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We define a model of advised computation by finite automata where the advice is pro-
vided on a separate tape. We consider several variants of the model where the advice
is deterministic or randomized, the input tape head is allowed real-time, one-way, or
two-way access, and the automaton is classical or quantum. We prove several separa-
tion results among these variants, demonstrate an infinite hierarchy of language classes
recognized by automata with increasing advice lengths, and establish the relationships
between this and the previously studied ways of providing advice to finite automata.
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1. Introduction

Advised computation is based on the idea of providing external trusted assistance,

depending only on the length of the input, to a computational device in order

to extend its capability for solving certain problems [8]. Work on advised finite

automaton models started with [2], where the advice string is prefixed to the in-

put tape, and continued with a sequence of papers starting with [11], where the

automaton reads the advice in parallel with the input from a separate track.
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In this paper, we propose a new architecture for advised finite-state computa-

tion which enables the automata to use the advice more flexibly than the setups

mentioned above. The idea is simply to let the machine use a separate one-way

tape for the advice, thereby enabling it to pause on the input tape while processing

the advice, or vice versa. (Examples of finite-state machines with such a separate

tape for untrusted advice can be seen in [3].) Our model differs from an alternative

proposal of Freivalds for advised finite-state automata [5] in the number of allowed

advice tapes, and the way in which the advice can be accessed. We consider many

variants of our machines, where the advised automaton is classical or quantum, the

tapes can be accessed in various alternative modes, and the advice is deterministic

or randomized. The power of these variants are compared among themselves, and

also with the corresponding instances of the alternative models in the literature.

2. Previous Work

Finite automata that take advice were first examined by Damm and Holzer [2]. In

their model, the advice string, which depends only on the length of the input, is

placed on the input tape so that it precedes the original input. We call such a ma-

chine a finite automaton with advice prefix. The automaton simply reads the advice

first, and then goes on to scan the input. Damm and Holzer studied REG/const,

which is the class of languages that can be recognized by real-time deterministic

finite automata that use constant-length advice, and showed that letting the ad-

vice string’s length to be an increasing function of the input string’s length, say, a

polynomial, does not enlarge the class of languages recognized by such automata

within this setup. They also used Kolmogorov complexity arguments to prove that

every additional bit of advice extends the class of languages that can be recognized

by finite automata in this model, that is, REG/(k − 1) ( REG/k, for all k ≥ 1.

Another model of advised finite automata was examined by Tadaki et al. in [11],

and later by Yamakami in [14–17]. This setup enables the automata to process the

advice in parallel with the input, by simply placing the advice in a separate track

of the input tape. In this manner, an advice string of length n can be provided, and

meaningfully utilized, for inputs of length n. This enhances the language recognition

power, as can be seen by considering the relative ease of designing such a finite

automaton with advice track for the language {anbn| n ∈ N}, which can not be

recognized by any finite automaton with advice prefix. Yamakami studied variants

of this model with probabilistic and quantum automata, and randomized advice

[15, 17], and provided characterizations of the related classes of languages. Note

that the track structure in this model limits the length of the advice by the length

of the input, and forces the advice to be scanned synchronously with the input.

Freivalds formulates and studies yet another model of advised finite automata

in [1,5]. Freivalds’ model incorporates one or more separate tapes for the advice to

be read from. Both the input and the advice tapes have two-way heads. Unlike the

previously mentioned models, the advice string for inputs of length n are supposed



January 30, 2015 16:5 IJFCS S012905411440019X page 989

Finite Automata with Advice Tapes 989

to be useful for all shorter inputs as well, and some negative results depend on this

additional requirement.

3. Our Model

We model advice as a string provided on a separate read-only tape. As usual, the

content of the advice depends only on the length of the input. Formally, the advice

to the automaton is determined by an advice function h, which is a mapping from

N to strings in Γ∗, where Γ is the advice alphabet. This function may or may not

be computable.

Our advised machine model is then simply a finite automaton with two tapes.

The transition function of a (two-way) deterministic finite automaton with advice

tape (dfat) determines the next move of the machine based on the current internal

state, and the symbols scanned by the input and advice tape heads. Each move

specifies the next state, and a head movement direction (right, left, or stay-put)

for each tape. A tape head that is allowed to move in all these directions is called

two-way. A head that is not allowed to move left is called one-way. We may also

require a head to be real-time, forcing it to move to the right at every step. As

will be shown, playing with these settings changes the computational power of the

resulting model. We assume that both the input and the advice strings are delimited

by special end-marker symbols, beyond which the automaton does not attempt to

move its heads. The machine halts and announces the corresponding decision when

it enters one of the two special states qaccept and qreject.

Unlike Freivalds [5], we do not allow two-way motion of the advice tape head,

as permitting this head to make leftward moves would cause “unfair” accounting

of the space complexity of the advised machine.a

A language L is said to be recognized by such a dfat M using O(f(n))-length

advice if there exists an advice function h with the following properties:

• |h(n)| ∈ O(f(n)) for all n ∈ N, and,
• M eventually halts and accepts when started with the input tape containing a

string x of length n, and the advice tape containing h(n), if and only if x ∈ L.

We need a notation for talking about language families corresponding to differ-

ent settings of the tape access modes and advice lengths. We will use the template

“CLASS/f(n)(specification list)” for this purpose. In that template, the name

of the complexity class corresponding to the unadvised, two-way version of the

automaton in question will appear as the CLASS item. The function description

f(n) will denote that the machine uses advice strings of length O(f(n)) for inputs

of length n. (General descriptors like poly and exp, for polynomial and exponen-

tial bounds, respectively, will also be used.) Any further specifications about, for

instance, additionally restricted head movements, will be given in the list within

aSee Sec. 5.3.1 of [6] for a discussion of this issue in the context of certificate tape heads.
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the final parentheses. For example, the class of languages recognized by dfat’s with

real-time input and one-way advice tapes that use linear amounts of advice will be

denoted SPACE(1)/n(rt-input).b

We will also be examining randomized advice, as defined by Yamakami [15].

In this case, the advice is randomly selected from a set of alternatives according

to a pre-specified probability distribution. Deterministic finite automata which use

randomized advice can perform tasks which are impossible with deterministic ad-

vice [15]. The use of randomized advice will be indicated by the letter R appearing

before the advice length in our class names. We will use an item in the parenthe-

sized specification list to indicate whether bounded or unbounded error language

recognition is intended, when this is not clear from the core class name.

We define the probabilistic and quantum versions of our advised automata by

generalizing the definition for deterministic automata in the standard way, see, for

instance, [13]. The transition function of a probabilistic finite automaton with advice

tape (pfat) specifies not necessarily one, but possibly many choices, associated with

selection probabilities, for the next move at every step, with the well-formedness

condition that the probabilities of these choices always add up to 1. In the case of

quantum finite automata with advice tapes (qfat’s), each such choice is associated

not with a probability, but with an amplitude (a real number in the interval [-1,1]).

The presentation of our results on qfat’s will not require knowledge of technical

details of their definitions such as well-formedness conditions, and we therefore

omit these for space constraints, referring the reader to [13]. We should stress that

there are many mutually inequivalent quantum finite automaton definitions in the

literature, and we use the most powerful one [7, 13]. The quantum machines with

advice tracks defined in [17] are based on an older model [9], and this difference

will be significant in our discussion in Sec. 6.

The notational convention introduced above is flexible enough to represent the

language classes corresponding to the probabilistic and quantum advised machines

as well. BQSPACE(1)/n(rt-input, rt-advice), for instance, denotes the class of

languages recognized with bounded error by a qfat using linear-length advice, and

real-time input and advice heads. PrSPACE(1)/n(rt-input), on the other hand, is

the class of languages recognized with unbounded error by a pfat with one way

access to linear-length advice, and a real-time input tape head.

The model of real-time finite automata with advice tracks [11] is equiva-

lent to our model with a separate advice tape when we set both the input

and advice tape heads to be real-time. Therefore, all the results shown for

the advice track model are inherited for this setting of our machines. For in-

stance, SPACE(1)/n(rt-input, rt-advice) = REG/n, where REG/n is defined

in [11]. On the other hand, the quantum class 1QFA/n of [17] does not equal

BQSPACE(1)/n(rt-input, rt-advice), as we will show in Sec. 6.

bAlthough SPACE(1) is well known to equal the regular languages, we avoid the shorter notation
REG/n, which was used for the advice track model, and which will turn out to represent a strictly
smaller class.
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Note that we allow only one advice tape in our model. This is justified by

the following observation about the great power of one-way finite automata with

multiple advice tapes.

Theorem 1. Every language can be recognized by a finite automaton with a one-

way input tape and two one-way advice tapes.

Proof. Let L be any language on the alphabet Σ. We construct a finite automaton

M that recognizes L using a one-way input tape and two one-way advice tapes as

follows.

Let Γ = Σ∪{ca, cr} be the advice alphabet, where Σ∩{ca, cr} = ∅. For an input

of length n, the advice on the first advice tape lists every string in Σn in alphabetical

order, where every member of L is followed by a ca, and every nonmember is followed

by a cr. So the content of the first advice tape looks like w1c1w2c2 · · ·w|Σ|nc|Σ|n ,

where wi ∈ Σn, and ci ∈ {ca, cr} for i ∈ {1, . . . , |Σ|n}.
The second advice tape content looks like “cac

n
r cac

n
r · · · cacnr ca”, with |Σ|n repe-

titions, and will be used by the machine for counting up to n+1 by moving between

two consecutive ca symbols on this tape.

M starts its computation while scanning the first symbols of the input string

and w1 on the first advice tape. It attempts to match the symbols it reads from the

input tape and the first advice tape, moving synchronously on both tapes. If the ith

input symbol does not match the ith symbol of wj , M pauses on the input tape,

while moving the two advice heads simultaneously until the second advice head

reaches the next ca, thereby placing the first advice tape head on the ith position

of wj+1, where 1 ≤ i ≤ n, and 1 ≤ j < |Σ|n. As the words on the first advice

tape are ordered lexicographically, it is guaranteed that M will eventually locate

the word on the first advice tape that matches the input in this manner. M halts

when it sees the endmarker on the input tape, accepting if the symbol read at that

point from the first advice tape is ca, and rejecting otherwise.

4. Deterministic Finite Automata with Advice Tapes

It is clear that a machine with advice tape is at least as powerful as a machine

of the same type with advice track, which in turn is superior to a corresponding

machine with advice prefix, as mentioned in Sec. 2. We will now show that allowing

either one of the input and advice head to pause on their tapes does enlarge the

class of recognized languages.

Theorem 2. REG/n ( SPACE(1)/n(rt-input).

Proof. It follows trivially from the definitions of the classes that

REG/n = SPACE(1)/n(rt-input, rt-advice) ⊆ SPACE(1)/n(rt-input).
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Let |w|σ denote the number of occurrences of symbol σ in string w. To show that

the above subset relation is proper, we will consider the language EQUAL2 = {w| w ∈
{a, b}∗ and |w|a = |w|b}, which is known [11] to lie outside REG/n.

One can construct a finite automaton that recognizes EQUAL2 with real-time

input and one-way access to linear advice as follows. For inputs of odd length, the

automaton rejects the input. For inputs of even length, n, the advice function is

h(n) = an/2. The automaton moves its advice head one position to the right for

each a that it reads on the input. The input is accepted if the number of a’s on the

two tapes match, and rejected otherwise.

Theorem 3. REG/n ( SPACE(1)/n(1w-input, rt-advice).

Proof. Consider the language EQUAL = {w|w ∈ {a, b, c}∗ where |w|a = |w|b},
which is similar to EQUAL2, but with a bigger alphabet. EQUAL /∈ REG/n, as can be

shown easily by Yamakami’s characterization theorem (Th. 2 of [15]) for this class.

We will describe a dfat M with one-way input, and real-time access to an advice

string that is just a2n, where n is the input length.

M moves the advice head one step to the right for each a that it scans in the

input. When it scans a b, it advances the advice head by three steps and for each c,

scanned on the input tape, the advice head is moved two steps. If the advice head

attempts to move beyond the advice string, M rejects. When the input tape head

reaches the end of the tape, M waits to see if the advice tape head will also have

arrived at the end of the advice string after completing the moves indicated by the

last input symbol. If this occurs, M accepts, otherwise, it rejects.

Note that the advice head is required to move exactly |w|a+3|w|b+2(n−|w|a−
|w|b) steps, which equals 2n if and only if the input is a member of EQUAL.

Tadaki et al. [11] studied one-tape linear-time Turing machines with an advice

track, and showed that the class of languages that they can recognize coincides

with REG/n. Theorem 2 above lets us conclude that simply having a separate

head for advice increases the computational power of a real-time dfa, whereas the

incorporation of a single two-way head for accessing both advice and a linear amount

of read/write memory simultaneously does not.

As noted earlier, advice lengths that are increasing functions of the input length

are not useful in the advice prefix model. Only linear-sized advice has been studied

in the context of the advice track model [11,15]. Theorem 4 demonstrates a family

of languages for which very small increasing advice length functions are useful in

the advice tape model, but not in the advice track model.

Theorem 4. For every function f : N → N such that f(n) ∈ ω(1) ∩ O(
√
n),

SPACE(1)/f2(n)(1w-input) * REG/n.

Proof. Consider the language Lf = {akbmck|k ≤ f(n), n = k + m + k}, for any

function f satisfying the properties in the theorem statement.
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Noting f(n) /∈ O(1), one may use Theorem 2 of [15] to show Lf /∈ REG/n.

One can construct a dfat with one way access to input and advice that rec-

ognizes Lf as follows. For inputs of length n, the advice string is of the form

##a#aa#aaa# · · ·#af(n)#, with length O(f2(n)). During any step, if the au-

tomaton detects that the input is not of the form a∗b∗c∗, it rejects the input. For

each a that it reads from the input tape, the automaton moves the advice tape

head to the next # on the advice tape. (If the advice ends when looking for a #,

the input is rejected.) When the input tape head scans the b’s, the advice tape head

remains idle. Finally, when the input head starts to scan the c’s, the automaton

compares the number of c’s on the input tape with the number of a’s that it can

scan until the next # on the advice tape. If these match, the input is accepted;

otherwise it is rejected.

When restricted to constant size advice, the parallelism and the two-way input

access inherent in our model does not make it superior to the advice prefix model.

As we show now, one can always read the entire advice before starting to read the

input tape without loss of computational power in the constant-length advice case:

Theorem 5. For every k ∈ N, SPACE(1)/k = REG/k.

Proof. The relation REG/k ⊆ SPACE(1)/k is trivial, since an automaton taking

constant-length advice in the prefix or track formats can be converted easily to one

that reads it from a separate tape. For the other direction, note that a dfat M

with two-way input that uses k bits of advice corresponds to a set S of 2k real-

time dfa’s without advice, each of which can be obtained by hard-wiring a different

advice string to the program of M , and converting the resulting two-way dfa to the

equivalent real-time machine, which exists by [10]. The advice string’s job is just to

specify which of these machines will run on the input string. It is then easy to build

a dfa with advice prefix which uses the advice to select the appropriate program to

run on the input.

Since our model is equivalent to the advice prefix model for constant-length

advice, we inherit the results like Theorem 5 of [2], which states that the longer

advice strings one allows, the larger the class of languages we can recognize will be,

as long as one makes sure that the advice and input alphabets are identical.

For any language L on an alphabet Σ, and for natural numbers n and k such

that k ≤ n, we define the relation ≡L,n,k on the set Σk as follows: x ≡L,n,k y ⇐⇒
for all strings z of length n − k, xz ∈ L if and only if yz ∈ L. In the remainder of

the paper, we will make frequent use the following lemma, which is reminiscent

of Yamakami’s characterization theorem for REG/n [15], to demonstrate languages

which are unrecognizable with certain amounts of advice by automata with one-way

input.
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Lemma 6. For any advice length function f , if L ∈ SPACE(1)/f(n)(1w-input),

then for all n and all k ≤ n, ≡L,n,k has O(f(n)) equivalence classes.

Proof. Let M be the dfat which is supposed to recognize L with an advice string

of length O(f(n)). If we fix the position of the input head, there are just O(f(n))

combinations of internal state and advice head position pairs that are potentially

reachable for M . Assume that the number of equivalence classes of ≡L,n,k is not

O(f(n)). Then for some sufficiently large n, there exists two strings x and y of length

k in two different equivalence classes of ≡L,n,k which cause M to reach precisely the

same head positions and internal state after being processed if they are presented

as the prefixes of two n-symbol input strings in two separate executions of M . But

M will then have to give the same response to the two input strings xz and yz for

any z ∈ Σn−k, meaning that x ≡L,n,k y.

We can now establish the existence of an infinite hierarchy of language classes

that can be recognized by dfat’s with increasing amounts of advice.

Theorem 7. For k ∈ Z+, SPACE(1)/nk(1w-input) ( SPACE(1)/nk+1(1w-input).

Proof. In order to prove the theorem statement, we will first define a family Lk

of languages for k ∈ Z+, and then show that advice strings of length Θ(ni) are

necessary (Lemma 9) and sufficient (Lemma 10) to recognize any particular member

Li of this family.

Definition 8. For k ∈ Z+, Lk = {cnk

k c
nk−1

k−1 · · · cn1

1 cn0

0 cn1

1 · · · cnk−1

k−1 cnk

k |n0 >

0 and nj ≥ 0 for j ∈ {1, . . . , k}} on the k + 1-symbol alphabet {c0, c1, . . . , ck}.

Lemma 9. For i ∈ Z+, Li /∈ SPACE(1)/ni−1(1w-input)

Proof. For a positive integer n, consider the set S of strings of length k = ⌊n/2⌋+1

and of the form c∗i c
∗
i−1 · · · c∗1c+0 . Note that each member of S is the first half of a

different member of Li, no two distinct members x and y of S satisfy x ≡Li,n,k y,

and that there are Θ(ni) members of S. We conclude using Lemma 6 that

Li /∈ SPACE(1)/ni−1(1w-input).

Lemma 10. For i ∈ Z+, Li ∈ SPACE(1)/ni(1w-input).

Proof. An inductive argument will be employed to show the truth of the statement,

so let us first consider the language L1. To see that L1 ∈ SPACE(1)/n1(1w-input),

we construct an advice function h1(n) and an automaton M1 as follows. For inputs

of length n, let h1(n) = 1n be given as advice. The automaton M1 checks if the

input is of the form ci1c
j
0c

k
1 for i, k ≥ 0 and j > 0. If not, it rejects. In parallel, M1

moves the advice tape head while scanning the input as follows: For each c1 that

comes before the first c0 in the input, the advice tape head stays put. For each c0 in
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the input, the advice tape head moves one step to the right. Finally, for each c1 that

comes after the last c0 in the input, the advice tape head moves two steps to the

right. The input is accepted if the endmarkers are scanned simultaneously on both

tapes. Since the advice head moves exactly j+2k steps, which equals n = i+ j+ k

if and only if i = k, we conclude that M1 recognizes L1 when provided with h1(n),

a linear-length advice function.

Now let us prove that Li ∈ SPACE(1)/ni(1w-input) =⇒ Li+1 ∈ SPACE(1)/

ni+1(1w-input).

Assume Li ∈ SPACE(1)/ni(1w-input). Then there should be a dfat Mi which

recognizes Li when it has access to the advice function hi(n) of length O(ni). Below,

we construct a dfat Mi+1 and an advice function hi+1(n) of length O(ni+1) such

that Mi+1 recognizes Li+1 when it has access to advice given by function hi+1(n).

Note that the members of Li+1 are members of Li sandwiched between equal

numbers of ci+1’s on each end. Therefore, the method for checking membership in

Li can be used in the test for membership in Li+1 if one can check whether the

ci+1 sequences at each end are of the same length separately. Hence, we define the

advice function hi+1(n) for Li+1 in terms of the advice function hi(n) for Li as

hi+1(n) = hi(n)#i+1hi(n− 2)ci+1#i+1 · · ·#i+1hi

(

n− 2

⌊

n

2

⌋)

c
⌊n

2
⌋

i+1#i+1,

that is, one concatenates all the strings hi(n− 2j)cji+1#i+1 for j ∈ {0, . . . , ⌊n
2 ⌋} in

increasing order, where #i+1 is a new symbol in Mi+1’s advice alphabet. As hi(n)

is of length O(ni), the length of hi+1(n) can be verified to be O(ni+1).

When provided access to the advice function hi+1(n), the automaton Mi+1

performs the tasks below in parallel in order to recognize the language Li+1:

• The input is checked to be of the form c∗i+1c
∗
i · · · c∗1 c+0 c∗1 · · · c∗i c∗i+1. If not, it is

rejected.

• For each ci+1 on the input tape, that comes before any other symbol, the advice

head is moved to the next #i+1 on the advice tape. If the endmarker is scanned on

the advice tape at this step, the input is rejected. When the first non-ci+1 symbol

is scanned on the input, the control passes to the automaton Mi for language

Li, which runs on the input tape content until the first ci+1 or the endmarker,

and uses as advice the content until the first ci+1 or #i+1 on the advice tape.

If Mi rejects its input, so does Mi+1. If Mi accepts its input, Mi+1 accepts its

input only if the number of ci+1’s on the remainder of the input tape matches

the number of ci+1’s on the advice tape until the first #i+1.

We now show that PAL, the language of even-length palindromes on the alphabet

{a, b}, is unrecognizable by dfat’s with one-way input and polynomial-length advice:

Theorem 11. PAL /∈ SPACE(1)/poly(1w-input).

Proof. Similarly to the proof of Lemma 9, we consider the set S of all strings on

{a, b} of length k = n/2 for an even positive number n. No two distinct members
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x and y of S satisfy x ≡PAL,n,k y, and there are 2Θ(n) members of S. We conclude

using Lemma 6 that PAL /∈ SPACE(1)/poly(1w-input).

Note that, this result can be extended to include any sub-exponential advice

length function instead of polynomial, as the same line of reasoning can be applied

in these cases too. Moreover, since a machine with real-time input does not have

time to consume more than a linear amount of advice, we easily have

Corollary 12. For every function f : N → N, PAL /∈ SPACE(1)/f(n)(rt-input).

A natural question that arises during the study of advised computation is

whether the model under consideration is strong enough to recognize every de-

sired language. The combination of two-way input tape head and exponentially

long advice can be shown to give this power to finite automata. Let ALL denote the

class of all languages on the input alphabet Σ.

Theorem 13. SPACE(1)/exp(rt-advice) = ALL.

Proof. The advice string for input length n contains all members of the considered

language of length n, separated by substrings consisting of n + 2 blank symbols.

The automaton compares the input with each of the strings listed on the advice

tape in the order of appearance. If it is able to match the input to a word on the

advice tape, it accepts the input. If a mismatch occurs, the machine rewinds to

the start of the input while consuming blank symbols until the next member string

on the advice tape. If the advice ends without a match, the input is rejected. The

advice length is 2O(n).

Whether SPACE(1)/exp(1w-input) = ALL is an open question. We do not even

know if PAL ∈ SPACE(1)/exp(1w-input). But we are able to prove a separation

between classes corresponding to machines with one-way versus two-way input that

are confined to polynomial-length advice, as the following theorem shows.

Theorem 14. SPACE(1)/poly(1w-input) ( SPACE(1)/poly(2w-input).

Proof. We already showed in Theorem 11 that polynomial-length advice is no

help for dfat’s with one-way input for recognizing PAL. To prove the present the-

orem, we shall describe how a two-way dfa with real-time access to a quadratic-

length advice string can recognize PAL. On an input of length n, the advice tells

the automaton to reject if n is odd. For even n, the advice assists the automa-

ton by simply marking the n/2 pairs (i, n − i + 1) of positions that should be

holding matching symbols on the input string. Consider, for example h(8) =

#10000001#01000010#00100100#00011000#. The automaton should just traverse

the input from the first symbol to the last while also traversing the part of the ad-

vice that lies between two separator symbols (#), and then do the same while going
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from the last symbol to the first, and so on. At each pass, the automaton should

check whether the input symbols whose positions match those of the two 1’s on the

advice are identical. If this check fails at any pass, the automaton rejects the input,

otherwise, it accepts.

The method described above requires a two way automaton with real-time access

to an advice of length n2/2. (The separator symbols are for ease of presentation,

and are not actually needed for the construction.)

5. Randomized Advice for Deterministic Machines and Vice Versa

We now turn to randomly selected probabilistic advice given to deterministic ma-

chines. Yamakami [15] proved that this setup yields an improvement in language

recognition power over REG/n, by demonstrating a deterministic automaton with

advice track recognizing the center-marked palindrome language with randomized

advice. Considering the amount of randomness involved in the selection of the ad-

vice string as a resource, Yamakami’s example requires O(n) random bits, since it

requires picking a string from a set with 2O(n) elements with uniform probability.

Furthermore, reducing the error bound of Yamakami’s automaton to smaller and

smaller values requires extending the advice alphabet to bigger and bigger sizes. In

the construction we will present in Theorem 15, the number of random bits does not

depend on the input length, and any desired error bound can be achieved without

modifying the advice alphabet.

Theorem 15. SPACE(1)/n(1w-input) ( SPACE(1)/Rn(1w-input, bounded-

error).

Proof. We will use the language EQUAL3 = {w| w ∈ {a, b, c}∗, |w|a = |w|b = |w|c}
to separate the language classes in the theorem statement.

Let k be any positive integer, n = 3k, and consider the set S of all strings of

length k and of the form a∗b∗c∗. Note that S has
(

k+2
2

)

= ω(n) members, and that

no two distinct members x and y of S satisfy x ≡EQUAL3,n,k y. We conclude using

Lemma 6 that EQUAL3 /∈ SPACE(1)/n(1w-input, 1w-advice).

To show that EQUAL3 ∈ SPACE(1)/Rn(1w-input, 1w-advice, bounded-error),

we will describe a set of advice strings, and show how a randomly selected member

of this set can assist a one-way dfat N to recognize EQUAL3 with overall bounded

error. We shall be adapting a technique used by Freivalds in [4].

If the input length n is not divisible by 3, N rejects. If n = 3k for some integer

k, the advice is selected with equal probability from a collection of linear-size advice

strings Ai = 1i#1ki
2+ki+k for i ∈ {1, . . . , s}, where s is a constant.

N starts by reading the 1’s in the advice string that precede the separator

character #, thereby learning the number i.N then starts to scan the input symbols,

and moves the advice head 1, i, or i2 steps to the right for each a, b or c that it reads

on the input tape, respectively. The input is accepted if the automaton reaches the
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ends of the input and advice strings simultaneously, as in the proof of Theorem 3.

Otherwise, the input is rejected.

Note that the automaton accepts the input string w if and only if the number of

symbols in the advice string that comes after the separator symbol is equal to the

total number of moves made by the advice tape head while the input head scans w.

N accepts w if and only if |w|a+|w|bi+|w|ci2 = k+ki+ki2, which trivially holds for

w ∈ EQUAL3 no matter which advice string is selected, since |w|a = |w|b = |w|c = k

in that case.

If w /∈ EQUAL3, the probability of acceptance is equal to the probability of

selecting one of the roots of the quadratic equation (|w|c − k)i2 + (|w|b − k)i +

(|w|a − k) = 0 as the value of i. This probability is bounded by 2
s , and can be

pulled down to any desired level by picking a bigger value for s, and reorganizing

the automaton accordingly.

Another way of integrating randomness to the original model is to employ prob-

abilistic computation with access to deterministic advice. We show below that prob-

abilistic automata with advice can recognize more languages with bounded error

than their deterministic counterparts.

Theorem 16. SPACE(1)/n(1w-input) ( BPSPACE(1)/n(1w-input).

Proof. By definition, the class SPACE(1)/n(1w-input, 1w-advice) is contained in

BPSPACE(1)/n(1w-input, 1w-advice). So it remains to show that there is a lan-

guage which can not be recognized by a one way dfat with one way access to

linear-size advice but can be recognized with bounded error by a pfat with one way

input with the help of same amount of advice. We claim that EQUAL3, which was

introduced and was shown to lie outside SPACE(1)/n(1w-input, 1w-advice) in the

proof of Theorem 15, is one such language. We now describe how to construct a

one-way pfat P and an associated linear-length advice function to recognize EQUAL3
for any specified nonzero error bound ε < 1

2 . The idea is reminiscent of that used for

the proof of Theorem 15. However we now specify a deterministic advice function

which contains all the alternatives and let the probabilistic automaton randomly

pick and use one.

Let n denote the length of the input, and let s = ⌈ 2
ε⌉. If n is not divisible by

3, the automaton rejects with probability 1. If n is divisible by 3, the advice is

the string #1n#1
7n

3 # . . .#1
n

3
s2+n

3
s+ n

3 , obtained by concatenating all the strings

#1
n

3
i2+n

3
i+n

3 for i ∈ {1, . . . , s} in increasing order.

P starts by randomly picking an integer i between 1 and s, and moving its advice

head to the i’th #. It then starts scanning the input, moving the advice head by

1, i, or i2 steps for each a, b or c, just as we had in the proof of Theorem 15. It

accepts if and only if the advice head reaches the next # (or the end of the advice

string) simultaneously with the arrival at the end of the input. The correctness of

the algorithm follows from the argument in the proof of Theorem 15.
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6. Quantum Finite Automata with Advice Tapes

Yamakami [17] defined the class 1QFA/n as the collection of languages which can be

recognized by real-time Kondacs-Watrous quantum finite automata (KWqfa’s) with

advice tracks. The KWqfa is one of many inequivalent models of quantum finite-

state computation that were proposed in the 1990’s, and is known to be strictly

weaker than classical finite automata in the context of bounded-error language

recognition [9]. This weakness carries over to the advised model of [17], with the

result that there exist some regular languages that are not members of 1QFA/n. We

use a state-of-the-art model of quantum automaton that can simulate its classical

counterparts trivially, [7, 13] so we have:

Theorem 17. 1QFA/n ( BQSPACE(1)/n(rt-input, rt-advice).

Whether this strong version of qfa can outperform its classical counterparts with

advice tapes is an open question. We are able to show a superiority of quantum

over classical in the following restricted setup, which may seem silly at first sight:

Call an advice tape empty if it contains the standard blank tape symbol in all its

squares. We say that a machine M receives empty advice of length f(n), if it is just

allowed to move its advice head on the first f(n) squares of an empty advice tape,

where n is the input length. This restriction will be represented by the presence of

the designation empty in the specification lists of the relevant complexity classes.

Theorem 18. BPSPACE(1)/n(rt-input, 1w-empty-advice) ( BQSPACE(1)/n

(rt-input, 1w-empty-advice).

Proof. An empty advice tape can be seen as an increment-only counter, where

each move of the advice tape head corresponds to an incrementation on the counter,

with no mechanism for decrementation or zero-testing provided in the programming

language. In [12], Yakaryılmaz et al. studied precisely this model. It is obvious

that classical automata augmented with such a counter do not gain any additional

computational power, so BPSPACE(1)/n(rt-input, 1w-empty-advice) equals the

class of regular languages, just like the corresponding class without advice. On the

other hand, real-time qfa’s augmented with such an increment-only counter were

shown to recognize some nonregular languages like EQUAL2 with bounded error

in [12].

Since increment-only counters are known to increase the computational power

of real-time qfa’s in the unbounded-error setting as well, [12], we can also state

Theorem 19. PrSPACE(1)/n(rt-input, 1w-empty-advice) ( PrQSPACE(1)/n

(rt-input, 1w-empty-advice).

7. Open Questions

• Real-time probabilistic automata can be simulated by deterministic automata

which receive coin tosses within a randomly selected advice string. It would be
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interesting to explore the relationship between deterministic automata working

with randomized advice, and probabilistic automata working with deterministic

advice further.

• Are there languages which cannot be recognized with any amount of advice by a

dfat with one-way input? Does the answer change for pfat’s or qfat’s?

• Can qfat’s recognize any language which is impossible for pfat’s with non-empty

advice?
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