix code.
SinceHA ∪ {x} ⊆ HA ∪ GA, HA ∪ GA is not a prefix code. This contradicts with Theorem 8 in [3].
So GA = ∅. Then HA ∪ GA = HA is a maximal prefix code. Then A ∈ D(M). So LA = X+ by
Proposition 3.2. For any x ∈ X+, we have xX∗ ⊆ X+ = LA. Since GA = ∅, we have x ∈ IA for
all x ∈ X+. So IA = X+.
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(⇐) Let IA = X+. Then x ∈ IA for all x ∈ X+. So xX∗ ⊆ LA by the definition of IA. Then
x ∈ LA for all x ∈ X+, which implies that X+ ⊆ LA. Then A is a left cancellative language. By
Lemma 2.1, we know that GA ∪ HA is a maximal prefix code. Since IA ∩ SA = ∅ by Lemma 2.3
and IA = X+, then SA = ∅. So GA = ∅. Thus, HA is a maximal prefix code. So A ∈ I (M). �

Note:

(1) I (M) ⊆ D(M).
(2) Let A be any non-empty language. Then

(i) A ∈ S(M) ⇔ GA is a maximal prefix code ⇔ A ∈ D(M) and HA = ∅ ⇔ A ∈ D(M)

and IA = ∅;
(ii) A ∈ I (M) ⇔ HA is a maximal prefix code ⇔ A ∈ D(M) and GA = ∅ ⇔ A ∈ D(M)

and SA = ∅.

Let A be a language and l(A) = {g ∈ A|gx /∈ A for all x ∈ X+ and g = yz for some z ∈ X+
implies y /∈ A}. If l(A) �= ∅, then A is called a left singular language [6,10,11]. By Lemma 2.5,
we know if A is a left singular language, then SA = X+. It is natural to ask whether or not
SA = X+ for all A ∈ S(M). The following example shows that there is a language A ∈ S(M),
but SA �= X+.

Example 3.4 Let X = {a, b} and A = {a, b, a3, b3, aba, bab}. Then ZA = {a, b}. For all x ∈
X+, if x ∈ XbX∗, then ax /∈ AX+

x ; if x /∈ XbX∗, then bx /∈ AX+
x . Hence, A is a left cancellative

language by Lemma 3.1. Next, we will prove that x ∈ SA for all x ∈ X+ \ X.

(1) If x ∈ XbX∗, then axr = yz for some y ∈ A, r, z ∈ X∗ implies y = a.
(2) If x ∈ XaX∗, then bxr = yz for some y ∈ A, r, z ∈ X∗ implies y = b.
(3) If x ∈ X, then axa ∈ A. So x /∈ SA for all x ∈ X.

Therefore, SA = X+ \ X = XX+ �= X+. So GA = X2 and IA = HA = ∅. Thus, A ∈ S(M).

In the following, we discuss the relation between SAB and SB, IAB and IB, LAB and LB for two
languages A and B.

Lemma 3.5 [3] Let A and B be languages. Then SAB ⊆ SB .

Before the relation between inf-singular words in AB and B is discussed, we propose an
equivalent definition of inf-singular words once the following lemma is proved.

Lemma 3.6 Let A be a language and x ∈ X+. Then the following are equivalent:
(1) for every g ∈ GA and m ∈ X∗, g �= xm and x �= gm;
(2) for every g ∈ SA and m ∈ X∗, g �= xm and x �= gm.

Proof ((2) ⇒ (1)) It is obvious, since GA ⊆ SA.
((1) ⇒ (2)) For every g′ ∈ GA and m ∈ X∗, g′ �= xm and x �= g′m. Assume there exist g ∈ SA

and m ∈ X∗ such that g = xm or x = gm. Since g ∈ SA and GA = SA \ SAX+, then g ∈ GA or
g ∈ GAX+. If g ∈ GA, then g �= xm and x �= gm by Equation (1), which is a contradiction
with the assumption that g = xm or x = gm. If g ∈ GAX+, then g = g1y for some g1 ∈ GA

and y ∈ X+. When g = xm, we have g1y = xm. Now, we consider the following two cases.
(a) If lg(g1) ≥ lg(x), then g1 = xm1, where m1 ∈ X∗ is a prefix of m. This is a contradiction
for g1 ∈ GA. (b) If lg(g1) < lg(x), then x = g1y1, where y1 is a prefix of y. This is also a
contradiction for g1 ∈ GA. When x = gm and g = g1y, we have x = (g1y)m = g1(y1m). Then
it is a contradiction for g1 ∈ GA. So Equation (1) implies Equation (2). �
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We can give now the alternative definition of inf-singular words through the form of a corollary.

Corollary 3.7 Let A be a language.A word x ∈ X+ is A-inf-singular if and only if the following
two conditions hold:
(i) xX∗ ⊆ LA;

(ii) for every g ∈ SA and m ∈ X∗, g �= xm and x �= gm.

Proposition 3.8 Let A and B be left cancellative languages. Then IB ⊆ IAB.

Proof For any u ∈ IB , we have uX∗ ⊆ LB . Since A, B ∈ D(M), AB ∈ D(M) (see [10]). Then
LA = LB = LAB = X+ by Proposition 3.2. So uX∗ ⊆ LAB . From u ∈ IB , we also have s �= um

and u �= sm for all s ∈ SB and m ∈ X∗. Since SAB ⊆ SB , we get s �= um and u �= sm for all
s ∈ SAB and m ∈ X∗. Then u ∈ IAB by Corollary 3.7. Thus IB ⊆ IAB . �

Proposition 3.9 Let A and B be languages. Then LAB ⊆ LB .

Proof Let x /∈ LB . Then qx ∈ BX+
x for all q ∈ B. So there exist yq ∈ B and zq ∈ X+

x such
that qx = yqzq . For all p ∈ A, q ∈ B and r = pq ∈ AB, we have rx = pqx = pyqzq , where
pyq ∈ AB and zq ∈ X+

x . That is to say rx ∈ ABX+
x . So x /∈ LAB . Thus, LAB ⊆ LB. �

If LA = LB and SA = SB , then IA = IB by the definitions of IA and IB . For A, B ∈ D(M),
we have LA = LB = X+. Thus, if SA = SB then IA = IB for all A, B ∈ D(M). But the
converse is not true. That is, IA = IB cannot imply SA = SB . For example, let X = {a, b} and
A = {a, b, a3, b3, aba, bab}. So SA = X+ \ X = XX+ and IA = ∅ by Example 3.4. Let B be
a left singular language. Then SB = X+ and IB = ∅ by Lemmas 2.5 and 2.3. Thus, we have
IA = IB , but SA �= SB .

In general, SAB ⊆ SB, IB ⊆ IAB, LAB ⊆ LB . When do the equations hold?

Theorem 3.10 Let A and B be languages.

(1) If LA = X+, then LAB = LB .
(2) If SA = X+, then SAB = SB and IAB = IB .

Proof (1) By Proposition 3.9, we have LAB ⊆ LB for all A, B ∈ M . In the following, we prove
if LA = X+ then LB ⊆ LAB . We prove it by contradiction of the dual relation. Let x /∈ LAB . We
will show that x /∈ LB . Since LA = X+, we have qx ∈ X+ = LA for all q ∈ B. By qx ∈ LA, there
exists p ∈ A such that pqx /∈ AX+

qx . Since x /∈ LAB , then pqx ∈ ABX+
x for the former p ∈ A

and q ∈ B. Then there exist u ∈ A, v ∈ B and w ∈ X+
x such that pqx = uvw. By pqx /∈ AX+

qx ,
we have p = u and qx = vw. Hence, qx ∈ BX+

x for all q ∈ B. So x /∈ LB by definition. Thus,
LB ⊆ LAB .

(2) By Lemma 3.5, we have SAB ⊆ SB for all A, B ∈ M . Next we prove if SA = X+ then
SB ⊆ SAB . Let x /∈ SAB . Since SA = X+, we have qx ∈ X+ = SA for all q ∈ B. Then there exists
p ∈ A such that pqx /∈ AX+

qx and pqxX∗ ∩ A = ∅. Since x /∈ SAB , we have pqx ∈ ABX+
x or

pqxX∗ ∩ AB �= ∅ by Lemma 2.4.
(i) If pqx ∈ ABX+

x , then there exist pA ∈ A, qB ∈ B and u ∈ X+
x such that pqx = pAqBu. If

pA �= p, then qBu �= qx. So pqx ∈ AX+
qx . This is a contradiction. So pA = p. Then qx = qBu ∈

BX+
x . Thus, x /∈ SB .

(ii) If pqxX∗ ∩ AB �= ∅, then there exist r ∈ X∗, p′
A ∈ A and q ′

B ∈ B such that pqxr = p′
Aq ′

B .
When lg(pqx) ≤ lg(p′

A), there exists r1 ∈ X∗ such that pqxr1 = p′
A. So pqxX∗ ∩ A �= ∅. This is

a contradiction.When lg(pqx) > lg(p′
A), there existsu ∈ X+ such thatpqx = p′

Au.Sincepqx /∈
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AX+
qx , we have p = p′

A. Then qxr = q ′
B . So qxrX∗ ∩ B �= ∅. Then qxX∗ ∩ B �= ∅. Therefore,

x /∈ SB .
From (i) and (ii) together, we can obtain if x /∈ SAB , then x /∈ SB . So SB ⊆ SAB when SA = X+.
Since SA ⊆ LA and SA = X+, we have LA = X+. By part (1) of this theorem, we get LAB =

LB . Thus, IAB = IB when SA = X+. �

4. Semi-singular and inf-singular languages

By [3,10], we know D(M) is a sub-semi-group of M and S(M) is a sub-semi-group of D(M).
We now show they are all strongly prefix sub-semi-groups. A sub-semi-group T of a semi-
group S is called a strongly prefix sub-semi-group if for all x, y ∈ S, xy ∈ T implies y ∈ T

(see [11]).

Proposition 4.1 D(M) is a strongly prefix sub-semi-group of M .

Proof Let A and B be languages and AB be left cancellative language. Then LAB = X+ by
Proposition 3.2. We know LAB ⊆ LB by Proposition 3.9. So LB = X+. Then B ∈ D(M). Thus,
D(M) is a strongly prefix sub-semi-group of M . �

Proposition 4.2 S(M) is a strongly prefix sub-semi-group of D(M).

Proof Let A, B ∈ D(M) and AB ∈ S(M). Then IAB = ∅. By Proposition 3.8, we have IB ⊆
IAB . Then, IB = ∅. So B ∈ S(M). Thus, S(M) is a strongly prefix sub-semi-group of D(M). �

The set of all semi-singular languages is a strongly prefix sub-semi-group of the monoid of left
cancellative languages which is a generalization of Lemma 2.8. Then, how about the set of all
inf-singular languages?

Proposition 4.3 I (M) is a left ideal of D(M).

Proof For all A ∈ D(M) and B ∈ I (M), we have SB = ∅. By Lemma 3.5, we have SAB ⊆ SB .
Then SAB = ∅. So AB ∈ I (M). Thus, I (M) is a left ideal of D(M). �

All left singular languages and all finite left cancellative languages are in S(M). We will give
a semi-singular language which is neither left singular nor finite.

Example 4.4 Let X = {a, b} and A = X ∪ a2X∗ ∪ b2X∗. Then ZA = X. For any x ∈ X+, if
x ∈ aX∗, then bx /∈ AX+

x and bxX∗ ∩ A = ∅. So bx is a A-semi-singular word. If x ∈ bX∗
then ax /∈ AX+

x and axX∗ ∩ A = ∅. So ax is a A-semi-singular word. Hence SA = X+. Then
A ∈ S(M). Clearly, A is neither left singular nor finite.

Theorems 4.5 and 4.8 will give another two kinds of languages which are contained in S(M).
First, we cite some definitions from [11,13] which we need in the following. A language A is said
to be right dense if wX∗ ∩ A �= ∅ for all w ∈ X∗. If X∗wX∗ ∩ A �= ∅ for all w ∈ X∗, then A is
called dense. If X∗wX∗ ∩ A = ∅ for some w ∈ X+, then A is called non-dense. If wX∗ ∩ A = ∅
for some w ∈ X+, then A is called non-right dense.

Theorem 4.5 All non-dense left cancellative languages are in S(M).
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Proof Let A be a non-dense left cancellative language. Then there exists w ∈ X+ such that
X∗wX∗ ∩ A = ∅. Hence, X∗uX∗ ∩ A = ∅ for all u ∈ X∗wX∗. So for all p ∈ A, we have
puX∗ ∩ A = ∅. Since A ∈ D(M), then AX+ �= AX+

u for all u ∈ X+ by Lemma 3.1. Then
there exists q ∈ A such that qu /∈ AX+

u . And quX∗ ∩ A = ∅. Hence, u ∈ SA. So X∗wX∗ ⊆ SA.
Then for all x ∈ X∗, we have xw ∈ X∗wX∗ ⊆ SA. Then x /∈ IA by Corollary 3.7. Thus, IA = ∅
and A ∈ S(M). �

The language A in Example 3.4 is non-dense and SA �= X+.

Proposition 4.6 Let A be a language. If SA = X+, then A is a non-right dense left cancellative
language.

Proof LetSA = X+.Thenx ∈ SA for everyx ∈ X+. So for everyx ∈ X+ there existsp ∈ A such
that px /∈ AX+

x and pxX∗ ∩ A = ∅ by Lemma 2.4. From px /∈ AX+
x , we know AX+ �= AX+

x

for every x ∈ X+. Then A is a left cancellative language by Lemma 3.1. From (px)X∗ ∩ A = ∅,
we know that A is non-right dense. Thus, A is a non-right dense left cancellative language. �

By Lemma 2.5 and the proposition, we know that any left singular language is a non-right
dense left cancellative language.

A left cancellative language A is called a maximal left cancellative language if A ∪ {x} is
not a left cancellative language for all x ∈ X+\A (see [12]). We will show that all maximal left
cancellative languages are in S(M). First, we cite a lemma which we need.

Lemma 4.7 [12] Let A be a maximal left cancellative language. If pw ∈ A for some p ∈ ZA

and w ∈ X+, then pwX∗ ⊆ A.

Theorem 4.8 All maximal left cancellative languages are in S(M).

Proof Let A be a maximal left cancellative language. If for every w ∈ X+ there exists r ∈ X∗
such that wr ∈ SA, then g = wr for some g ∈ SA. So w /∈ IA by Corollary 3.7. As w was chosen
arbitrarily, IA = ∅. Thus A ∈ S(M).

Next, we will prove for all w ∈ X+ there exists r ∈ X∗ such that wr ∈ SA.
First, we want to prove that for every w ∈ X+, there exists p0 ∈ ZA such that p0w /∈ A. Other-

wise, assume that there exists w′ ∈ X+ such that pw′ ∈ A for all p ∈ ZA. Then for all q ∈ X+, we
have p(w′q) = (pw′)q ∈ AX+

w′q . So ZAX+ = AX+
w′q for some w′q ∈ X+. Then A /∈ D(M) by

Lemma 3.1. This is a contradiction. So for every w ∈ X+ there exists p0 ∈ ZA such that p0w /∈ A.
Then, we want to prove there exists r ∈ X∗ such that p0wrX∗ ∩ A = ∅ and p0wr /∈ AX+

wr .
(i) Assume that p0wrX∗ ∩ A �= ∅ for all r ∈ X∗. Let B = A ∪ {p0w}. First, since p0w ∈

AX+ ⊆ BX+, then p0w /∈ ZB . So ZA = ZB . Then, since p0w /∈ A and A is a maximal
left cancellative language, B /∈ D(M). So there exists u ∈ X+ such that ZBX+ = BX+

u by
Lemma 3.1. Then ZAX+ = ZBX+ = BX+

u = (A ∪ {p0w})X+
u . That is, pu ∈ AX+

u or {p0w}X+
u

for all p ∈ ZA. Suppose that p ∈ ZA \ {p0} and pu ∈ {p0w}X+
u . Then pu = p0wy0 for some

y0 ∈ X+
u . Since p, p0 ∈ ZA, we have p = p0. This is a contradiction. Thus,

pu ∈ AX+
u for all p ∈ ZA \ {p0}.

For the word p0u, it is in AX+
u or {p0w}X+

u . If p0u ∈ AX+
u , then ZAX+ = AX+

u . Then A /∈
D(M). This is a contradiction. If p0u ∈ {p0w}X+

u , then p0u = p0wy1, where y1 ∈ X+ \ {u}. By
assumption that p0wrX∗ ∩ A �= ∅ for all r ∈ X∗, we have p0wy1X

∗ ∩ A �= ∅ for the word y1.
Then there exists s ∈ X∗ such that p0wy1s ∈ A. Since p0u = p0wy1, p0us = p0wy1s ∈ A. For all
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t ∈ X+, we have p0(ust) = (p0wy1s)t ∈ AX+
ust . Since pu ∈ AX+

u for all p ∈ ZA \ {p0}, pu =
x2y2 for some x2 ∈ A and y2 �= u. So p(ust) = x2(y2st) ∈ AX+

ust for all p ∈ ZA \ {p0}. Thus,
there exists ust ∈ X+ such that ZAX+ = AX+

ust . Then A /∈ D(M). This is a contradiction. So
there exists r ′ ∈ X∗ such that p0wr ′X∗ ∩ A = ∅.

(ii)Assume that p0wr ′ ∈ AX+
wr ′ . Then there exist x3 ∈ A and y3 ∈ X+

wr ′ such that p0wr ′ = x3y3

and p0 �= x3. Since p0 ∈ ZA, p0w1 = x3 ∈ A or p0wr1 = x3 ∈ A, where w = w1w2, r ′ = r1r2

and w1, r1 ∈ X+, w2, r2 ∈ X∗. By Lemma 4.7, we have p0w ∈ A or p0wr ′ ∈ A. If p0w ∈ A,
then we have a contradiction. If p0wr ′ ∈ A, then p0wr ′X∗ ∩ A �= ∅. This contradicts with (i). So
p0wr ′ /∈ AX+

wr ′ .
From (i) and (ii), we have wr ′ ∈ SA. �

In fact, the language A = X ∪ a2X∗ ∪ b2X∗, where X = {a, b} in Example 4.4 is a dense
maximal left cancellative language. So it is a dense semi-singular language. First, A is
dense because for all x ∈ X+, if x ∈ aX∗ then ax ∈ A; if x ∈ bX∗ then bx ∈ A. Second,
we know that A is left cancellative by Example 4.4. Finally, we will prove that A is maxi-
mal. We can see X+ \ A = abX∗ ∪ baX∗. Without loss of generality, for every abx1 ∈ abX∗,
we prove that B = A ∪ {abx1} is not a left cancellative language. We can find a word u =
bx1a such that au = a(bx1a) = (abx1)a; bu = b(bx1a) = (b2x1)a; (a2x2)u = (a2x2)(bx1a) =
(a2x2bx1)a; and (b2x2)u = (b2x2)(bx1a) = (b2x2bx1)a for all x2 ∈ X∗. Then BX+ = BX+

u . So
B is not left cancellative. Thus, A is a maximal left cancellative language.

Theorem 4.5 tells us all non-dense left cancellative languages are semi-singular while the
following theorem will show that all right dense left cancellative languages are inf-singular. Of
course, not all dense left cancellative are inf-singular.

Theorem 4.9 All right dense left cancellative languages are in I (M).

Proof Let A be a right dense left cancellative language. Then xX∗ ∩ A �= ∅ for all x ∈ X+.
So (px)X∗ ∩ A �= ∅ for all p ∈ A. Then px is not an A-semi-singular word. So x /∈ SA for all
x ∈ X+. Then SA = ∅. Thus, A ∈ I (M). �

In the following example, we will construct a right dense left cancellative language. So it is an
inf-singular language by the above theorem.

Example 4.10 Let X = {a, b} and A = b+a ∪ (
⋃∞

i=0 biaXiX∗). For any x ∈ X+, assume
lg(x) = m. Then bmax ∈ AX+ \ AX+

x . Hence, A ∈ D(M). Next, we will prove that A is right
dense. For every x ∈ X+ and lg(x) = m, if x = bm then xa = bma ∈ A. So xX∗ ∩ A �= ∅. If
x = biax1, where 0 ≤ i < m and lg(x1) = m − i − 1, then we consider the following two cases.

(1) When lg(x1) = m − i − 1 ≥ i, we know that x = biax1 ∈ A by the construction of A. So
xX∗ ∩ A �= ∅.

(2) When lg(x1) = m − i − 1 < i, for every x2 ∈ X+ and lg(x2) = 2i − m + 1, we have xx2 =
bia(x1x2) ∈ A by the construction of A. So xX∗ ∩ A �= ∅.

From all above and 1 · X∗ ∩ A = X∗ ∩ A = A �= ∅, we show that A is a right dense left
cancellative language. So A ∈ I (M).

On the other hand, the following example will show that there is a left cancellative language
in I (M) which is not right dense but is dense.

Example 4.11 Let X = {a, b} and B = b+a ∪ (
⋃∞

i=1 biaXi). Then B ∈ I (M) by Lemma 2.7.
There is a word a ∈ X+ such that aX∗ ∩ B = ∅. So B is not right dense. Next, we will prove that
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B is dense. For every x ∈ X∗, we know that x = 1 or x ∈ aX∗ or x ∈ bX∗. When x = 1, we have
(ba)x = ba ∈ B. So X∗xX∗ ∩ B �= ∅. When x �= 1, let lg(x) = m where m ≥ 1. If x ∈ aX∗,
then there exists x1 ∈ X∗ such that x = ax1 where lg(x1) = m − 1 ≥ 0. So bmxb = bm(ax1)b =
bma(x1b) ∈ bmaXm ⊆ B. So X∗xX∗ ∩ B �= ∅. If x ∈ bX∗ and x = bm, then xa = bma ∈ B. So
X∗xX∗ ∩ B �= ∅. If x = biax1 where 1 ≤ i < m and lg(x1) = m − i − 1, then we consider the
following three cases.

(1) When lg(x1) = m − i − 1 > i, we know that bm−2i−1x = bm−2i−1(biax1) = bm−i−1ax1 ∈
B. So X∗xX∗ ∩ B �= ∅.

(2) When lg(x1) = m − i − 1 = i, we know that x = biax1 ∈ B. So X∗xX∗ ∩ B �= ∅.
(3) When lg(x1) = m − i − 1 < i, for every x2 ∈ X+ and lg(x2) = 2i − m + 1, we have xx2 =

bia(x1x2) ∈ B. So X∗xX∗ ∩ B �= ∅. Thus, B is dense.

In fact, the following theorem will tell us that all inf-singular languages are dense.

Theorem 4.12 All inf-singular languages are dense.

Proof Let A be an inf-singular language. Then HA is a maximal prefix code. Since I (M) ⊆
D(M), then A ∈ D(M). Then GA ∪ HA is a maximal prefix code. Thus, GA = ∅ for HA is
already a maximal prefix code. Then SA = ∅. So for every x ∈ X+, we have x /∈ SA. Then for
all p ∈ A, one of the following holds: (i) px ∈ AX+

x or (ii) pxX∗ ∩ A �= ∅. Since A ∈ D(M),
then AX+ �= AX+

x for all x ∈ X+. Thus, there exists q ∈ A such that qx /∈ AX+
x . Then we have

qxX∗ ∩ A �= ∅. As x was chosen arbitrarily, A is dense. �

By Propositions 4.2 and 4.3, we know that I (M) is a left ideal and S(M) is a strongly prefix
sub-semi-group of D(M). Next we will show that: (1) I (M) is not a strongly prefix sub-semi-
group; (2) S(M) is not a left ideal; (3) S(M) and I (M) are all not right ideals of D(M). Let
A be a right dense left cancellative language over an alphabet X and B = {a}, where a ∈ X.
Then A ∈ I (M) and B ∈ S(M) for B is a left singular language [6]. We can obtain that AB

is also a right dense left cancellative language. Then AB ∈ I (M). Therefore, S(M) is not a
left ideal and I (M) is not strongly prefix sub-semi-group. Since I (M) is a left ideal, we have
D(M)I (M) ⊆ I (M). Since S(M) ⊆ D(M) by Lemma 2.2, we know S(M)I (M) ⊆ I (M). So
for all A ∈ S(M) and B ∈ I (M), we have AB ∈ I (M). Therefore, AB /∈ S(M) since S(M) ∩
I (M) = ∅. Thus, S(M) is not a right ideal. In order to explain that I (M) is not a right ideal,
we give the following example. Let C = b+a ∪ (

⋃∞
i=1 biaXi), B = {a}, where X = {a, b}. Then

C ∈ I (M) by Lemma 2.7 and B ∈ S(M) ⊆ D(M). Then CB = b+a2 ∪ (
⋃∞

i=1 biaXia) is a left
singular language because (ba)2 ∈ l(CB). Hence, CB ∈ S(M). So CB /∈ I (M) by Lemma 2.3.
Therefore, I (M) is not a right ideal of D(M).

Finally, we want to explain there is a left cancellative language which is neither semi-singular
nor inf-singular. So D(M) is the union of three disjoint sub-classes of S(M), I (M) and the rest.

Theorem 4.13 D(M) \ (S(M) ∪ I (M)) is not empty.

Proof Let X = {a, b} and A = b+a ∪ {bi+1a2Xi |i ≥ 0}. Then ZA = b+a = {bia|i ≥ 1}. Next,
we will calculate GA and HA. For any x ∈ X+, assume lg(x) = n. (1) If x ∈ bX∗, then
bnax /∈ AX+

x and bnaxX∗ ∩ A = ∅. So bX∗ ⊆ SA. (2) If x ∈ aX∗, then we want to prove
x /∈ SA. For any bia ∈ b+a, where i ≥ 1, when i < n, we have biax ∈ AX+

x ; when i ≥ n,
we have biaxX∗ ∩ A �= ∅. For any bi+1a2w ∈ bi+1a2Xi , where i ≥ 0 and w ∈ Xi , we have
(bi+1a2w)x = (bi+1a)(awx) ∈ AX+

x . So x /∈ SA for all x ∈ aX∗. From Equations (1) and (2),
we get SA = bX∗ and GA = {b}.
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For all x ∈ aX∗, we want to prove that xX∗ ⊆ LA. Since x ∈ aX∗, we let x = ax1, where x1 ∈
X∗ and lg(x1) = n − 1. For every y ∈ X∗, let lg(y) = m. We can find a word v = bn+ma ∈ A such
that v(xy) = (bn+ma)(xy) = bn+ma2(x1y) ∈ A. So v(xy) /∈ AX+

xy , which implies that xy ∈ LA.
Then xX∗ ⊆ LA.And for all x ∈ aX∗ and m ∈ X∗, we have x �= bm and b �= xm. Then IA = aX∗
and HA = {a}.

So GA ∪ HA = {a, b} = X is a maximal prefix code. Then A ∈ D(M). But GA = {b} and
HA = {a} are all not maximal prefix codes. So A /∈ S(M) and A /∈ I (M). Thus, A ∈ D(M) \
(S(M) ∪ I (M)). �

Conclusion

In the monoid of left cancellative languages, all left singular languages, all non-dense left can-
cellative languages and all maximal left cancellative languages are semi-singular, while all right
dense left cancellative languages are inf-singular. The dense language A in Example 4.4 of the
paper is semi-singular, while the dense language B in Example 4.11 is inf-singular. To make a
further study, it will be useful to determine which classes of dense cancellative languages are in
S(M) and which are in I (M). From [12], we know that every maximal left cancellative language
is left dense. So it will be an interesting thing to judge that left dense languages in D(M) are
semi-singular or inf-singular. Another kind of left cancellative languages which is rational can
also be considered in the future. For the sub-class of D(M) \ (S(M) ∪ I (M)), we have only found
an example. Other properties about it can be investigated.
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