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Abstract A regular component is either autodense or anti-autodense. Characterizations
of a regular component being a pure autodense language and being a pure autodense code
are obtained. A relationship between intercodes and anti-autodense languages is that for an
intercode L of index m, Ln is an anti-autodense language for every n > m.

1 Introduction

The theory of formal languages plays a considerable role in the field of computer science. Both
regular languages and disjunctive languages are especially important applications. It is known
in [11] that every dense languages contains a disjunctive subset. There are many researches
for investigating the dense languages. For the definition and properties of dense languages,
one can refer to [7,12,13,16] and [17]. We have studied algebraic properties of autodense
languages and anti-autodense languages in [1]. Furthermore, we investigate characteristics
of a regular component being an autodense language. The relationship between intercodes
and autodense languages are studied in this paper.

This paper is organized into several sections. The first section introduces the overview
of this paper. In the second section, we display some well-known definitions and proper-
ties applied in this paper. In the third section, a regular component having autodense or
anti-autodense properties is shown. That is, a regular component is either autodense or
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468 C.-M. Fan et al.

anti-autodense. For a regular component being autodense, a characterization concerning
a regular component which is pure autodense is given. Furthermore, a characterization is stu-
died for a regular component which is a pure autodense code. In the meanwhile, we also study
some examples of autodense regular components. If a regular component is anti-autodense,
then it is a code. But a regular component being a code may not imply that it is an anti-
autodense language. In the final section, we investigate the relationship among bifix codes,
autodense languages, and anti-autodense languages. Comma-codes, Comma-free codes, and
intercodes with index greater than one are bifix codes. We construct a pure autodense comma-
code in the section. Every autodense intercode being pure autodense is obtained. We also
show that a skew anti-autodense language is an intercode. Furthermore, for an intercode L
of index m, it is derivative that Ln is an anti-autodense language for every n > m.

2 Definitions and preliminaries

In this paper the alphabet X containing more than one letter is assumed. Let X∗ be the
free monoid generated by X. Every element of X∗ is a word and every subset of X∗ is a
language. Let 1 denote the empty word, and X+ = X∗\{1}. A language L ⊆ X∗ is dense
if for any w ∈ X∗, there exist x, y ∈ X∗ such that xwy ∈ L . That is, for every w ∈ X∗,
X∗wX∗ ∩ L �= ∅. A primitive word is a word which is not a power of any other word. Let
Q be the set of all primitive words over X. Every word u ∈ X+ can be expressed as a power
of a primitive word in a unique way, that is, for any u ∈ X+, u = f n for a unique f ∈ Q
and n ≥ 1. In this case, f is the primitive root of u and denoted by f = √

u. For a language
L , let

√
L = {√u | u ∈ L}. A language L is a global (coglobal) language if

√
L = Q

(
√

L = Q\F , where F is a finite language).
Moreover, some classes of codes in this paper are defined as follows. A language L ⊆ X+

is called a code if x1x2 . . . xm = y1 y2 . . . yn and xi , y j ∈ X for all 1 ≤ i ≤ m, i ≤ j ≤ n
imply that m = n and xi = yi for all 1 ≤ i ≤ n. For any two words u, v ∈ X∗, u ≤p v

(u ≤s v) if and only if v = ux (v = xu) for some x ∈ X∗. u <p v (u <s v) denotes that
u ≤p v (u ≤s v) and u �= v for u, v ∈ X∗. A language L ⊂ X+ is an infix code if for all
x, y, u ∈ X∗, u, xuy ∈ L together imply x = y = 1. A language L ⊂ X+ is a prefix code
(suffix code) if L ∩ L X+ = ∅ (L ∩ X+L = ∅). A language is a bifix code if it is both a prefix
code and a suffix code. It follows immediately that an infix code is a bifix code. A language
L ⊂ X+ is an intercode of index m if Lm+1 ∩ X+Lm X+ = ∅, for m ≥ 1. The family of
intercodes is an important subfamily of bifix codes [18]. A comma-free code is an intercode
of index 1. The algebraic properties of intercodes and comma-free codes can be found in [6]
or [18]. In the following, we give the definitions concerning the property of being dense.

Definition 2.1 Let L ⊆ X+. A language L is autodense if for any w ∈ L , there exist
x, y ∈ X+ such that xwy ∈ L .

Definition 2.2 A language is pure autodense if it is autodense but not dense.

If the set L ⊆ X+ is not an autodense language, then there exists w ∈ L such that
xwy /∈ L for all x, y ∈ X+. Such a language is called a non-autodense language. Moreover,
we consider a stronger version of this language type as follow.

Definition 2.3 A language L is called anti-autodense if L ∩ X+L X+ = ∅.

Furthermore, there are some results used in the rest of this paper as follow.
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Regular autodense languages 469

Lemma 2.1 ([10]) Let u, v ∈ X+. Then uv = vu implies that u and v are powers of a
common word.

Lemma 2.2 ([9]) If uv = vz, u, v, z ∈ X∗ and u �= 1, then u = (pq)i , v = (pq) j p,
z = (qp)i for some p, q ∈ X∗, i ≥ 1, j ≥ 0 and pq, qp ∈ Q.

Lemma 2.3 ([4]) Let x, y ∈ X+. Then (xy)∗x = x(yx)∗ is a code if and only if {x, y} is a
code.

Lemma 2.4 ([15]) Let x, y ∈ X+. Then xy �= yx if and only if {x, y} is a code.

Lemma 2.5 ([19]) Let X be an alphabet having at least two letters and let L ⊆ X+ be an
intercode of index n with n ≥ 1. Then for every m, m ≥ n, L is an intercode of index m.

3 Regular component related to autodense and anti-autodense languages

An infinite regular language contains at least an infinite subset of the form uv+w, where
u, w ∈ X∗, v ∈ X+. Such an infinite subset is called a regular component. First, we discuss
the relationship between regular components and autodense or anti-autodense languages.

Proposition 3.1 A regular component is either autodense or anti-autodense.

Proof Suppose that L = uv+w, u, w ∈ X∗, v ∈ X+. Assume that L is not anti-autodense.
Then we will show that L is autodense. From the assumption, there exist i0 ≥ 1 and x, y ∈ X+
such that uvi0w ∈ L and xuvi0wy = uv jw ∈ L for some j > i0. From xuvi0wy = uv jw,

it follows that xuv = uvvkv1, wy = v2v
j−k−2w, where 0 ≤ k ≤ j − 2 and v1, v2 ∈ X∗

with v = v1v2. First, we consider xuv = uvvkv1. By Lemma 2.2, there exist p, q ∈ X∗
with pq ∈ Q and k1 ≥ 0, j1 ≥ 1 such that

x = (pq) j1 , uv = (pq)k1 p, vkv1 = (qp) j1 . (1)

Next, we consider wy = v2v
j−k−2w. By Lemma 2.2 again, there exist r, s ∈ X∗ with rs ∈ Q

and k2 ≥ 0, j2 ≥ 1 such that

v2v
j−k−2 = (rs) j2 , w = (rs)k2r, y = (sr) j2 . (2)

Since xuv = uvvkv1 for some k ≥ 0, this in conjunction with lg(v) = lg(v1v2) = lg(v2v1)

yields that v1v2 = v2v1. By Lemma 2.1, it implies that there exists g ∈ Q such that
v1 = gm1 , v2 = gm2 , where m1, m2 ≥ 0. Hence v = gm1+m2 . This yields that (qp) j1 =
vkv1 = gk(m1+m2)+m1 from vkv1 = (qp) j1 in Eq. (1). Since qp, g ∈ Q, g = qp. Moreover,
we have that (rs) j2 = v2v

j−k−2 = gm2+( j−k−2)(m1+m2) from v2v
j−k−2 = (rs) j2 in Eq. (2).

Since rs, g ∈ Q, g = rs. Therefore qp = g = rs. This implies that v = (qp)m1+m2 and
w = (rs)k2r = (qp)k2r. Recall that uv = (pq)k1 p in Eq. (1). Now for any i ≥ 1,

uviw = uvvi−1w

= (pq)k1 p(qp)(i−1)(m1+m2)(qp)k2r

= (pq)k1+(i−1)(m1+m2)+k2 pr.
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Let x1 = (pq)m1+m2 , y1 = (sr)m1+m2 . Then,

x1uviwy1 = (pq)m1+m2(pq)k1+(i−1)(m1+m2)+k2 pr(sr)m1+m2

= (pq)k1 p(qp)i(m1+m2)(qp)k2(rs)m1+m2r

= (pq)k1 p(qp)i(m1+m2)(qp)k2(qp)m1+m2r

= (pq)k1 p(qp)(i+1)(m1+m2)(qp)k2r

= uvvi+1w = uvi+2w ∈ L .

Hence L is autodense. ��
A regular component of the form f +, where f is a primitive word is called a tree [3].

Any proper infinite subset of a tree is called a half tree. It is clear that trees and half trees
are all pure autodense languages. If a regular component uv+w is autodense, then uv+w

is a pure autodense language because no regular component can be dense. We will study a
characterization for a regular component which is pure autodense in the following proposition.

Proposition 3.2 Let L = uv+w, u, w ∈ X∗, v ∈ X+ be a regular component. Then L
is pure autodense if and only if there exists z ∈ X∗ such that Lz ⊆ f + for some f ∈ Q.

Moreover, L is pure autodense if and only if there exist x ∈ X∗, y ∈ X+ such that L ⊆
(xy)+x .

Proof Let L = uv+w, u, w ∈ X∗, v ∈ X+ be a regular component. Assume that there
exists z ∈ X∗ such that Lz ⊆ f + for some f ∈ Q. If z = 1, then uv+w ⊆ f +; hence
L = uv+w is autodense. This clearly implies that L is pure autodense. Now assume that
z ∈ X+. Since Lz ⊆ f +, f ∈ Q, it follows that uvwz = f j1 and uv2wz = f j2 , for some
j1, j2 ≥ 1. Note that j1 < j2. Consider uvwz = f j1 . Then

uv = f k1 f1, wz = f2 f k2 , (3)

where f1 ∈ X∗, f2 ∈ X+ with f = f1 f2 and k1, k2 ≥ 0. Now we consider uv2wz = f j2 .

Then

uv = f k3 f3, vwz = f4 f k4 , (4)

where f3 ∈ X∗, f4 ∈ X+ with f = f3 f4 and k3, k4 ≥ 0.

From Eqs. (3) and (4), it follows that f k1 f1 = uv = f k3 f3. This implies that k3 = k1 and
f3 = f1. Since f1 f2 = f = f3 f4, we have that f4 = f2. Consider wz = f2 f k2 in Eq. (3)
and vwz = f4 f k4 = f2 f k4 in Eq. (4). Since lg(vwz) > lg(wz), it shows that k4 > k2 and
lg(v) = lg( f k4−k2). This in conjunction with uv = f k1 f1 and vwz = f2 f k4 yields that
v = ( f2 f1)

k4−k2 . Consider wz = f2 f k2 in Eq. (3), there exist f5 ∈ X∗, f6 ∈ X∗ with
f = f5 f6 and 0 ≤ m ≤ k2 such that z = f6 f m . There are the following cases:

(1) m = k2. Then f2 = w f6. This implies that f = f1 f2 = f1w f6. For any i ≥ 1 such
that uviw ∈ L , let x = f k4−k2 , y = ( f6 f1w)k4−k2 . It follows that

xuviwy = f k4−k2 uvvi−1w( f6 f1w)k4−k2

= f k4−k2 f k1 f1( f2 f1)
(i−1)(k4−k2)(w f6 f1)

k4−k2w

= f k1 f1( f2 f1)
i(k4−k2)( f2 f1)

k4−k2w

= uvvi+1w = uvi+2w.

Hence xuviwy = uvi+2w ∈ L .
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(2) m < k2. Then there is n ≥ 0 such that w = f2 f n f5, z = f6 f m . For any i ≥ 1 such
that uviw ∈ L , let x = f k4−k2 , y = ( f6 f5)

k4−k2 . It follows that

xuviwy = f k4−k2 uvvi−1w( f6 f5)
k4−k2

= f k4−k2 f k1 f1( f2 f1)
(i−1)(k4−k2) f2 f n f5( f6 f5)

k4−k2

= f k1 f1( f2 f1)
i(k4−k2)( f2 f1)

k4−k2 f2 f n f5

= uvvi+1w = uvi+2w.

Hence xuviwy = uvi+2w ∈ L .

In both cases, i is chosen arbitrarily, thus L is autodense. This clearly implies that L is pure
autodense.

Now, assume that L is autodense. Consider uvw ∈ L , there exist x, y ∈ X+ such
that xuvwy = uviw, for some i ≥ 2. Then xuv = uvvkv1, wy = v2v

i−k−2w, where
0 ≤ k ≤ i − 2 and v1, v2 ∈ X∗ with v = v1v2. From xuv = uvvkv1, by Lemma 2.2, there
exist p, q ∈ X∗ with pq ∈ Q and k1 ≥ 0, j1 ≥ 1 such that

x = (pq) j1 , uv = (pq)k1 p, vkv1 = (qp) j1 . (5)

From wy = v2v
i−k−2w, by Lemma 2.2 again, there exist r, s ∈ X∗ with rs ∈ Q and

k2 ≥ 0, j2 ≥ 1 such that

v2v
i−k−2 = (rs) j2 , w = (rs)k2r, y = (sr) j2 . (6)

Since xuv = uvvkv1 and lg(v) = lg(v1v2) = lg(v2v1), this yields that v1v2 = v2v1. By
Lemma 2.1, there exists g ∈ Q such that v1 = gm1 , v2 = gm2 , where m1, m2 ≥ 0. Then
v = gm1+m2 . Now, consider vkv1 = (qp) j1 in Eq. (5). We have that (qp) j1 = vkv1 =
gk(m1+m2)+m1 . Since qp, g ∈ Q, we have that g = qp. Next, consider v2v

i−k−2 = (rs) j2

in Eq. (6). We have that (rs) j2 = v2v
i−k−2 = gm2+(i−k−2)(m1+m2). Since rs, g ∈ Q, we

have that g = rs. This yields that qp = g = rs. By replacing rs by qp, it follows have that
v = (qp)m1+m2 and w = (rs)k2r = (qp)k2r. Recall that uv = (pq)k1 p in Eq. (5). Then for
any i ≥ 1,

uviw = uvvi−1w

= (pq)k1 p(qp)(i−1)(m1+m2)(qp)k2r

= (pq)k1+(i−1)(m1+m2)+k2 pr.

Let z = sq. We have that

uviwz = (pq)k1+(i−1)(m1+m2)+k2 prsq

= (pq)k1+(i−1)(m1+m2)+k2+2.

Since i is chosen arbitrarily, we have that Lz ⊆ (pq)+ = f +, where f = pq ∈ Q.

Moreover, Lz ⊆ f + where z = y f i with y ≤s f for some i ≥ 0 if and only if there
exists x ∈ X∗ with f = xy such that L ⊆ (xy)+x . ��

Furthermore, we study a characterization for a regular component which is a pure auto-
dense code.

Proposition 3.3 Let L = uv+w, u, w ∈ X∗, v ∈ X+ be a regular component. Then L
is a pure autodense code if and only if there exist x, y ∈ X+ with

√
x �= √

y such that
L ⊆ (xy)∗x .
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Proof Let L = uv+w, u, w ∈ X∗, v ∈ X+. Then by Proposition 3.2, L is a pure autodense
language if and only if there exist x ∈ X∗, y ∈ X+ such that L ⊆ (xy)+x . In order to
show our result, we only show that L = (xy)+x is a code if and only if

√
x �= √

y. First,
assume that L is not a code. Then (xy)∗x is not a code. By Lemma 2.3, {x, y} is not a code.
Moreover, by Lemma 2.4, xy = yx . This in conjunction with Lemma 2.1 yields that x and y
are powers of a common word. This implies that

√
x = √

y, a contradiction. Conversely, if√
x �= √

y, i.e., x, y are not powers of a common word, then by Lemmas 2.1 and 2.4, {x, y}
is a code. By Lemma 2.3 again, (xy)∗x is a code and hence L is a code. ��

The set (xy)∗x, where x, y ∈ X∗ is called a δ-language in [4], which is neither a prefix
code nor a suffix code. If a δ-language is a code, then it is called a δ-code. We rewrite
Propositions 3.2 and 3.3 as a remark:

Remark 3.1 Let L = uv+w, u, w ∈ X∗, v ∈ X+ be a regular component. Then the
following two statements are true:

(1) L is a pure autodense language if and only if L is a δ-language.
(2) L is a pure autodense code if and only if L is a δ-code.

Proof Let L = uv+w, u, w ∈ X∗, v ∈ X+ be a regular component. Then the results are
immediately from Propositions 3.2 and 3.3. ��

A regular component uv+w, where u, v, w ∈ X+ is called a real regular component if
v �≤s u, v �≤p w. Let L = uv+w, where u, v, w ∈ X+ be a real regular component. Then
for i ≥ 1, zi = uviw ∈ L . Note that if L is an autodense language and for some x, y ∈ X+
such that uv jw = z j = xuviwy ∈ L , where j ≥ 1, then j > i.

Proposition 3.4 Let L = uv+w, where u, w ∈ X+, v ∈ Q be a real regular component. If
L is an autodense language, then u is a proper suffix of v and w is a proper prefix of v.

Proof Let L = uv+w be a real regular component, where u, w ∈ X+, v ∈ Q. Assume that
L is an autodense language. Consider uvw ∈ L . Since L is an autodense language, there
exist x, y ∈ X+ such that xuvwy ∈ L . If xuvwy = uv2w, then lg(v) = lg(x)+ lg(y). Since
x, y ∈ X+, there exist v1, v2 ∈ X+ with v = v1v2 such that xu = uv1, v = v2v1, wy =
v2w. From v = v2v1, we have that v1v2 = v2v1. By Lemma 2.1, v �∈ Q, a contradiction.
Assume that xuvwy = uv jw for some j ≥ 3. We consider the following cases:

(1) lg(x) < lg(v). Then xu = uv1 and vwy = v2v
j−1w for some v1, v2 ∈ X+ with

v = v1v2. From vwy = v2v
j−1w, this implies that v1v2 = v2v1. By Lemma 2.1,

v �∈ Q, a contradiction.
(2) lg(vi ) < lg(x) < lg(vi+1) for 1 ≤ i < j . Then xu = uviv1 and vwy = v2v

j−i−1w for
some v1, v2 ∈ X+ with v = v1v2. From vwy = v2v

j−1w, this implies that v1v2 = v2v1.
By Lemma 2.1, v �∈ Q, a contradiction.

Therefore xu = uvi , vkw = wy with i + k = j − 1, i, k ≥ 1. This in conjunction with the
definition of real regular component, v �≤s u and v �≤p w, yields that u is a proper suffix of
v and w is a proper prefix of v. ��
Proposition 3.5 Let L = uv+w be a general infinite regular component, where u, v, w ∈
X+. If u is a suffix of v and w is a prefix of v, then L is an autodense language.

Proof Let L = uv+w, where u, v, w ∈ X+ with u is a suffix of v and w is a prefix of v.
Then v = g1u, v = wg2 for some g1, g2 ∈ X∗. Let x = ug1, y = g2w. This yields that
xu = uv,wy = vw. Then for any word uviw ∈ L , xuviwy = uvi+2w ∈ L . This shows
that L is an autodense language. ��
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Regular autodense languages 473

The following two corollaries are direct consequences of the above proposition. Moreover,
we also study some examples of regular components which are autodense.

Corollary 3.1 Let L = uv+w be a real regular component with v ∈ Q. If {u, v} is a suffix
code or {w, v} is a prefix code, then L is not an autodense language.

Corollary 3.2 Let L = uv+w be a regular component with {u, v, w} a bifix code contained
in Q. Then L is not an autodense language.

Example 1 L1 = a(ab)+b is not an autodense language.

Example 2 L2 = u(v)+w = b(ab)+a is an autodense language. Here u = b, v = ab,
w = a. L2 is in fact a half tree, that is, L2 = ba(ba)+ = (ba)+ \ {ba}. Since a half tree is a
pure autodense language, L2 is a pure autodense language.

Example 3 L3 = b(a2b2)+a is a pure autodense language. This is true, with a given word
z = (b)(a2b2)n(a) ∈ L , n ≥ 1. By taking x = ba2b, y = ab2a, then xzy ∈ L .

Example 4 Let L4 = a+, L5 = b+. Both L4 and L5 are pure autodense languages. The
catenation of L4 and L5 is L4L5 = a+b+ which is a pure autodense language.

Lemma 3.1 ([1]) Every coglobal language is dense and hence is not pure autodense.

Every regular global (or coglobal) language L contains infinitely many trees [5]. That is,
L contains infinitely many f +, where f is a primitive word. The similar results for the case
of pure autodense languages are interesting. By Lemma 3.1, every pure autodense language
is not coglobal. But a regular pure autodense language may contain infinitely many trees.
For example: Let ab, ba ∈ X+, where a �= b ∈ X. Then L = {ab, ba}+ is a pure autodense
language. If L is an autodense code, then certainly L is not an infix code.

Example 5 L = {anbn | n ≥ 1} is a pure autodense code.

Example 6 F1
1 , F1

2 , F0
1 , F0

2 (see [2]) are all pure autodense codes.

Example 7 Let X = {a, b} and D be the Dyck language over X , i.e., D = {w ∈ X+ | wa =
wb, zb ≤ za for all z ≤p w} where wa is the number of the letter a in w. It is known that D
is a dense language. The subset aDb is a bifix code which has been called the prime Dyck
code. The aDb is a dense language; hence it is an autodense language.

A characterization of an anti-autodense regular component is considered in the following.

Proposition 3.6 Let L be a regular component. If L is an anti-autodense language, then L
is a code.

Proof Let L be a regular component. Then L = uv+w for some u, w ∈ X∗, v ∈ X+.

Assume that L is anti-autodense, i.e., L ∩ X+L X+ = ∅. Now suppose that L is not a code.
Then there exist m, n ≥ 1 and x1, x2 . . . , xm, y1, y2, . . . , yn ∈ L such that x1x2 . . . xm =
y1 y2 . . . yn, where x1 �= y1, xm �= yn . Let xi = uvk1i w, y j = uvk2 j w, k1i , k2 j ≥ 1, where
1 ≤ i ≤ m, 1 ≤ j ≤ n. Since x1 �= y1, it follows that k11 �= k21. We consider the following
two cases:
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(1) m = 1. This in conjunction with x1 �= y1 yields that n ≥ 2. Then uvk11w =
uvk21w · · · uvk2n w. If n ≥ 3, then it is true that L ∩ X+uvk22wX+ �= ∅; hence
L ∩ X+L X+ �= ∅, a contradiction. Thus n = 2. We have that vk11−k21−k22 = wu.

If k11 − k21 − k22 = 0, then wu = 1 and L = v+. This implies that L is an autodense
language, a contradiction. Hence k11 − k21 − k22 ≥ 1. Since v ∈ X+, we have that
wu ∈ X+ and then uw ∈ X+. Thus u(wu)w = uvk11−k21−k22w ∈ L . This implies that
uw(uvk11−k21−k22w)uw = uw(u(wu)w)uw = u(wu)3w = uv3(k11−k21−k22)w ∈ L .

Since uw ∈ X+ and (uvk11−k21−k22w) ∈ L , L ∩ X+L X+ �= ∅, a contradiction.
(2) m ≥ 2. Then uvk11wuvk12w · · · uvk1m w = uvk21wuvk22w · · · uvk2n w. Since x1 �= y1,

k11 �= k21. Without loss of generality, let k11 > k21. Thus vk11−k21wuv ≤p wuvk22w · · ·
uvk2n w. This implies that there exists z ∈ X+ such that vk11−k21wuv = wuvz. By
Lemma 2.2, there exist p, q ∈ X∗ with pq ∈ Q and k ≥ 0, i0 ≥ 1 such that vk11−k21 =
(pq)i0 , wuv = (pq)k p, z = (qp)i0 . From vk11−k21 = (pq)i0 and pq ∈ Q, v ∈ X+,

there exists k1 ≥ 1 such that v = (pq)k1 and then lg(pq) = lg(qp) ≤ lg(v). This
implies that pq ≤s v. But from wuv = (pq)k p and lg(qp) ≤ lg(v), this yields that
qp ≤s v. Thus pq = qp. By Lemma 2.1, p, q are powers of a common word. This
implies that pq /∈ Q, a contradiction.

Both cases imply that L must be a code. ��
The converse of the above proposition is not true, that is, a regular component being a

code may not imply that it is an anti-autodense language. For example, let L = (ab)+a,

where a �= b ∈ X. By Proposition 3.2, L is autodense. But since a �= b ∈ X, by Lemma 2.3,
L is a code. Therefore, we study a characterization for a regular component that is a code in
following proposition.

Proposition 3.7 A regular component is a code if and only if it is not a subset of a tree.

Proof The sufficient condition is clear. Now, let L = uv+w, u, w ∈ X∗, v ∈ X+. Assume
that L is not a subset of a tree. That is, L �⊆ f +, for every f ∈ Q. We will show that L is
a code. By Proposition 3.1, L is either anti-autodense or autodense. If L is anti-autodense,
then by Proposition 3.6, L is a code. If L is autodense, then by Proposition 3.2, there exist
x, y ∈ X∗ such that L ⊆ (xy)+x . If L is not a code, then (xy)+x is not a code. By Lemma 2.3,
{x, y} is not a code and then xy = yx . Moreover, by Lemma 2.1, this implies that x, y are
powers of a common word. Let x = f i , y = f j , where i, j ≥ 1 and f ∈ Q. Thus
L ⊆ (xy)+x ⊆ f +. That is, L is a subset of a tree, a contradiction. Therefore L is a code.

��

4 Intercodes related to autodense languages and anti-autodense languages

It is known that every intercode with index greater than or equal to one is a bifix code
[18]. An intercode of index 1 is a comma-free code. There exist bifix codes which are
not intercodes of any index. Such a bifix code has been called a comma-code [8]. Recall
that a comma-free code is an infix code and an infix code can never be an autodense lan-
guage. Hence, there are no autodense comma-free codes. But pure autodense intercodes
of index greater than one exist. In fact, it has been pointed out that the context-free lan-
guage L = {anbn | n ≥ 1} is an intercode of index 2 which is a pure autodense language.
Moreover, we will study comma-codes with autodense property. The following example
is a bifix code which is a comma-code, in the sense that it is not an intercode of any
index.
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Example 1 (see [14]) Let X = {a, b} and X+ = {x1 = a ≤ x2 = b ≤ x3 = aa ≤ x4 =
ab ≤ · · · }, where ≤ is the lexicographic order on X∗. For any xn ∈ X+, n ≥ 1, the word
x ′

n is defined as

x ′
n = bn xnbn if xn = ay = za,

x ′
n = bn xnan if xn = ay = zb,

x ′
n = an xnbn if xn = by = za,

x ′
n = an xnan if xn = by = zb,

where y, z ∈ X∗. Let R = {x ′
n | xn ∈ X+, n ≥ 1}. Then R being an autodense language is

immediate. Since R is dense, it is not pure autodense.

Contiguously, we construct a subset R′ of R which is a pure autodense language. Start
with the first element z1 = bab ∈ R. Put z1 ∈ R′. With the word z1 = bab in R′, there
is only one word z2 in X+(z1)X+ ∩ R. Put that z2 in R′. Now suppose we have number n
element zn in R′, then put the element zn+1 which is the only element in X+(zn)X+ ∩ R. By
continuing the process, we got the subset R′ of R. R′ is an autodense language which is not
dense because the word a2ba2 /∈ R′ and so X+(a2ba2)X+ ∩ R′ = ∅. Thus R′ is not dense.

Remark 4.1 Since both the bifix codes R and R′ are not infix codes, they cannot be comma-
free codes. It can be shown that they are also not intercodes of index greater than one, and
hence are comma-codes.

In the following propositions, we investigate some combinatorics of autodense languages
and anti-autodense languages which are intercodes of index greater than one. First, we consi-
der the case of autodense languages. The language L is called a skew language if no proper
prefix of a word is a suffix of any word in L and no proper suffix of a word is a prefix of any word
in L . It is known in [9] that every skew language is a bifix code with Pref(L)∩ Suff(L) = L
where Pref(L) = {u ∈ X+ | u ≤p v for all v ∈ L} and Suff(L) = {u ∈ X+ | u ≤s v for
all v ∈ L}. A skew language may be an autodense language. For example: Let a �= b ∈ X.

Then L = {anbn | n ≥ 1} is a skew language. Recall that L is an autodense language. We
now show that if L is an autodense intercode, then L is pure autodense.

Lemma 4.1 ([18]) No intercode is dense.

Proposition 4.1 Every autodense intercode is pure autodense.

Proof Immediate from Lemma 4.1. ��

We investigate the relationship between anti-autodense language and intercodes in the
following proposition.

Proposition 4.2 Let L be an anti-autodense language. If L is a skew language, then L is an
intercode of index m for some m ≥ 1.

Proof Let L be an anti-autodense language. Then L ∩ X+L X+ = ∅. Assume that L is a
skew language. Recall that L is a bifix code. Suppose that L is not an intercode of index m
for any m ≥ 1. Then there exist x1, x2, . . . , xm+1, y1, y2, . . . , ym ∈ L and x, y ∈ X+ such
that x1x2 . . . xm+1 = xy1 y2 . . . ym y. There are the following subcases:
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(1) lg(x1) = lg(x). Then x1 = x and x2 . . . xm+1 = y1 . . . ym y. If y j = x j+1 for every
j = 1, . . . , m − 1, then xm+1 = ym y. This contradicts that L is a bifix code. Hence
y j �= x j+1, for some j = 1, . . . , m − 1. Thus there exists z ∈ X+ such that either
y j = x j+1z or x j+1 = y j z. Since x j+1, y j ∈ L , z ∈ X+, both cases imply that L is
not a bifix code, a contradiction.

(2) lg(x) < lg(x1). There exists z ∈ X+ such that x1 = xz and zx2 . . . xm+1 = y1 . . . ym y.
If lg(z) ≤ lg(y1), then z is a proper suffix of x1 and is also a prefix y1. This in conjunction
with x1, y1 ∈ L yields that L is not skew, a contradiction. If lg(z) > lg(y1), then there
exists t ∈ X+ such that z = y1t. This implies that x1 = xy1t. This contradicts that
L ∩ X+L X+ = ∅.

(3) lg(x1) < lg(x).There exists x ′ ∈ X+ such that x = x1x ′ and x2 . . . xm+1 = x ′y1 . . . ym y.

If lg(x2) = lg(x ′), then x3 . . . xm+1 = y1 . . . ym y. The proof of this case is simi-
lar to case(1). If lg(x2) < lg(x ′), then there exist xk1 ∈ X+, xk2 ∈ X∗ such that
x2 . . . xk−1xk1 = x ′ and xk2xk+1 . . . xm+1 = y1 . . . ym y with xk = xk1xk2 for some
k = 3, . . . , m. As xk2 = 1, we have xk+1 . . . xm+1 = y1 . . . ym y. The proof of this
case is also similar to case(1); hence xk2 ∈ X+. For xk2xk+1 . . . xm+1 = y1 . . . ym y,
the proof of this case is similar to case(2). Then we consider lg(x2) > lg(x ′). There
exist yk′1 ∈ X∗, yk′2 ∈ X+ such that x2 = x ′y1 . . . yk′−1 yk′1 and x3 . . . xm+1 =
yk′2 yk′+1 . . . ym y with y′

k = yk′1 yk′2 for some k′ = 1, . . . , m − 1. As yk′1 = 1, we
have x2 = x ′y1 . . . yk′−1. This contradicts that L is a bifix code. Hence yk′1 ∈ X+. This
implies that x2 = x ′y1t for some t ∈ X+. This contradicts that L ∩ X+L X+ = ∅.

Therefore L is an intercode of index for m ≥ 1. ��
Lemma 4.2 Let L ⊆ X+ and let m ≥ 2. Then X+Lm X+ ⊆ X+Ln X+ for all 1 ≤ n < m.

Proof Let L be a language and let 1 ≤ n < m. Suppose that z = xu1u2 . . . um y ∈ X+Lm X+,
where x, y ∈ X+ and u1, u2, . . . , um ∈ L . Then z = (x)u1u2 · un(un+1 . . . um y) and
z ∈ X+Ln X+. ��
Proposition 4.3 For any anti-autodense language L ⊆ X+, L ∩ X+Ln X+ = ∅ for any
n ≥ 2.

Proof Let L be an anti-autodense language, i.e. L ∩ X+L X+ = ∅. Since X+L2 X+ ⊆
X+L X+ by Lemma 4.2, L ∩ X+L2 X+ ⊆ L ∩ X+L X+ = ∅. By similar argument, for any
n ≥ 3, L ∩ X+Ln X+ = ∅. ��
Proposition 4.4 For any m ≥ 1, if L is an intercode of index m, then Lm+1 is an anti-
autodense language.

Proof Suppose L is an intercode of index m, m ≥ 1. Then by definition Lm+1 ∩
X+Lm X+ = ∅. By Lemma 4.2, X+Lm+1 X+ ⊂ X+Lm X+ and so Lm+1 ∩ X+Lm+1 X+ ⊂
Lm+1 ∩ X+Lm X+ = ∅. It follows immediately that Lm+1 ∩ X+Lm+1 X+ = ∅, and by
definition, Lm+1 is an anti-autodense language. ��

By Lemma [19], every intercode of index m is an intercode of index m + 1, the following
is immediate:

Corollary 4.1 For any m ≥ 1, if L is an intercode of index m, then for all n > m, Ln is an
anti-autodense language.
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