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Recreational Programming (RecPro) is the discipline that encourages the
study of computer programming through ludic problems. Problems that
are typically studied within this discipline are similar to those of
Recreational Mathematics (RecMat), which sometimes leads to the
confusion of these two disciplines. The objective for RecPro is to write
programs, while RecMat practitioners can use these programs to state
(and prove if possible) conjectures about the solution. This interaction
leads to a mathematical quality production. In an educational framework,
problems in elemental number theory (those that are formulated with a
basic knowledge of arithmetic) are very interesting, leading to the revision
of classical unsolved problems. One of these problems is the general form of
Zumkeller numbers (those natural numbers as such that their positive
divisors can be divided into two disjoint sets with an equal sum). Writing
programs by using a programming language that is close to mathematical
notation (e.g. Haskell) is the first step to solving the problem, since it is
possible to easily write simple and elegant programs so close to the
description of the problem that proving their correctness is straightforward.

Keywords: recreational  programming; recreational ~ mathematics;
functional languages; Haskell

1. Interesting problems to analyse the interaction between RecPro and RecMat

Within the wide collection of problems that share RecPro and RecMat' disciplines,
we are particularly interested in those that, in addition to motivating the study of
these disciplines, lead to a reformulation of unsolved problems. Richard Guy, in his
famous Unsolved Problems in Number Theory [1] says: ‘To pose good unsolved
problems is a difficult art. The balance between triviality and hopeless unsolvability
is delicate’.

A smart programmer may suspect that some mathematical games can lead to
classic unsolved problems in Number Theory (NT).

Why does NT play a major role? We give two reasons. The first is that it is
scientifically sound, and hence success is ensured, for those publications on
algorithms or any other branch of science that include a significant amount of
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work on NT in their references. These include for example [2], in which 40 of its 335
references are on NT, and many more on RecMat! If we dare to conduct a similar
analysis on the beautiful texts [3,4] we would be even more surprised.

The second reason is provided by the history of mathematics: every great
mathematician has made a significant contribution to NT. Leonard Dickson® always
said that ‘mathematics is the queen of the sciences, and the theory of numbers is the
queen of mathematics’ [5, p. 333].

Let us analyse the interaction between RecPro and RecMat, which we denote by
RecPro <5 RecMat. The methods of these two disciplines are, in a sense,
complementary; and there is an interaction between them that enriches both.
Hence, the symbol <5 denotes a bidirectional feedback of results from one discipline
to the other. As a subdiscipline of programming, the objective of RecPro is to write
good programs, i.e. correct and efficient programs as far as the state of the art
allows. The effort in writing good programs could lead to interesting mathematical
characterizations of the solutions.

Following guidelines from RecMat, results obtained by writing and running these
programs, either (1) lead to conjectures on the solution of the problem, or (2) lead to
a direct proof of an essential property of the solution. This is where interaction of
true mathematics and experimental mathematics emerges. Let us recall the famous
words of Kolmogorov’s disciple, Vladimir I. Arnold (1937-2010) [6]: “Mathematics is
part of physics. Physics is an experimental science, part of natural sciences.
Mathematics is the part of physics leading to cheaper experiments.” The interaction
between (1) the quality and correctness of functional programs written using modern
programming languages, and (2) the theorems of mathematics, provides cheap
experimental research on mathematics. There are many articles in the literature
illustrating this interaction; an excellent one is [7]. For an example, the reader can
consult the amazing statement of exercise 1.30, on page 56 of this text [7].

In this article we will see examples of this interaction resulting from the analysis
of a curious and original problem:

The President of the Republic of Zumkia during his long life has gained a beautiful
collection consisting of a copy of each of the notes in the currency of his country. This
collection amounts to a non-negligible total amount of 1,249,920 zumkios. The zumkio,
Zumbkia official currency, is only available as one zumkio note and as notes of multiples
of 3, 5 or 7 zumkios. There exists therefore a note of 15 zumkios, but there is not a
10 zumkios note. How many notes make up the collection? How can he equally divide it
between his two children? Do any of the possible distributions have, in addition to the
same total value, the same number of notes?

Is this an interesting problem? We will provide an immediate answer by analysing
its relation to some classical unsolved problems, such as the existence of odd perfect
numbers, the cardinality of an even perfect numbers set, or the distribution and density
of abundant numbers. Let us start by remembering these concepts and problems.

A number 7 is perfect if it is the sum of its proper factors, ie, its positive divisors,
excluding n itself. If we denote with dn all factors of n, then 36 ={1,2, 3, 6}, and
14+2+3=6is perfect. It is also useful to denote with £ A4 the sum of the elements
from set 4. Then n is perfect if and only if on=2n, where on= X(dn).

A Zumkeller number is one for which the set of all its factors can be partitioned
in two sets with an equal sum.’ If ¢ is the value (in zumkios) of the largest note in the
collection of the president of Zumkia, the partition problem will have a solution if
¢ is a Zumkeller number.
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These numbers generalize perfect numbers. Thus, every perfect number is a
Zumkeller one. But the number 12 is not perfect, while 912 ={1,3,4,6} U {2, 12}, in
such a way that X{1,3,4,6} = %{2, 12}, and therefore 12 is a Zumkeller number.
There exists many articles on perfect numbers, their generalizations and variants
(multiply perfect, abundant, semi perfect, amicable, practical, ...) [1,8]. It is therefore
very difficult to provide new ideas, original results, unsolved problems, and it is
difficult to know whether an idea, even an unusual one, is really original. Bhaskara
and Peng [9] present relations for some of these categories of numbers and
summarise the best-known properties of Zumkeller numbers.

Let therefore P be the set of perfect numbers and let us denote by Z the set of
Zumkeller numbers. We already know that P C Z, and we also know that this is a
proper inclusion (12 € Z, 12¢ P). The first Zumkeller numbers are

6, 12, 20, 24, 28, 30, 40, 42, 48, 54, 56, 60, 66, 70, 78, 80, 84, 88, 90, ....

At present, it is unknown whether the set P of perfect numbers is finite; on the
other hand, it is easy to show that Z is infinite. For this purpose, let us take any
number from Z , for example 12, and a partition of its factors with an equal sum:
»{1,3,4,6} =32{2,12}. If we add to each partition each number multiplied by p we
get X{1,3,4,6,p,3p,4p,6p} =X{2,12,2p,12p}. If p is a prime number>3, the
partition above includes all of the factors for 12p, and hence 12p € Z. It is enough to
apply an infinite primes set to deduce that Z is also infinite. As we will see, it is
reasonable to conjecture that the density of Z is >~ 0.229.

Let us go back to the distribution problem. Each note of m zumkios can be
expressed as 3'57%; we should therefore find the largest note in the collection ¢ as
such, that the sum of its divisors is 1,249, 920: o(¢)=1,249,920. Taking this
information into account, we should check whether it is possible to get two partitions
with the same sum for these notes.

According to the Fundamental Theorem of Arithmetic [10, p. 3], all natural
numbers allow a wunique prime factorization n = plf1 e pf/ (k; > 0, p; primes,
pP1<p><...). Once this decomposition is known, it is possible to obtain the sum of
the factors of n as a product of sums of a geometric progressions like

U(P/f'"'P;V):(l+"'+P/1C')"'(1+"'+P?/) (1)
since each factor of n appears exactly once in the expansion of the right-hand side
of (1).

Let us now calculate i, j, k so that o(3'57) = 1,249,920 =273%5'7'31!. By using
(1) and some simple arguments (747" —1,...) we conclude that ¢=35"7.
Furthermore, the number of its factors is (3+ 1)(5+ 1)(1 +1)=48, which is the
number of notes in the collection. The number of possible divisions is 248/2: 140,
737, 488, 355, 328, and the number of divisions with the same number of notes will
be (33)/2 = 16,123,801, 841, 550. In short, addressing this problem by studying all
possible partitions is not feasible.

2. Proving inclusion in Z and one meditation by Gauss

In many cases, we can directly check n € Z (without calculating different partitions of
its factors) by simply inspecting the pattern for the prime factorization of n; we will
look at some of these cases in Section 5.1. Unfortunately, in most cases it is necessary
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to inspect partitions. We present in Section 6 an algorithm that turns out to be
extremely fast if the factorization of n is known. For the description and
implementation of the algorithm we have chosen the programming language
Haskell [11,12], a modern functional language widely used both academically and
professionally.

Therefore, the problem of checking ne Z is virtually solved from a computa-
tional perspective if we are able to calculate the factorization in a reasonable time
frame, and this is the problem! Let us recall the famous meditation that Carl Gauss
wrote in 1801 in his Disquisitiones Arithmetica [13, Article 329, p. 396]; see also [3, p.
398] and [14, p. 301]:

‘The problem of distinguishing prime numbers from composite numbers and of
resolving the latter into their prime factors is known to be one of the most important
and useful in arithmetic [...] Nevertheless we must confess that all methods that have
been proposed thus far are either restricted to very special cases or are so laborious and
prolix that even for numbers that do not exceed the limits of tables constructed by
estimable men [...] Further, the dignity of the science itself seems to require that every
possible means be explored for the solution of a problem so elegant and so celebrated.’

The commonly used primality and factorization tests are based on developments
by Lucas and Lehmer [3, pp. 391-398]. Other efficient algorithms to study primality
and for factorizing numbers are p family of algorithms by John Pollard and the AKS
family (Agrawal, Kayal, and Saxena; [14,15]) that are polynomial time bounded,
although due to the factor of proportionality, there is no evidence that they are
practical from a computational point of view: the above reflection of Gauss
remains valid.

3. Analysis of Zumkeller numbers’ pattern and distribution

In this section we will study the necessary properties for inclusion in Z, that while
very restrictive, turn out to be insufficient.

If n € Z, then there exists a partition DWW D’ = dn for the set of factors on so that
¥ D =XD’; hence 2 (XD)=on and the sum of factors of n is even. On the other hand,
as n is either in D or in D/, then D > n, and hence on > 2n. In short, if n € Z, then

2| oy Aoy = 2n. 2)

These conditions can immediately be checked from (1) and from the prime
factors decomposition. Specifically 2 | on: if the sum of divisors on is even, some of
the sums of progressions of equation (1) must be even. But 1+ - - - + 2% is always odd,
hence some of the remaining sums must be even. Let s=1+ -+ p* be one of them,
being p an odd prime number. As any sum in s is odd, the number of terms must be
even, and hence k must be odd. So, neither 2°3%5% nor 2/(2k + 1)¥ are Zumkeller
numbers.

Let us recall that » is a deficient number if on <2n, and it is abundant if on>2n;
many results exist with these number properties and their distribution in the
literature [1,16,17]. Specifically, no Zumkeller number is deficient.

Of the numbers that meet requirement (2), which are Zumkeller numbers? By
using efficient programs to be described in Section 6, we can obtain Table 1. The last
column in this table shows the percentage of numbers in [1 ... N] that satisfy (2) and
are also Zumkeller numbers. For instance, from the first 20 million natural numbers,
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Table 1. Frequencies for natural numbers n < N satisfying 2 | on Aon > 2n.

Ver. 2 |on
N Ver. 2 | on Ver. on>2n Aon> 20 Total Z %
1000 947 249 229 224 97.8
10,000 9830 2492 2420 2294 94.8
100,000 99,461 24,799 24,570 23,051 93.8
1,000,000 998,293 247,549 246,816 229,026 92.8
10,000,000 9,994,602 2,476,741 2,474,422 2,287,889 92.5
20,000,000 19,992,366 4,953,988 4,950,715 4,577,210 92.5

approximately 24.7% (exactly 4,950,715 of them) satisfy (2), and 92.5% of them are
also Zumbkeller numbers. Thus only a small percentage in those satisfying (2) are not
Zumkeller numbers, and from a computational point of view, restriction (2) is
essential.

From this table, we also conclude that the condition 2 | on is not restrictive (it is
verified by 99.6% from the first 20 million natural numbers), and conversely, the
condition on >2n filters almost a fourth of these numbers. Wall [1, p. 46] shows
that the density of abundant numbers (on>2n) is between 0.24750 and 0.24893. The
Hungarian mathematician Pal Erdos conjectured that this density is irrational.
We conjecture that the density of Z is approximately 0.229.

It is useful to analyse the condition on>2n by using the abundance function
proposed by Sylvester [18], hn=(on)/n; we will therefore analyse hn>2 in the
manner of Carmichael, in his study [19,20] on multiplying perfect numbers (on = kn,
k natural), and Dickson’s [16] study of abundant numbers with a limited number of
primes in its representation. From Equation (1) it is easy to conclude that
h( p") < ” ~£+, and also that A(p *) increases with k, but that it decreases with p. So,
h(pfy<2 and no power of a prime number is abundant, nor Zumkeller, nor perfect.
Additionally, we find h(gm) > h(g)h(m) holds, and hence

o for k,i> 1,h(253) > h(2)h(3) =3-4=2.
oforkzz,zzl,h(z"S)zZ ¢ >2,

So the set of even abundant numbers is vast. For any odd number with two prime
factors we have h(pl'p5?) < h(3%15%) < 3.3 <2, where any abundant odd number
has at least three different prime numbers: ie, w(n) > 3. In a similar way, we can
conclude that if n is odd and abundant and w(n) <6, then 3 | n. We also obtain a

pattern for odd abundant numbers with w(n) <4:
3k15k2p5  where psy e {7, 11, 13}, or 35 pi2pfphs with p, e (5, 7).

Most of these numbers are Zumkeller numbers; those, for instance, whose sum of
divisors is odd are not excluded, but these are very rare.

4. Unitary combinations of divisors and Zumkeller generators’

The number 12 is a Zumkeller one as factors of 12 can be broken down into two
equal sums: 1+3+44+6=2+12 , and therefore 1 —2+6—12+3+4=0. That
means it is possible to obtain the number 0 by combining the factors of 12 with
coefficients 1. We will call these unitary combinations. So a number is a Zumkeller
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iff 0 can be represented as a unitary combination of its factors. This simple property
leads to a very fast analysis. Let us show that the power of a prime p* is not a
Zumkeller number; if it were, some unitary combination of the powers 1, p%, ..., p~
would be zero; ie it would be possible to choose a sign from = in such a way that has
l+p+p*+-..+p"=0; but this is not possible as the number 1 is not a unitary
combination of multiples of p.

Let us now consider the unitary combinations for p*m, with p prime + m. In this
case, every divisor of p*m is a product of a divisor of m by a power of p, so that the
set d( p*m) can be decomposed into disjoint sets:

A(pmy=DwpDWp’Dw...wpcD, where D = om, 3)

where x={x | a€ A} and W is the disjoint union. It can be seen that using (3), it is
easy to obtain the set of unitary combinations for the divisors of p*m by properly
mixing unitary combinations for divisors of m.

If A is a set of integers, let us denote by CA the set of its unitary combinations.
For disjoint sets, C(4 W B)=CA £ CB holds, where

XtY={x+y, x—y, —x+y, —x—ylxeX,ye YL

The operator + is commutative and associative; additionally, C(pA4)=pCA holds.
By applying these properties to (3) we can finally conclude that

C(pfm)y=M+pM+p*M=+ .- +p*M, where M = Cm, 4)

where Cn is a simplification for C(dn).

Let us now show how to apply (4) to generate new Zumkeller numbers from
known ones. If 0€Cm, by applying (4) we immediately obtain that 0 C(p"m).
In short,

If m e Z, with ged(p,m) =1, then pfm e Z. (5)

On the other hand, if in Equation (4) we take k + s(k + 1) instead of k, we obtain
C(pF T Omy =c(pfmy £ - - - £ p**VC(p*m). And, by applying the above reasoning,
we arrive at

If pm € Z with (p,m) =1, then p*¢+pm e Z. (6)

Number p*™** Dy is called the translated one from p*m through p; [9] derives

properties (5) and (6) with an original method, while we derive it immediately
from (4).

Equations (5) and (6) are the only generic method known to us to generate new
Zumkeller numbers; we call those that cannot be obtained by this method
generators.* The first generators are:

6, 12, 20, 28, 40, 48, 56, 70, 80, 88, 90, 104, 112, 126, 176, 192, 198, 208, ....

We can write a simple Haskell program to obtain the sequence of generators of Z
through a method similar to the sieve of Eratosthenes: candidates are taken initially
as the most approximate ordered sequence of numbers; for example, the one which
satisfies 2 | on Aon>2n. The first Zumkeller number is taken from this sequence,
i.e. 6; all its translations and the multiples 6 with ged(m, 6) =1 are crossed out,
i.e. numbers 24, 30, 42,.... The first uncrossed Zumkeller number is the next
generator. This one is number 12. Now we also eliminate translations for 12 and the
multiples 12m with ged(m, 12) = 1. This process is iterated until the desired sequence
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is obtained. This process can be written in Haskell in an elemental way thanks to lazy
evaluation that simplifies the design and allows us to write the function which
computes the infinite list of Zumkeller generators. In just a few minutes, we get 7438
generators for Z under 1,000,000! From this program, we get the following:

Conjecture 4.1:  The number of Zumkeller generators less than K is about 0.5 - K*.

4.1. Iterated quotients

Equation (4) provides too many combinations and the deleting of some of them
simplifies proving 0 € C(p*m), that is equivalent to p*m € Z. Let us show that we can
suppress combinations in the first sum in (4) that are not multiples of p:
If 0e ME£p(M+EpM), 0 is represented by summing up three combinations of
M(=Cm), 0=c+ pc' +p°c’, and necessarily ¢ must be a multiple of p, hence, the
initial test is equivalent to: 0 € p~'M = (M & pM), being p~' A the set of quotients of
division by p for the elements in A4 that are multiples of p; for example:
37142,3, -6} ={1,—2}. Given that the operator + is associative we can rewrite
our test moving the parentheses to the left: 0e(p 'M+ M)+pM. The same
reasoning leads to 0 ep_lRl + M, with R, :p_le: M. We can also define another
group of simplified combinations: R,=p 'R, + M, and 0 € C(p>m) is equivalent to
0ep 'R,+ M. In this way, it is easy to prove the following equivalence:

OeM+---+p"M iff 0 e Ry (7

where
Ry=M, andfork>0, Ry =p 'R+ M. (®)

In short, the effort to simplify the computational aspects of the test
0e M- +p"M yields to another mathematical characterization of the elements
of Z,ie. p*me Z iff 0 € Ry.

5. Examples of RecPro 5 RecMat interaction

We devote each part of this section to the study of a group of examples. First, we will
introduce a notation to describe unitary combinations. For example,
C3={-3—-1,-341,—-1+4+3,14+3} ={—4,-2,2,4}. As we can see, a unitary set of
combinations is always symmetric, i.e. x € Cn < — x € Cn. But a symmetric set can be
represented by its non-negative elements via a compact notation:
0,1,2,4)={—-4,-2,-1,0,1,2,4}.

5.1. Study of 3’7" numbers
Let us apply the iterated quotients method to the first odd candidate numbers 357",
Let us start with 3’5 7. Taking p=3, M =C(5 7), applying (7) and (8), and helped by
an easy computer program we find that

C(5 7)=(22,24,32,34,36, 38,46,48),

Ry =16,...,64)=(6,8,10,...,62,64),

Ry=(2,...,68),
Ry=(0,...,70)=Ry=Rs="---
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and finally 3’5 7€ Z < i > 3; among these, those corresponding to i=3, 4, 5, 6 are
generators. Let us recall that Ry C Ry, and by (8), R C R, C . ... But we need to find
the smaller index i such that 0 € R;. This is an easy example of RecPro & RecMat
interaction: Firstly, we have written a correct program to check 0 € R;; the execution
of this program for i=0, 1,2, together with the equivalence 3’5 7€ Z < 0 € R; allows
us to prove that 3’5 7¢ Z. Next, the same program computationally proves that
Ry C Ry, in addition to 0 € R5; and therefore we conclude 3’57 € Z < i > 3. We would
like to stress the mutual feedback of this methodology: the help provided by a correct
program is essential in the proof. The same method applied to M =C(5°7") leads to

Ry =(20,...,330) CR,=(0,...,358)C---

and hence 3'5°7' e Z & i>2.

This suggests a very interesting method with theoretical/practical implications:
localizing the smaller iy such that 0 € R;, C R;,1 leads to a proof for pimeZ,Ni>i.
Similarly, localizing the smaller i such that 0 ¢ R;, 2 R; .1, would lead to p'm¢ Z,
Vi> .

5.2. Solution to president of Zumkia distribution problem

Let us see a second example of the RecPro <5 RecMat interaction. The biggest note
in the collection of the president of Zumkia is { = 335%7, a translation of 3*5%7, which
we showed in the previous section, is a Zumkeller number. Thus ¢ is also a Zumbkeller
number, and the distribution problem has a solution. Is there a distribution with the
same number of notes? Since the original £ =357 has too many divisors, even an
efficient Haskell program for finding such a partition is very slow. But for number
335%7, its execution proves that there is one partition with the same sum and number
of notes:

${1,3,5,7.9,15,25,27, 35,45, 63, 357} = £{21, 75, 105, 135, 175, 189, 225, 315, 525,
675, 945, 1575}

Hence, we just have to add the products for 5°, to distribute all the factors of ¢
(notes in the collection) in two groups with the same sum and cardinality:

¥{1,3,5,7,9, 15,25, 27, 35, 45, 63, 3°5% 7, 125, 375, 625, 875, 1125, 1875, 3125, 3375,
4375, 5625, 7875, 590625 = £{ 21, 75, 105, 135, 175, 189, 225, 315, 525, 675, 945, 1575,
2625, 9375, 13125, 16875, 21875, 23625, 28125, 39375, 65625, 84375, 118125, 196875}

5.3. A generalization for a result by Euclides|Euler
It is an elementary exercise to verify that the number e =2 (27" — 1) is perfect if
21 _1 is prime. Indeed, by Equation (1), the sum of factors of e is
A4+2 DA 4425 =212" " —1)=2¢, and hence e is perfect. This
surprising result was already described by Euclides in Proposition 36 on his IX
Book of Elements [21, p. 67], and many centuries later, Euler proved that perfect
even numbers are of the form 252! — 1), where 2! — 1 a prime number.’ These
special prime numbers are called Mersenne primes [7]. Are there infinitely many
Mersenne primes? This is another notorious unsolved problem.

Not every number of the form 25! — 1 is prime: 2'* — 1 =4095. It is well known
that if ¢ — 1 is prime, then ¢ =2 and k is also prime [10, Th. 18, p. 15].
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The existence of odd perfect numbers is currently unknown, and the following
sentence by Guy [1, p. 44] still holds: ‘The existence or otherwise of odd perfect
numbers is one of the more notorious unsolved problems of number theory’.
We must contend ourselves with knowing an amazing amount of requirements that
should be met by any odd perfect number [1,22].

By using the method of iterated quotients, we will prove a variation of
Euclides/Euler result for Zumkeller numbers:

Theorem 5.1:  For any odd prime p,
2kpl is a Zumkeller number iff j is odd A p < 2M1 — 1.

Proof: We will prove this theorem applying the interaction between
RecPro <5 RecMat.

Step A:  Let M =C(2"); we will use the equivalence 2“p € Z iff 0 € p~' M + M, which
was suggested by a computational analysis of the efficiency of the test 0 € p~'M + M.
Step B: By observing unitary combinations C(2), C(2%),... generated by the same
Haskell program used in sections above, we can conjecture that these combinations
are constituted by odd consecutive natural numbers, i.e. C(25)=(1,...,28 —1).
Step C:  Once this conjecture has been stated, by applying Equation (4), it is easy to
prove it by induction on natural k.

Step D: Now it is easy to carry out a simple analysis using elemental properties of
the set p~'M + M. We consider now two cases: (a) If p <2**' — 1 then a number in
the sequence of odd numbers 1,...,2""! — I provides the unity when it is divided by
p. That is, 1 €p~'M; but because 1€ M, we conclude that 0ep~'M =+ M; hence,
2%pe Z, as well as its translations 2%y’ (with j is odd), and this proves the sufficient
condition; (b) If p>2"T' — 1, p>0(2%), and then p~' M is empty and hence p~'M + M
is also empty; so R;=(J, Vj> 1, and hence D¢ Z Vj>1. O

The last part of the proof for Theorem 5.1 suggests a criterion to discard
inclusion in set Z:
Theorem 5.2:  Let us consider a prime number p + m, with p>om, then
mgZevVjj>1:pPm¢g2Z.

Proof: Let M =Cm. Because p>om, the greater element in M is less than p, and
hence

, 1f0¢gM,
v { g, ifog
{0}, if0e M.
If m¢ Z then 0¢ M, hence p~'M = &, and so R;=,Vj>1, and Pm¢ Z. O
Let us show some example applications for this theorem: (i) 02=3, so that,
2p'¢ Z, Vp prime > 3; (ii) 0(2'5") =18, hence 2'5'p* ¢ Z, Vk, Vp prime> 18.
Theorem 5.2 can be used to speed up the computation for the sequence of

numbers in Z by using sieve based methods because if m¢ Z, we can eliminate
multiples p'm, for every prime p>om.

6. An almost greedy test for the study of Zumkeller numbers

Simple algorithms for locating Zumkeller numbers are those which scrutinize all
possible partitions of divisors. If we are not very careful in the design, usually the
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type Factors = [Integer]
type Sum = Integer

canBePartitioned :: Factors — Sum — Sum — Bool
canBePartitioned ] __ = False
canBePartitioned (d : ds) s s
|d==s||d==1¢

| otherwise

w0

" & canBePartitioned ds s (s"—d)||
& canBePartitioned ds (s — d) s’

@

isZumkeller :: Integer — Bool
isZumkeller n = even sigma & sigma > 2% n &
canBePartitioned ods ms ms

where fs = factorize n
sigma = sumOfDivisors fs
ods = oddDivisors fs

ms sigma ‘quot 2

Figure 1. An almost greedy test.

result is an inefficient algorithm, that turns out to be useless even for small numbers.
Algorithms based on iterated quotients or the sieve one described above are better
alternatives. These algorithms are also inefficient for n> 100,000. Is there an efficient
algorithm for at least a large amount of numbers? We study in this section a curious
algorithm that checks in an almost direct way whether a number is a Zumbkeller one.
We will use the programming language Haskell.

Let us consider function canBePartitioned in Figure 1; canBePartitioned ds s s
returns True if the decreasing list of natural numbers ds can be partitioned into two
lists whose element sums are s and 5. We will thus assume that s+ s coincides with
the sum of values in ds and that s, s’ >0.

This program is extremely fast if factorization for the number at hand is already
known. The reason is that our program is ‘almost’ greedy. To illustrate this, let us
consider the following analysis. Let us first analyse correction for the function
canBePartitioned. This function successively distributes divisors in a decreasing list
among both partitions, for which only the sum of remaining factors is known. Let us
observe the functioning of || operator in the last equation of canBe Partitioned: search
will be done in a prioritized way, placing the greatest divisor d, as yet unassigned in
the partition corresponding to the second sum. If the factor cannot be assigned to
this partition, either because d>s’, or because the first election fails, then d is tried, to
be assigned to the first partition through test d <s && canBePartitioned ds (s —d) s'.
This proves correctness. Let us now shown that the second election is very
infrequent. For this purpose, we define a new function almostCanBePartitioned
whose last equation is

almostCanBePartitioned (d : ds) s §'

ld==s|| d==¥ = True

ld<s almostCanBePartitioned ds s (s' — d)

ld<s almostCanBePartitioned ds (s — d) §'

almostlsZumkeller n = even sigma && sigma >2 x n && almostCanBePartitioned ods ms ms
where fs=... -- see Figure 1
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Table 2. Execution times (in s) and failures for function almostlsZumkeller.

N isZumkeller — almostIsZumkeller  Number of failures Total in Z Failures %
10,000 0.06 0.06 10 2294 0.45
100,000 1.11 1.11 224 23,051 0.97
1,000,000 17.02 16.40 4764 229,026 2.08
10,000,000 359.05 291.03 81,914 2,287,889 3.58
20,000,000 8339.50 746.03 185,256 4,577,210 4.05

This new algorithm is a greedy one and the number of steps for computing
almostCanBePartitioned ds s s' is proportional to the number of divisors. In addition,
if almostlsZumkeller n returns True, n will be a Zumkeller number and this function
performs the same computation as the original isZumkeller function. Hence, for
these cases the algorithm is very efficient. The bad news is that almostlsZumkeller n
can return False for some Zumkeller numbers, and hence, they are not detected by
this function. We will call these numbers failures. This is not such bad news because
these failures are very rare. To analyse them, we write a simple test:

Main>[n | ne[l .. 10000], isZumkeller n# almostIsZumkeller n)
[1190, 1430, 1575, 2090, 3410, 4408, 4510, 5775, 8228, 9765]

So, function almostlsZumkeller only misses 10 Zumkeller numbers from the first
10,000 natural numbers: this is less than 0.5% from the total amount of Zumkeller
numbers in that interval. For wider intervals, the proportion of failures increases, but
not too quickly. Hence, in the last column of Table 2, we show the percentage of
Zumkeller numbers not detected by function almostlsZumkeller from the total
amount of numbers in Z less than N. We estimate that for small values for K(<12),
the proportion of failures less than 10" is about 0,00003125 - 2X. Also in Table 2, the
second and third columns show time (in s) to compute Zumkeller numbers less
than N, for different values for N, using two functions above and ‘The Glasgow
Haskell Compiler’ ghc-6.10.1[11] on a Sony VAIO laptop equipped with Intel U1400
(@ 1.20Ghz CPU and 1Gb of RAM (i.e. a very modest computer). In less than 2 min,
we obtain a sorted sequence with the first million Zumkeller numbers!

Small changes in the function canBePartitioned can be introduced to return built
partitions, or even to only localize partitions with the same cardinality.

7. Conclusions

We have studied a difficult problem from Elementary Theory of Numbers and from
a computational point of view: the general pattern and distribution of Zumkeller
numbers. We have characterized the computational limits that can be found, some
conjectures on their distribution and essential properties of set Z; this has been
possible after finding a semi-greedy algorithm to determine the test ne€ Z.

The way that our method, based on iterated quotients, can be used for studying
the structure of Z and to derive effective sieve based programs must be emphasized.

Nowadays, there is no question that the use of programming languages close to
mathematical notation, such as Haskell, are of great help in mathematical education
at any level: these languages allow us to motivate and introduce a great deal of
mathematical concepts and attitudes. Both the writing of simple programs, close to
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the statement of the problem, and the execution of these programs, resulting in a
fruitful interaction between mathematical and computational thinking. The effort
put into learning a programming language such as Haskell, pays off when we assess
its value as a tool for mathematical education.

In this article we have shown that by using only rudimentary methods based on
elementary arithmetic, and the research resulting from RecPro 5 RecMat interac-
tion we achieve a mathematical productivity of excellent quality. In other words,
elementary experimental mathematics leads to high quality mathematical productiv-
ity. Therefore, we think that ideas presented in this article may be useful to develop
typical features from elementary number theory and functional programming, both
in secondary and university education.

Haskell programs used in this work are available from the authors for interested
readers.
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Notes

1. The term Recreational Programming is usually not used — not established! — Although the
related term Computer Recreations was popularized by Alexander Dewdney in his famous
section in the 80’s Scientific American. This section replaced the no less celebrated one in
the same journal that Martin Gardner wrote over 24 years entitled Mathematical Games,
a similar term to Recreational Mathematics. Interestingly, the tradition of the famous
Journal of Recreational Mathematics is to have a high number of papers on Recreational
Programming.

2. Leonard Eugene Dickson (1874-1954) was one of the most prolific mathematicians.
At the age of 30, he had already written 100 relevant papers. His scientific output consists
of 285 scientific publications [5], 18 of which are books, including his monumental History
of the Theory of Numbers [23,24].

3. These numbers are called Zumkeller numbers after the mathematician Reinhard
Zumbkeller, who published some results and conjectures on these numbers in 2003.

4. Dickson [16] introduces the concept of primitive abundant number as those abundant
numbers the proper divisors of which are deficient. Any multiple of an abundant number
is also abundant; in addition [16] as proof, for any K, the set of odd primitives satisfying
w(n) < K is finite. It is not easy to generalize a primitive concept for Zumkeller numbers
similar to the one used in [16].

5. The reader can find compiled in [8] up to six different proofs for this result, including the
original one by Euler and the most elegant and simple one by Dickson from 1911.
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